int dtNavMesh::findConnectingPolys(const float* va, const float* vb, const dtMeshTile* tile, int side, dtPolyRef* con, float* conarea, int maxcon) const { if (!tile) return 0; float amin[2], amax[2]; calcSlabEndPoints(va,vb, amin,amax, side); const float apos = getSlabCoord(va, side); // Remove links pointing to 'side' and compact the links array. float bmin[2], bmax[2]; unsigned short m = DT_EXT_LINK | (unsigned short)side; int n = 0; dtPolyRef base = getPolyRefBase(tile); for (int i = 0; i < tile->header->polyCount; ++i) { dtPoly* poly = &tile->polys[i]; const int nv = poly->vertCount; for (int j = 0; j < nv; ++j) { // Skip edges which do not point to the right side. if (poly->neis[j] != m) continue; const float* vc = &tile->verts[poly->verts[j]*3]; const float* vd = &tile->verts[poly->verts[(j+1) % nv]*3]; const float bpos = getSlabCoord(vc, side); // Segments are not close enough. if (dtAbs(apos-bpos) > 0.01f) continue; // Check if the segments touch. calcSlabEndPoints(vc,vd, bmin,bmax, side); if (!overlapSlabs(amin,amax, bmin,bmax, 0.01f, tile->header->walkableClimb)) continue; // Add return value. if (n < maxcon) { conarea[n*2+0] = dtMax(amin[0], bmin[0]); conarea[n*2+1] = dtMin(amax[0], bmax[0]); con[n] = base | (dtPolyRef)i; n++; } break; } } return n; }
bool dtNavMesh::init(const dtNavMeshParams* params) { memcpy(&m_params, params, sizeof(dtNavMeshParams)); dtVcopy(m_orig, params->orig); m_tileWidth = params->tileWidth; m_tileHeight = params->tileHeight; // Init tiles m_maxTiles = params->maxTiles; m_tileLutSize = dtNextPow2(params->maxTiles/4); if (!m_tileLutSize) m_tileLutSize = 1; m_tileLutMask = m_tileLutSize-1; m_tiles = (dtMeshTile*)dtAlloc(sizeof(dtMeshTile)*m_maxTiles, DT_ALLOC_PERM); if (!m_tiles) return false; m_posLookup = (dtMeshTile**)dtAlloc(sizeof(dtMeshTile*)*m_tileLutSize, DT_ALLOC_PERM); if (!m_posLookup) return false; memset(m_tiles, 0, sizeof(dtMeshTile)*m_maxTiles); memset(m_posLookup, 0, sizeof(dtMeshTile*)*m_tileLutSize); m_nextFree = 0; for (int i = m_maxTiles-1; i >= 0; --i) { m_tiles[i].salt = 1; m_tiles[i].next = m_nextFree; m_nextFree = &m_tiles[i]; } // Init ID generator values. m_tileBits = dtMax((unsigned int)1, dtIlog2(dtNextPow2((unsigned int)params->maxTiles))); m_polyBits = dtMax((unsigned int)1, dtIlog2(dtNextPow2((unsigned int)params->maxPolys))); m_saltBits = 32 - m_tileBits - m_polyBits; if (m_saltBits < 10) return false; return true; }
static void normalizeArray(float* arr, const int n) { // Normalize penaly range. float minPen = FLT_MAX; float maxPen = -FLT_MAX; for (int i = 0; i < n; ++i) { minPen = dtMin(minPen, arr[i]); maxPen = dtMax(maxPen, arr[i]); } const float penRange = maxPen-minPen; const float s = penRange > 0.001f ? (1.0f / penRange) : 1; for (int i = 0; i < n; ++i) arr[i] = dtClamp((arr[i]-minPen)*s, 0.0f, 1.0f); }
int dtMergeCorridorStartShortcut(dtPolyRef* path, const int npath, const int maxPath, const dtPolyRef* visited, const int nvisited) { int furthestPath = -1; int furthestVisited = -1; // Find furthest common polygon. for (int i = npath-1; i >= 0; --i) { bool found = false; for (int j = nvisited-1; j >= 0; --j) { if (path[i] == visited[j]) { furthestPath = i; furthestVisited = j; found = true; } } if (found) break; } // If no intersection found just return current path. if (furthestPath == -1 || furthestVisited == -1) return npath; // Concatenate paths. // Adjust beginning of the buffer to include the visited. const int req = furthestVisited; if (req <= 0) return npath; const int orig = furthestPath; int size = dtMax(0, npath-orig); if (req+size > maxPath) size = maxPath-req; if (size) memmove(path+req, path+orig, size*sizeof(dtPolyRef)); // Store visited for (int i = 0; i < req; ++i) path[i] = visited[i]; return req+size; }
void SPARSE_SDF::hashTriangle(TRIANGLE& triangle, map<int, vector<TRIANGLE*> >& tempHash) { VEC3F mins, maxs; triangle.boundingBox(mins, maxs); MyVec3 dtMin(mins[0], mins[1], mins[2]); MyVec3 dtMax(maxs[0], maxs[1], maxs[2]); Index iMins[3]; Index iMaxs[3]; _grid->boundingBoxIndices(dtMin, dtMax, iMins, iMaxs); for(Index z = iMins[2]; z <= iMaxs[2]; z++) for (Index y = iMins[1]; y <= iMaxs[1]; y++) for (Index x = iMins[0]; x <= iMaxs[0]; x++){ MyLocator loc; bool gridExist = _grid->getLocator(x, y, z, &loc); if(gridExist) tempHash[loc.iv3D].push_back(&triangle); } }
// Returns a random point in a convex polygon. // Adapted from Graphics Gems article. void dtRandomPointInConvexPoly(const float* pts, const int npts, float* areas, const float s, const float t, float* out) { // Calc triangle araes float areasum = 0.0f; for (int i = 2; i < npts; i++) { areas[i] = dtTriArea2D(&pts[0], &pts[(i-1)*3], &pts[i*3]); areasum += dtMax(0.001f, areas[i]); } // Find sub triangle weighted by area. const float thr = s*areasum; float acc = 0.0f; float u = 0.0f; int tri = 0; for (int i = 2; i < npts; i++) { const float dacc = areas[i]; if (thr >= acc && thr < (acc+dacc)) { u = (thr - acc) / dacc; tri = i; break; } acc += dacc; } float v = dtMathSqrtf(t); const float a = 1 - v; const float b = (1 - u) * v; const float c = u * v; const float* pa = &pts[0]; const float* pb = &pts[(tri-1)*3]; const float* pc = &pts[tri*3]; out[0] = a*pa[0] + b*pb[0] + c*pc[0]; out[1] = a*pa[1] + b*pb[1] + c*pc[1]; out[2] = a*pa[2] + b*pb[2] + c*pc[2]; }
void CrowdTool::handleRender() { DebugDrawGL dd; const float s = m_sample->getAgentRadius(); dtNavMesh* nmesh = m_sample->getNavMesh(); if (!nmesh) return; dtNavMeshQuery* navquery = m_sample->getNavMeshQuery(); if (m_showNodes) { if (navquery) duDebugDrawNavMeshNodes(&dd, *navquery); } dd.depthMask(false); // Draw paths if (m_showPath) { for (int i = 0; i < m_crowd.getAgentCount(); ++i) { const Agent* ag = m_crowd.getAgent(i); if (!ag->active) continue; const dtPolyRef* path = ag->corridor.getPath(); const int npath = ag->corridor.getPathCount(); for (int i = 0; i < npath; ++i) duDebugDrawNavMeshPoly(&dd, *nmesh, path[i], duRGBA(0,0,0,32)); } } if (m_targetRef) duDebugDrawCross(&dd, m_targetPos[0],m_targetPos[1]+0.1f,m_targetPos[2], s, duRGBA(255,255,255,192), 2.0f); // Occupancy grid. if (m_showGrid) { float gridy = -FLT_MAX; for (int i = 0; i < m_crowd.getAgentCount(); ++i) { const Agent* ag = m_crowd.getAgent(i); if (!ag->active) continue; const float* pos = ag->corridor.getPos(); gridy = dtMax(gridy, pos[1]); } gridy += 1.0f; dd.begin(DU_DRAW_QUADS); const ProximityGrid* grid = m_crowd.getGrid(); const int* bounds = grid->getBounds(); const float cs = grid->getCellSize(); for (int y = bounds[1]; y <= bounds[3]; ++y) { for (int x = bounds[0]; x <= bounds[2]; ++x) { const int count = grid->getItemCountAt(x,y); if (!count) continue; unsigned int col = duRGBA(128,0,0,dtMin(count*40,255)); dd.vertex(x*cs, gridy, y*cs, col); dd.vertex(x*cs, gridy, y*cs+cs, col); dd.vertex(x*cs+cs, gridy, y*cs+cs, col); dd.vertex(x*cs+cs, gridy, y*cs, col); } } dd.end(); } // Trail for (int i = 0; i < m_crowd.getAgentCount(); ++i) { const Agent* ag = m_crowd.getAgent(i); if (!ag->active) continue; const float* pos = ag->npos; dd.begin(DU_DRAW_LINES,3.0f); float prev[3], preva = 1; dtVcopy(prev, pos); for (int j = 0; j < AGENT_MAX_TRAIL-1; ++j) { const int idx = (ag->htrail + AGENT_MAX_TRAIL-j) % AGENT_MAX_TRAIL; const float* v = &ag->trail[idx*3]; float a = 1 - j/(float)AGENT_MAX_TRAIL; dd.vertex(prev[0],prev[1]+0.1f,prev[2], duRGBA(0,0,0,(int)(128*preva))); dd.vertex(v[0],v[1]+0.1f,v[2], duRGBA(0,0,0,(int)(128*a))); preva = a; dtVcopy(prev, v); } dd.end(); } // Corners & co for (int i = 0; i < m_crowd.getAgentCount(); ++i) { const Agent* ag = m_crowd.getAgent(i); if (!ag->active) continue; const float radius = ag->radius; const float* pos = ag->npos; if (m_showCorners) { if (ag->ncorners) { dd.begin(DU_DRAW_LINES, 2.0f); for (int j = 0; j < ag->ncorners; ++j) { const float* va = j == 0 ? pos : &ag->cornerVerts[(j-1)*3]; const float* vb = &ag->cornerVerts[j*3]; dd.vertex(va[0],va[1]+radius,va[2], duRGBA(128,0,0,192)); dd.vertex(vb[0],vb[1]+radius,vb[2], duRGBA(128,0,0,192)); } dd.end(); if (m_anticipateTurns) { /* float dvel[3], pos[3]; calcSmoothSteerDirection(ag->pos, ag->cornerVerts, ag->ncorners, dvel); pos[0] = ag->pos[0] + dvel[0]; pos[1] = ag->pos[1] + dvel[1]; pos[2] = ag->pos[2] + dvel[2]; const float off = ag->radius+0.1f; const float* tgt = &ag->cornerVerts[0]; const float y = ag->pos[1]+off; dd.begin(DU_DRAW_LINES, 2.0f); dd.vertex(ag->pos[0],y,ag->pos[2], duRGBA(255,0,0,192)); dd.vertex(pos[0],y,pos[2], duRGBA(255,0,0,192)); dd.vertex(pos[0],y,pos[2], duRGBA(255,0,0,192)); dd.vertex(tgt[0],y,tgt[2], duRGBA(255,0,0,192)); dd.end();*/ } } } if (m_showCollisionSegments) { const float* center = ag->boundary.getCenter(); duDebugDrawCross(&dd, center[0],center[1]+radius,center[2], 0.2f, duRGBA(192,0,128,255), 2.0f); duDebugDrawCircle(&dd, center[0],center[1]+radius,center[2], ag->collisionQueryRange, duRGBA(192,0,128,128), 2.0f); dd.begin(DU_DRAW_LINES, 3.0f); for (int j = 0; j < ag->boundary.getSegmentCount(); ++j) { const float* s = ag->boundary.getSegment(j); unsigned int col = duRGBA(192,0,128,192); if (dtTriArea2D(pos, s, s+3) < 0.0f) col = duDarkenCol(col); duAppendArrow(&dd, s[0],s[1]+0.2f,s[2], s[3],s[4]+0.2f,s[5], 0.0f, 0.3f, col); } dd.end(); } if (m_showOpt) { dd.begin(DU_DRAW_LINES, 2.0f); dd.vertex(ag->opts[0],ag->opts[1]+0.3f,ag->opts[2], duRGBA(0,128,0,192)); dd.vertex(ag->opte[0],ag->opte[1]+0.3f,ag->opte[2], duRGBA(0,128,0,192)); dd.end(); } } // Agent cylinders. for (int i = 0; i < m_crowd.getAgentCount(); ++i) { const Agent* ag = m_crowd.getAgent(i); if (!ag->active) continue; const float radius = ag->radius; const float* pos = ag->npos; duDebugDrawCircle(&dd, pos[0], pos[1], pos[2], radius, duRGBA(0,0,0,32), 2.0f); } for (int i = 0; i < m_crowd.getAgentCount(); ++i) { const Agent* ag = m_crowd.getAgent(i); if (!ag->active) continue; const float height = ag->height; const float radius = ag->radius; const float* pos = ag->npos; duDebugDrawCylinder(&dd, pos[0]-radius, pos[1]+radius*0.1f, pos[2]-radius, pos[0]+radius, pos[1]+height, pos[2]+radius, duRGBA(220,220,220,128)); } // Velocity stuff. for (int i = 0; i < m_crowd.getAgentCount(); ++i) { const Agent* ag = m_crowd.getAgent(i); if (!ag->active) continue; const float radius = ag->radius; const float height = ag->height; const float* pos = ag->npos; const float* vel = ag->vel; const float* dvel = ag->dvel; duDebugDrawCircle(&dd, pos[0], pos[1]+height, pos[2], radius, duRGBA(220,220,220,192), 2.0f); if (m_showVO) { // Draw detail about agent sela const dtObstacleAvoidanceDebugData* debug = m_crowd.getVODebugData(i); const float dx = pos[0]; const float dy = pos[1]+height; const float dz = pos[2]; dd.begin(DU_DRAW_QUADS); for (int i = 0; i < debug->getSampleCount(); ++i) { const float* p = debug->getSampleVelocity(i); const float sr = debug->getSampleSize(i); const float pen = debug->getSamplePenalty(i); const float pen2 = debug->getSamplePreferredSidePenalty(i); unsigned int col = duLerpCol(duRGBA(255,255,255,220), duRGBA(128,96,0,220), (int)(pen*255)); col = duLerpCol(col, duRGBA(128,0,0,220), (int)(pen2*128)); dd.vertex(dx+p[0]-sr, dy, dz+p[2]-sr, col); dd.vertex(dx+p[0]-sr, dy, dz+p[2]+sr, col); dd.vertex(dx+p[0]+sr, dy, dz+p[2]+sr, col); dd.vertex(dx+p[0]+sr, dy, dz+p[2]-sr, col); } dd.end(); } duDebugDrawArrow(&dd, pos[0],pos[1]+height,pos[2], pos[0]+dvel[0],pos[1]+height+dvel[1],pos[2]+dvel[2], 0.0f, 0.4f, duRGBA(0,192,255,192), 1.0f); duDebugDrawArrow(&dd, pos[0],pos[1]+height,pos[2], pos[0]+vel[0],pos[1]+height+vel[1],pos[2]+vel[2], 0.0f, 0.4f, duRGBA(0,0,0,192), 2.0f); } // Targets for (int i = 0; i < m_crowd.getAgentCount(); ++i) { const Agent* ag = m_crowd.getAgent(i); if (!ag->active) continue; const float* pos = ag->npos; const float* target = ag->corridor.getTarget(); if (m_showTargets) { duDebugDrawArc(&dd, pos[0], pos[1], pos[2], target[0], target[1], target[2], 0.25f, 0, 0.4f, duRGBA(0,0,0,128), 1.0f); } } dd.depthMask(true); }
virtual void reset() { high = dtMax(high, top); top = 0; }
/// @par /// /// The output data array is allocated using the detour allocator (dtAlloc()). The method /// used to free the memory will be determined by how the tile is added to the navigation /// mesh. /// /// @see dtNavMesh, dtNavMesh::addTile() bool dtCreateNavMeshData(dtNavMeshCreateParams* params, unsigned char** outData, int* outDataSize) { if (params->nvp > DT_VERTS_PER_POLYGON) return false; if (params->vertCount >= 0xffff) return false; if (!params->vertCount || !params->verts) return false; if (!params->polyCount || !params->polys) return false; const int nvp = params->nvp; // Classify off-mesh connection points. We store only the connections // whose start point is inside the tile. unsigned char* offMeshConClass = 0; int storedOffMeshConCount = 0; int offMeshConLinkCount = 0; if (params->offMeshConCount > 0) { offMeshConClass = (unsigned char*)dtAlloc(sizeof(unsigned char)*params->offMeshConCount*2, DT_ALLOC_TEMP); if (!offMeshConClass) return false; // Find tight heigh bounds, used for culling out off-mesh start locations. float hmin = FLT_MAX; float hmax = -FLT_MAX; if (params->detailVerts && params->detailVertsCount) { for (int i = 0; i < params->detailVertsCount; ++i) { const float h = params->detailVerts[i*3+1]; hmin = dtMin(hmin,h); hmax = dtMax(hmax,h); } } else { for (int i = 0; i < params->vertCount; ++i) { const unsigned short* iv = ¶ms->verts[i*3]; const float h = params->bmin[1] + iv[1] * params->ch; hmin = dtMin(hmin,h); hmax = dtMax(hmax,h); } } hmin -= params->walkableClimb; hmax += params->walkableClimb; float bmin[3], bmax[3]; dtVcopy(bmin, params->bmin); dtVcopy(bmax, params->bmax); bmin[1] = hmin; bmax[1] = hmax; for (int i = 0; i < params->offMeshConCount; ++i) { const float* p0 = ¶ms->offMeshConVerts[(i*2+0)*3]; const float* p1 = ¶ms->offMeshConVerts[(i*2+1)*3]; offMeshConClass[i*2+0] = classifyOffMeshPoint(p0, bmin, bmax); offMeshConClass[i*2+1] = classifyOffMeshPoint(p1, bmin, bmax); // Zero out off-mesh start positions which are not even potentially touching the mesh. if (offMeshConClass[i*2+0] == 0xff) { if (p0[1] < bmin[1] || p0[1] > bmax[1]) offMeshConClass[i*2+0] = 0; } // Cound how many links should be allocated for off-mesh connections. if (offMeshConClass[i*2+0] == 0xff) offMeshConLinkCount++; if (offMeshConClass[i*2+1] == 0xff) offMeshConLinkCount++; if (offMeshConClass[i*2+0] == 0xff) storedOffMeshConCount++; } } // Off-mesh connectionss are stored as polygons, adjust values. const int totPolyCount = params->polyCount + storedOffMeshConCount; const int totVertCount = params->vertCount + storedOffMeshConCount*2; // Find portal edges which are at tile borders. int edgeCount = 0; int portalCount = 0; for (int i = 0; i < params->polyCount; ++i) { const unsigned short* p = ¶ms->polys[i*2*nvp]; for (int j = 0; j < nvp; ++j) { if (p[j] == MESH_NULL_IDX) break; edgeCount++; if (p[nvp+j] & 0x8000) { unsigned short dir = p[nvp+j] & 0xf; if (dir != 0xf) portalCount++; } } } const int maxLinkCount = edgeCount + portalCount*2 + offMeshConLinkCount*2; // Find unique detail vertices. int uniqueDetailVertCount = 0; int detailTriCount = 0; if (params->detailMeshes) { // Has detail mesh, count unique detail vertex count and use input detail tri count. detailTriCount = params->detailTriCount; for (int i = 0; i < params->polyCount; ++i) { const unsigned short* p = ¶ms->polys[i*nvp*2]; int ndv = params->detailMeshes[i*4+1]; int nv = 0; for (int j = 0; j < nvp; ++j) { if (p[j] == MESH_NULL_IDX) break; nv++; } ndv -= nv; uniqueDetailVertCount += ndv; } } else { // No input detail mesh, build detail mesh from nav polys. uniqueDetailVertCount = 0; // No extra detail verts. detailTriCount = 0; for (int i = 0; i < params->polyCount; ++i) { const unsigned short* p = ¶ms->polys[i*nvp*2]; int nv = 0; for (int j = 0; j < nvp; ++j) { if (p[j] == MESH_NULL_IDX) break; nv++; } detailTriCount += nv-2; } } // Calculate data size const int headerSize = dtAlign4(sizeof(dtMeshHeader)); const int vertsSize = dtAlign4(sizeof(float)*3*totVertCount); const int polysSize = dtAlign4(sizeof(dtPoly)*totPolyCount); const int linksSize = dtAlign4(sizeof(dtLink)*maxLinkCount); const int detailMeshesSize = dtAlign4(sizeof(dtPolyDetail)*params->polyCount); const int detailVertsSize = dtAlign4(sizeof(float)*3*uniqueDetailVertCount); const int detailTrisSize = dtAlign4(sizeof(unsigned char)*4*detailTriCount); const int bvTreeSize = params->buildBvTree ? dtAlign4(sizeof(dtBVNode)*params->polyCount*2) : 0; const int offMeshConsSize = dtAlign4(sizeof(dtOffMeshConnection)*storedOffMeshConCount); const int dataSize = headerSize + vertsSize + polysSize + linksSize + detailMeshesSize + detailVertsSize + detailTrisSize + bvTreeSize + offMeshConsSize; unsigned char* data = (unsigned char*)dtAlloc(sizeof(unsigned char)*dataSize, DT_ALLOC_PERM); if (!data) { dtFree(offMeshConClass); return false; } memset(data, 0, dataSize); unsigned char* d = data; dtMeshHeader* header = (dtMeshHeader*)d; d += headerSize; float* navVerts = (float*)d; d += vertsSize; dtPoly* navPolys = (dtPoly*)d; d += polysSize; d += linksSize; dtPolyDetail* navDMeshes = (dtPolyDetail*)d; d += detailMeshesSize; float* navDVerts = (float*)d; d += detailVertsSize; unsigned char* navDTris = (unsigned char*)d; d += detailTrisSize; dtBVNode* navBvtree = (dtBVNode*)d; d += bvTreeSize; dtOffMeshConnection* offMeshCons = (dtOffMeshConnection*)d; d += offMeshConsSize; // Store header header->magic = DT_NAVMESH_MAGIC; header->version = DT_NAVMESH_VERSION; header->x = params->tileX; header->y = params->tileY; header->layer = params->tileLayer; header->userId = params->userId; header->polyCount = totPolyCount; header->vertCount = totVertCount; header->maxLinkCount = maxLinkCount; dtVcopy(header->bmin, params->bmin); dtVcopy(header->bmax, params->bmax); header->detailMeshCount = params->polyCount; header->detailVertCount = uniqueDetailVertCount; header->detailTriCount = detailTriCount; header->bvQuantFactor = 1.0f / params->cs; header->offMeshBase = params->polyCount; header->walkableHeight = params->walkableHeight; header->walkableRadius = params->walkableRadius; header->walkableClimb = params->walkableClimb; header->offMeshConCount = storedOffMeshConCount; header->bvNodeCount = params->buildBvTree ? params->polyCount*2 : 0; const int offMeshVertsBase = params->vertCount; const int offMeshPolyBase = params->polyCount; // Store vertices // Mesh vertices for (int i = 0; i < params->vertCount; ++i) { const unsigned short* iv = ¶ms->verts[i*3]; float* v = &navVerts[i*3]; v[0] = params->bmin[0] + iv[0] * params->cs; v[1] = params->bmin[1] + iv[1] * params->ch; v[2] = params->bmin[2] + iv[2] * params->cs; } // Off-mesh link vertices. int n = 0; for (int i = 0; i < params->offMeshConCount; ++i) { // Only store connections which start from this tile. if (offMeshConClass[i*2+0] == 0xff) { const float* linkv = ¶ms->offMeshConVerts[i*2*3]; float* v = &navVerts[(offMeshVertsBase + n*2)*3]; dtVcopy(&v[0], &linkv[0]); dtVcopy(&v[3], &linkv[3]); n++; } } // Store polygons // Mesh polys const unsigned short* src = params->polys; for (int i = 0; i < params->polyCount; ++i) { dtPoly* p = &navPolys[i]; p->vertCount = 0; p->flags = params->polyFlags[i]; p->setArea(params->polyAreas[i]); p->setType(DT_POLYTYPE_GROUND); for (int j = 0; j < nvp; ++j) { if (src[j] == MESH_NULL_IDX) break; p->verts[j] = src[j]; if (src[nvp+j] & 0x8000) { // Border or portal edge. unsigned short dir = src[nvp+j] & 0xf; if (dir == 0xf) // Border p->neis[j] = 0; else if (dir == 0) // Portal x- p->neis[j] = DT_EXT_LINK | 4; else if (dir == 1) // Portal z+ p->neis[j] = DT_EXT_LINK | 2; else if (dir == 2) // Portal x+ p->neis[j] = DT_EXT_LINK | 0; else if (dir == 3) // Portal z- p->neis[j] = DT_EXT_LINK | 6; } else { // Normal connection p->neis[j] = src[nvp+j]+1; } p->vertCount++; } src += nvp*2; } // Off-mesh connection vertices. n = 0; for (int i = 0; i < params->offMeshConCount; ++i) { // Only store connections which start from this tile. if (offMeshConClass[i*2+0] == 0xff) { dtPoly* p = &navPolys[offMeshPolyBase+n]; p->vertCount = 2; p->verts[0] = (unsigned short)(offMeshVertsBase + n*2+0); p->verts[1] = (unsigned short)(offMeshVertsBase + n*2+1); p->flags = params->offMeshConFlags[i]; p->setArea(params->offMeshConAreas[i]); p->setType(DT_POLYTYPE_OFFMESH_CONNECTION); n++; } } // Store detail meshes and vertices. // The nav polygon vertices are stored as the first vertices on each mesh. // We compress the mesh data by skipping them and using the navmesh coordinates. if (params->detailMeshes) { unsigned short vbase = 0; for (int i = 0; i < params->polyCount; ++i) { dtPolyDetail& dtl = navDMeshes[i]; const int vb = (int)params->detailMeshes[i*4+0]; const int ndv = (int)params->detailMeshes[i*4+1]; const int nv = navPolys[i].vertCount; dtl.vertBase = (unsigned int)vbase; dtl.vertCount = (unsigned char)(ndv-nv); dtl.triBase = (unsigned int)params->detailMeshes[i*4+2]; dtl.triCount = (unsigned char)params->detailMeshes[i*4+3]; // Copy vertices except the first 'nv' verts which are equal to nav poly verts. if (ndv-nv) { memcpy(&navDVerts[vbase*3], ¶ms->detailVerts[(vb+nv)*3], sizeof(float)*3*(ndv-nv)); vbase += (unsigned short)(ndv-nv); } } // Store triangles. memcpy(navDTris, params->detailTris, sizeof(unsigned char)*4*params->detailTriCount); } else { // Create dummy detail mesh by triangulating polys. int tbase = 0; for (int i = 0; i < params->polyCount; ++i) { dtPolyDetail& dtl = navDMeshes[i]; const int nv = navPolys[i].vertCount; dtl.vertBase = 0; dtl.vertCount = 0; dtl.triBase = (unsigned int)tbase; dtl.triCount = (unsigned char)(nv-2); // Triangulate polygon (local indices). for (int j = 2; j < nv; ++j) { unsigned char* t = &navDTris[tbase*4]; t[0] = 0; t[1] = (unsigned char)(j-1); t[2] = (unsigned char)j; // Bit for each edge that belongs to poly boundary. t[3] = (1<<2); if (j == 2) t[3] |= (1<<0); if (j == nv-1) t[3] |= (1<<4); tbase++; } } } // Store and create BVtree. // TODO: take detail mesh into account! use byte per bbox extent? if (params->buildBvTree) { createBVTree(params->verts, params->vertCount, params->polys, params->polyCount, nvp, params->cs, params->ch, params->polyCount*2, navBvtree); } // Store Off-Mesh connections. n = 0; for (int i = 0; i < params->offMeshConCount; ++i) { // Only store connections which start from this tile. if (offMeshConClass[i*2+0] == 0xff) { dtOffMeshConnection* con = &offMeshCons[n]; con->poly = (unsigned short)(offMeshPolyBase + n); // Copy connection end-points. const float* endPts = ¶ms->offMeshConVerts[i*2*3]; dtVcopy(&con->pos[0], &endPts[0]); dtVcopy(&con->pos[3], &endPts[3]); con->rad = params->offMeshConRad[i]; con->flags = params->offMeshConDir[i] ? DT_OFFMESH_CON_BIDIR : 0; con->side = offMeshConClass[i*2+1]; if (params->offMeshConUserID) con->userId = params->offMeshConUserID[i]; n++; } } dtFree(offMeshConClass); *outData = data; *outDataSize = dataSize; return true; }
/// @par /// /// The output data array is allocated using the detour allocator (dtAlloc()). The method /// used to free the memory will be determined by how the tile is added to the navigation /// mesh. /// /// @see dtNavMesh, dtNavMesh::addTile() bool dtCreateNavMeshData(dtNavMeshCreateParams* params, unsigned char** outData, int* outDataSize) { if (params->nvp > DT_VERTS_PER_POLYGON) return false; if (params->vertCount >= 0xffff) return false; if (!params->vertCount || !params->verts) return false; if (!params->polyCount || !params->polys) return false; const int nvp = params->nvp; // Classify off-mesh connection points. We store only the connections // whose start point is inside the tile. unsigned char* offMeshConClass = 0; int storedOffMeshConCount = 0; int offMeshConLinkCount = 0; int storedOffMeshSegCount = 0; if (params->offMeshConCount > 0) { offMeshConClass = (unsigned char*)dtAlloc(sizeof(unsigned char)*params->offMeshConCount*2, DT_ALLOC_TEMP); if (!offMeshConClass) return false; memset(offMeshConClass, 0, sizeof(unsigned char)*params->offMeshConCount*2); // Find tight heigh bounds, used for culling out off-mesh start locations. float hmin = FLT_MAX; float hmax = -FLT_MAX; for (int i = 0; i < params->vertCount; ++i) { const unsigned short* iv = ¶ms->verts[i*3]; const float h = params->bmin[1] + iv[1] * params->ch; hmin = dtMin(hmin,h); hmax = dtMax(hmax,h); } if (params->detailVerts && params->detailVertsCount) { for (int i = 0; i < params->detailVertsCount; ++i) { const float h = params->detailVerts[i*3+1]; hmin = dtMin(hmin,h); hmax = dtMax(hmax,h); } } hmin -= params->walkableClimb; hmax += params->walkableClimb; float bmin[3], bmax[3]; dtVcopy(bmin, params->bmin); dtVcopy(bmax, params->bmax); bmin[1] = hmin; bmax[1] = hmax; float bverts[3*4]; bverts[ 0] = bmin[0]; bverts[ 2] = bmin[2]; bverts[ 3] = bmax[0]; bverts[ 5] = bmin[2]; bverts[ 6] = bmax[0]; bverts[ 8] = bmax[2]; bverts[ 9] = bmin[0]; bverts[11] = bmax[2]; for (int i = 0; i < params->offMeshConCount; ++i) { const dtOffMeshLinkCreateParams& offMeshCon = params->offMeshCons[i]; if (offMeshCon.type & DT_OFFMESH_CON_POINT) { offMeshConClass[i*2+0] = classifyOffMeshPoint(offMeshCon.vertsA0, bmin, bmax); offMeshConClass[i*2+1] = classifyOffMeshPoint(offMeshCon.vertsB0, bmin, bmax); // Zero out off-mesh start positions which are not even potentially touching the mesh. if (offMeshConClass[i*2+0] == 0xff) { if ((offMeshCon.vertsA0[1] - offMeshCon.snapHeight) < bmin[1] && (offMeshCon.vertsA0[1] + offMeshCon.snapHeight) > bmax[1]) { offMeshConClass[i * 2 + 0] = 0; } } // Count how many links should be allocated for off-mesh connections. if (offMeshConClass[i*2+0] == 0xff) offMeshConLinkCount++; if (offMeshConClass[i*2+1] == 0xff) offMeshConLinkCount++; if (offMeshConClass[i*2+0] == 0xff) storedOffMeshConCount++; } else if (offMeshCon.type & DT_OFFMESH_CON_SEGMENT) { int smin, smax; float tmin, tmax; if ((offMeshCon.vertsA0[1] >= bmin[1] && offMeshCon.vertsA0[1] <= bmax[1] && classifyOffMeshPoint(offMeshCon.vertsA0, bmin, bmax) == 0xff) || (offMeshCon.vertsA1[1] >= bmin[1] && offMeshCon.vertsA1[1] <= bmax[1] && classifyOffMeshPoint(offMeshCon.vertsA1, bmin, bmax) == 0xff) || (offMeshCon.vertsB0[1] >= bmin[1] && offMeshCon.vertsB0[1] <= bmax[1] && classifyOffMeshPoint(offMeshCon.vertsB0, bmin, bmax) == 0xff) || (offMeshCon.vertsB1[1] >= bmin[1] && offMeshCon.vertsB1[1] <= bmax[1] && classifyOffMeshPoint(offMeshCon.vertsB1, bmin, bmax) == 0xff) || dtIntersectSegmentPoly2D(offMeshCon.vertsA0, offMeshCon.vertsA1, bverts, 4, tmin, tmax, smin, smax) || dtIntersectSegmentPoly2D(offMeshCon.vertsB0, offMeshCon.vertsB1, bverts, 4, tmin, tmax, smin, smax)) { offMeshConClass[i*2] = 0xff; storedOffMeshSegCount++; } } } } // Off-mesh connections are stored as polygons, adjust values. const int firstSegVert = params->vertCount + storedOffMeshConCount*2; const int firstSegPoly = params->polyCount + storedOffMeshConCount; const int totPolyCount = firstSegPoly + storedOffMeshSegCount*DT_MAX_OFFMESH_SEGMENT_PARTS; const int totVertCount = firstSegVert + storedOffMeshSegCount*DT_MAX_OFFMESH_SEGMENT_PARTS*4; // Find portal edges which are at tile borders. int edgeCount = 0; int portalCount = 0; for (int i = 0; i < params->polyCount; ++i) { const unsigned short* p = ¶ms->polys[i*2*nvp]; for (int j = 0; j < nvp; ++j) { if (p[j] == MESH_NULL_IDX) break; edgeCount++; if (p[nvp+j] & 0x8000) { unsigned short dir = p[nvp+j] & 0xf; if (dir != 0xf) portalCount++; } } } // offmesh links will be added in dynamic array const int maxLinkCount = edgeCount + portalCount*2; // Find unique detail vertices. int uniqueDetailVertCount = 0; int detailTriCount = 0; if (params->detailMeshes) { // Has detail mesh, count unique detail vertex count and use input detail tri count. detailTriCount = params->detailTriCount; for (int i = 0; i < params->polyCount; ++i) { const unsigned short* p = ¶ms->polys[i*nvp*2]; int ndv = params->detailMeshes[i*4+1]; int nv = 0; for (int j = 0; j < nvp; ++j) { if (p[j] == MESH_NULL_IDX) break; nv++; } ndv -= nv; uniqueDetailVertCount += ndv; } } else { // No input detail mesh, build detail mesh from nav polys. uniqueDetailVertCount = 0; // No extra detail verts. detailTriCount = 0; for (int i = 0; i < params->polyCount; ++i) { const unsigned short* p = ¶ms->polys[i*nvp*2]; int nv = 0; for (int j = 0; j < nvp; ++j) { if (p[j] == MESH_NULL_IDX) break; nv++; } detailTriCount += nv-2; } } // Calculate data size const int headerSize = dtAlign4(sizeof(dtMeshHeader)); const int vertsSize = dtAlign4(sizeof(float)*3*totVertCount); const int polysSize = dtAlign4(sizeof(dtPoly)*totPolyCount); const int linksSize = dtAlign4(sizeof(dtLink)*maxLinkCount); const int detailMeshesSize = dtAlign4(sizeof(dtPolyDetail)*params->polyCount); const int detailVertsSize = dtAlign4(sizeof(float)*3*uniqueDetailVertCount); const int detailTrisSize = dtAlign4(sizeof(unsigned char)*4*detailTriCount); const int bvTreeSize = params->buildBvTree ? dtAlign4(sizeof(dtBVNode)*params->polyCount*2) : 0; const int offMeshConsSize = dtAlign4(sizeof(dtOffMeshConnection)*storedOffMeshConCount); const int offMeshSegSize = dtAlign4(sizeof(dtOffMeshSegmentConnection)*storedOffMeshSegCount); const int clustersSize = dtAlign4(sizeof(dtCluster)*params->clusterCount); const int polyClustersSize = dtAlign4(sizeof(unsigned short)*params->polyCount); const int dataSize = headerSize + vertsSize + polysSize + linksSize + detailMeshesSize + detailVertsSize + detailTrisSize + bvTreeSize + offMeshConsSize + offMeshSegSize + clustersSize + polyClustersSize; unsigned char* data = (unsigned char*)dtAlloc(sizeof(unsigned char)*dataSize, DT_ALLOC_PERM); if (!data) { dtFree(offMeshConClass); return false; } memset(data, 0, dataSize); unsigned char* d = data; dtMeshHeader* header = (dtMeshHeader*)d; d += headerSize; float* navVerts = (float*)d; d += vertsSize; dtPoly* navPolys = (dtPoly*)d; d += polysSize; d += linksSize; dtPolyDetail* navDMeshes = (dtPolyDetail*)d; d += detailMeshesSize; float* navDVerts = (float*)d; d += detailVertsSize; unsigned char* navDTris = (unsigned char*)d; d += detailTrisSize; dtBVNode* navBvtree = (dtBVNode*)d; d += bvTreeSize; dtOffMeshConnection* offMeshCons = (dtOffMeshConnection*)d; d += offMeshConsSize; dtOffMeshSegmentConnection* offMeshSegs = (dtOffMeshSegmentConnection*)d; d += offMeshSegSize; dtCluster* clusters = (dtCluster*)d; d += clustersSize; unsigned short* polyClusters = (unsigned short*)d; d += polyClustersSize; // Store header header->magic = DT_NAVMESH_MAGIC; header->version = DT_NAVMESH_VERSION; header->x = params->tileX; header->y = params->tileY; header->layer = params->tileLayer; header->userId = params->userId; header->polyCount = totPolyCount; header->vertCount = totVertCount; header->maxLinkCount = maxLinkCount; dtVcopy(header->bmin, params->bmin); dtVcopy(header->bmax, params->bmax); header->detailMeshCount = params->polyCount; header->detailVertCount = uniqueDetailVertCount; header->detailTriCount = detailTriCount; header->bvQuantFactor = 1.0f / params->cs; header->offMeshBase = params->polyCount; header->offMeshSegPolyBase = firstSegPoly; header->offMeshSegVertBase = firstSegVert; header->walkableHeight = params->walkableHeight; header->walkableRadius = params->walkableRadius; header->walkableClimb = params->walkableClimb; header->offMeshConCount = storedOffMeshConCount; header->offMeshSegConCount = storedOffMeshSegCount; header->bvNodeCount = params->buildBvTree ? params->polyCount*2 : 0; header->clusterCount = params->clusterCount; const int offMeshVertsBase = params->vertCount; const int offMeshPolyBase = params->polyCount; // Store vertices // Mesh vertices for (int i = 0; i < params->vertCount; ++i) { const unsigned short* iv = ¶ms->verts[i*3]; float* v = &navVerts[i*3]; v[0] = params->bmin[0] + iv[0] * params->cs; v[1] = params->bmin[1] + iv[1] * params->ch; v[2] = params->bmin[2] + iv[2] * params->cs; } // Off-mesh point link vertices. int n = 0; for (int i = 0; i < params->offMeshConCount; ++i) { const dtOffMeshLinkCreateParams& offMeshCon = params->offMeshCons[i]; // Only store connections which start from this tile. if ((offMeshConClass[i*2+0] == 0xff) && (offMeshCon.type & DT_OFFMESH_CON_POINT)) { float* v = &navVerts[(offMeshVertsBase + n*2)*3]; dtVcopy(&v[0], &offMeshCon.vertsA0[0]); dtVcopy(&v[3], &offMeshCon.vertsB0[0]); n++; } } // Store polygons // Mesh polys const unsigned short* src = params->polys; for (int i = 0; i < params->polyCount; ++i) { dtPoly* p = &navPolys[i]; p->vertCount = 0; p->flags = params->polyFlags[i]; p->setArea(params->polyAreas[i]); p->setType(DT_POLYTYPE_GROUND); for (int j = 0; j < nvp; ++j) { if (src[j] == MESH_NULL_IDX) break; p->verts[j] = src[j]; if (src[nvp+j] & 0x8000) { // Border or portal edge. unsigned short dir = src[nvp+j] & 0xf; if (dir == 0xf) // Border p->neis[j] = 0; else if (dir == 0) // Portal x- p->neis[j] = DT_EXT_LINK | 4; else if (dir == 1) // Portal z+ p->neis[j] = DT_EXT_LINK | 2; else if (dir == 2) // Portal x+ p->neis[j] = DT_EXT_LINK | 0; else if (dir == 3) // Portal z- p->neis[j] = DT_EXT_LINK | 6; } else { // Normal connection p->neis[j] = src[nvp+j]+1; } p->vertCount++; } src += nvp*2; } // Off-mesh point connection polygons. n = 0; int nseg = 0; for (int i = 0; i < params->offMeshConCount; ++i) { const dtOffMeshLinkCreateParams& offMeshCon = params->offMeshCons[i]; // Only store connections which start from this tile. if (offMeshConClass[i*2+0] == 0xff) { if (offMeshCon.type & DT_OFFMESH_CON_POINT) { dtPoly* p = &navPolys[offMeshPolyBase+n]; p->vertCount = 2; p->verts[0] = (unsigned short)(offMeshVertsBase + n*2+0); p->verts[1] = (unsigned short)(offMeshVertsBase + n*2+1); p->flags = offMeshCon.polyFlag; p->setArea(offMeshCon.area); p->setType(DT_POLYTYPE_OFFMESH_POINT); n++; } else { for (int j = 0; j < DT_MAX_OFFMESH_SEGMENT_PARTS; j++) { dtPoly* p = &navPolys[firstSegPoly+nseg]; p->vertCount = 0; p->flags = offMeshCon.polyFlag; p->setArea(offMeshCon.area); p->setType(DT_POLYTYPE_OFFMESH_SEGMENT); nseg++; } } } } // Store detail meshes and vertices. // The nav polygon vertices are stored as the first vertices on each mesh. // We compress the mesh data by skipping them and using the navmesh coordinates. if (params->detailMeshes) { unsigned short vbase = 0; for (int i = 0; i < params->polyCount; ++i) { dtPolyDetail& dtl = navDMeshes[i]; const int vb = (int)params->detailMeshes[i*4+0]; const int ndv = (int)params->detailMeshes[i*4+1]; const int nv = navPolys[i].vertCount; dtl.vertBase = (unsigned int)vbase; dtl.vertCount = (unsigned char)(ndv-nv); dtl.triBase = (unsigned int)params->detailMeshes[i*4+2]; dtl.triCount = (unsigned char)params->detailMeshes[i*4+3]; // Copy vertices except the first 'nv' verts which are equal to nav poly verts. if (ndv-nv) { memcpy(&navDVerts[vbase*3], ¶ms->detailVerts[(vb+nv)*3], sizeof(float)*3*(ndv-nv)); vbase += (unsigned short)(ndv-nv); } } // Store triangles. memcpy(navDTris, params->detailTris, sizeof(unsigned char)*4*params->detailTriCount); } else { // Create dummy detail mesh by triangulating polys. int tbase = 0; for (int i = 0; i < params->polyCount; ++i) { dtPolyDetail& dtl = navDMeshes[i]; const int nv = navPolys[i].vertCount; dtl.vertBase = 0; dtl.vertCount = 0; dtl.triBase = (unsigned int)tbase; dtl.triCount = (unsigned char)(nv-2); // Triangulate polygon (local indices). for (int j = 2; j < nv; ++j) { unsigned char* t = &navDTris[tbase*4]; t[0] = 0; t[1] = (unsigned char)(j-1); t[2] = (unsigned char)j; // Bit for each edge that belongs to poly boundary. t[3] = (1<<2); if (j == 2) t[3] |= (1<<0); if (j == nv-1) t[3] |= (1<<4); tbase++; } } } // Store and create BVtree. if (params->buildBvTree) { createBVTree(params->verts, params->vertCount, params->polys, params->polyCount, nvp, navDMeshes, navDVerts, navDTris, params->bmin, params->cs, params->ch, params->polyCount*2, navBvtree); } // Store Off-Mesh connections. n = 0; nseg = 0; for (int i = 0; i < params->offMeshConCount; ++i) { const dtOffMeshLinkCreateParams& offMeshCon = params->offMeshCons[i]; // Only store connections which start from this tile. if (offMeshConClass[i*2+0] == 0xff) { if (offMeshCon.type & DT_OFFMESH_CON_POINT) { dtOffMeshConnection* con = &offMeshCons[n]; con->poly = (unsigned short)(offMeshPolyBase + n); // Copy connection end-points. dtVcopy(&con->pos[0], &offMeshCon.vertsA0[0]); dtVcopy(&con->pos[3], &offMeshCon.vertsB0[0]); con->rad = offMeshCon.snapRadius; con->height = offMeshCon.snapHeight; con->setFlags(offMeshCon.type); con->side = offMeshConClass[i*2+1] == 0xff ? DT_CONNECTION_INTERNAL : offMeshConClass[i*2+1]; if (offMeshCon.userID) con->userId = offMeshCon.userID; n++; } else { dtOffMeshSegmentConnection* con = &offMeshSegs[nseg]; dtVcopy(con->startA, &offMeshCon.vertsA0[0]); dtVcopy(con->endA, &offMeshCon.vertsA1[0]); dtVcopy(con->startB, &offMeshCon.vertsB0[0]); dtVcopy(con->endB, &offMeshCon.vertsB1[0]); con->rad = offMeshCon.snapRadius; con->height = offMeshCon.snapHeight; con->setFlags(offMeshCon.type); if (offMeshCon.userID) con->userId = offMeshCon.userID; nseg++; } } } dtFree(offMeshConClass); // Store clusters if (params->polyClusters) { memcpy(polyClusters, params->polyClusters, sizeof(unsigned short)*params->polyCount); } for (int i = 0; i < params->clusterCount; i++) { dtCluster& cluster = clusters[i]; cluster.firstLink = DT_NULL_LINK; cluster.numLinks = 0; dtVset(cluster.center, 0.f, 0.f, 0.f); // calculate center point: take from first poly for (int j = 0; j < params->polyCount; j++) { if (polyClusters[j] != i) { continue; } const dtPoly* poly = &navPolys[j]; float c[3] = { 0.0f, 0.0f, 0.0f }; for (int iv = 0; iv < poly->vertCount; iv++) { dtVadd(c, c, &navVerts[poly->verts[iv] * 3]); } dtVmad(cluster.center, cluster.center, c, 1.0f / poly->vertCount); break; } } *outData = data; *outDataSize = dataSize; return true; }
static void calculateDistanceField(const dtTileCacheLayer& layer, unsigned short* src, unsigned short& maxDist) { const int w = (int)layer.header->width; const int h = (int)layer.header->height; // Init distance and points. memset(src, 0xff, w*h*sizeof(unsigned short)); // Mark boundary cells. for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const int i = x+y*w; const unsigned char area = layer.areas[i]; if (area == DT_TILECACHE_NULL_AREA) { src[i] = 0; continue; } int nc = 0; for (int dir = 0; dir < 4; ++dir) { const int ax = x + getDirOffsetX(dir); const int ay = y + getDirOffsetY(dir); const int ai = ax+ay*w; if (ax >= 0 && ax < w && ay >= 0 && ay < h && isConnected(layer, i, dir)) { if (area == layer.areas[ai]) { nc++; } } } if (nc != 4) { src[i] = 0; } } } // Pass 1 for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const int i = x+y*w; if (layer.areas[i] == DT_TILECACHE_NULL_AREA) continue; const int ax = x + getDirOffsetX(0); const int ay = y + getDirOffsetY(0); const int ai = ax+ay*w; if (ax >= 0 && ax < w && ay >= 0 && ay < h && isConnected(layer, i, 0)) { // (-1,0) if (src[ai]+2 < src[i]) src[i] = src[ai]+2; const int aax = ax + getDirOffsetX(3); const int aay = ay + getDirOffsetY(3); const int aai = aax+aay*w; if (aax >= 0 && aax < w && aay >= 0 && aay < h && isConnected(layer, ai, 3)) { // (-1,-1) if (src[aai]+3 < src[i]) src[i] = src[aai]+3; } } const int ax2 = x + getDirOffsetX(3); const int ay2 = y + getDirOffsetY(3); const int ai2 = ax2+ay2*w; if (ax2 >= 0 && ax2 < w && ay2 >= 0 && ay2 < h && isConnected(layer, i, 3)) { // (0,-1) if (src[ai2]+2 < src[i]) src[i] = src[ai2]+2; const int aax2 = ax2 + getDirOffsetX(2); const int aay2 = ay2 + getDirOffsetY(2); const int aai2 = aax2+aay2*w; if (aax2 >= 0 && aax2 < w && aay2 >= 0 && aay2 < h && isConnected(layer, ai2, 2)) { // (1,-1) if (src[aai2]+3 < src[i]) src[i] = src[aai2]+3; } } } } // Pass 2 for (int y = h-1; y >= 0; --y) { for (int x = w-1; x >= 0; --x) { const int i = x+y*w; if (layer.areas[i] == DT_TILECACHE_NULL_AREA) continue; const int ax = x + getDirOffsetX(2); const int ay = y + getDirOffsetY(2); const int ai = ax+ay*w; if (ax >= 0 && ax < w && ay >= 0 && ay < h && isConnected(layer, i, 2)) { // (1,0) if (src[ai]+2 < src[i]) src[i] = src[ai]+2; const int aax = ax + getDirOffsetX(1); const int aay = ay + getDirOffsetY(1); const int aai = aax+aay*w; if (aax >= 0 && aax < w && aay >= 0 && aay < h && isConnected(layer, ai, 1)) { // (1,1) if (src[aai]+3 < src[i]) src[i] = src[aai]+3; } } const int ax2 = x + getDirOffsetX(1); const int ay2 = y + getDirOffsetY(1); const int ai2 = ax2+ay2*w; if (ax2 >= 0 && ax2 < w && ay2 >= 0 && ay2 < h && isConnected(layer, i, 1)) { // (0,1) if (src[ai2]+2 < src[i]) src[i] = src[ai2]+2; const int aax2 = ax2 + getDirOffsetX(0); const int aay2 = ay2 + getDirOffsetY(0); const int aai2 = aax2+aay2*w; if (aax2 >= 0 && aax2 < w && aay2 >= 0 && aay2 < h && isConnected(layer, ai2, 0)) { // (-1,1) if (src[aai2]+3 < src[i]) src[i] = src[aai2]+3; } } } } // calc max distance maxDist = 0; for (int i = w*h -1; i >= 0; i--) { maxDist = dtMax(src[i], maxDist); } }
void LinearAllocator::reset() { high = dtMax(high, top); top = 0; }
void CrowdToolState::handleRender() { DebugDrawGL dd; const float rad = m_sample->getAgentRadius(); dtNavMesh* nav = m_sample->getNavMesh(); dtCrowd* crowd = m_sample->getCrowd(); if (!nav || !crowd) return; if (m_toolParams.m_showNodes && crowd->getPathQueue()) { const dtNavMeshQuery* navquery = crowd->getPathQueue()->getNavQuery(); if (navquery) duDebugDrawNavMeshNodes(&dd, *navquery); } dd.depthMask(false); // Draw paths if (m_toolParams.m_showPath) { for (int i = 0; i < crowd->getAgentCount(); i++) { if (m_toolParams.m_showDetailAll == false && i != m_agentDebug.idx) continue; const dtCrowdAgent* ag =crowd->getAgent(i); if (!ag->active) continue; const dtPolyRef* path = ag->corridor.getPath(); const int npath = ag->corridor.getPathCount(); for (int j = 0; j < npath; ++j) duDebugDrawNavMeshPoly(&dd, *nav, path[j], duRGBA(255,255,255,24)); } } if (m_targetRef) duDebugDrawCross(&dd, m_targetPos[0],m_targetPos[1]+0.1f,m_targetPos[2], rad, duRGBA(255,255,255,192), 2.0f); // Occupancy grid. if (m_toolParams.m_showGrid) { float gridy = -FLT_MAX; for (int i = 0; i < crowd->getAgentCount(); ++i) { const dtCrowdAgent* ag = crowd->getAgent(i); if (!ag->active) continue; const float* pos = ag->corridor.getPos(); gridy = dtMax(gridy, pos[1]); } gridy += 1.0f; dd.begin(DU_DRAW_QUADS); const dtProximityGrid* grid = crowd->getGrid(); const int* bounds = grid->getBounds(); const float cs = grid->getCellSize(); for (int y = bounds[1]; y <= bounds[3]; ++y) { for (int x = bounds[0]; x <= bounds[2]; ++x) { const int count = grid->getItemCountAt(x,y); if (!count) continue; unsigned int col = duRGBA(128,0,0,dtMin(count*40,255)); dd.vertex(x*cs, gridy, y*cs, col); dd.vertex(x*cs, gridy, y*cs+cs, col); dd.vertex(x*cs+cs, gridy, y*cs+cs, col); dd.vertex(x*cs+cs, gridy, y*cs, col); } } dd.end(); } // Trail for (int i = 0; i < crowd->getAgentCount(); ++i) { const dtCrowdAgent* ag = crowd->getAgent(i); if (!ag->active) continue; const AgentTrail* trail = &m_trails[i]; const float* pos = ag->npos; dd.begin(DU_DRAW_LINES,3.0f); float prev[3], preva = 1; dtVcopy(prev, pos); for (int j = 0; j < AGENT_MAX_TRAIL-1; ++j) { const int idx = (trail->htrail + AGENT_MAX_TRAIL-j) % AGENT_MAX_TRAIL; const float* v = &trail->trail[idx*3]; float a = 1 - j/(float)AGENT_MAX_TRAIL; dd.vertex(prev[0],prev[1]+0.1f,prev[2], duRGBA(0,0,0,(int)(128*preva))); dd.vertex(v[0],v[1]+0.1f,v[2], duRGBA(0,0,0,(int)(128*a))); preva = a; dtVcopy(prev, v); } dd.end(); } // Corners & co for (int i = 0; i < crowd->getAgentCount(); i++) { if (m_toolParams.m_showDetailAll == false && i != m_agentDebug.idx) continue; const dtCrowdAgent* ag =crowd->getAgent(i); if (!ag->active) continue; const float radius = ag->params.radius; const float* pos = ag->npos; if (m_toolParams.m_showCorners) { if (ag->ncorners) { dd.begin(DU_DRAW_LINES, 2.0f); for (int j = 0; j < ag->ncorners; ++j) { const float* va = j == 0 ? pos : &ag->cornerVerts[(j-1)*3]; const float* vb = &ag->cornerVerts[j*3]; dd.vertex(va[0],va[1]+radius,va[2], duRGBA(128,0,0,192)); dd.vertex(vb[0],vb[1]+radius,vb[2], duRGBA(128,0,0,192)); } if (ag->ncorners && ag->cornerFlags[ag->ncorners-1] & DT_STRAIGHTPATH_OFFMESH_CONNECTION) { const float* v = &ag->cornerVerts[(ag->ncorners-1)*3]; dd.vertex(v[0],v[1],v[2], duRGBA(192,0,0,192)); dd.vertex(v[0],v[1]+radius*2,v[2], duRGBA(192,0,0,192)); } dd.end(); if (m_toolParams.m_anticipateTurns) { /* float dvel[3], pos[3]; calcSmoothSteerDirection(ag->pos, ag->cornerVerts, ag->ncorners, dvel); pos[0] = ag->pos[0] + dvel[0]; pos[1] = ag->pos[1] + dvel[1]; pos[2] = ag->pos[2] + dvel[2]; const float off = ag->radius+0.1f; const float* tgt = &ag->cornerVerts[0]; const float y = ag->pos[1]+off; dd.begin(DU_DRAW_LINES, 2.0f); dd.vertex(ag->pos[0],y,ag->pos[2], duRGBA(255,0,0,192)); dd.vertex(pos[0],y,pos[2], duRGBA(255,0,0,192)); dd.vertex(pos[0],y,pos[2], duRGBA(255,0,0,192)); dd.vertex(tgt[0],y,tgt[2], duRGBA(255,0,0,192)); dd.end();*/ } } } if (m_toolParams.m_showCollisionSegments) { const float* center = ag->boundary.getCenter(); duDebugDrawCross(&dd, center[0],center[1]+radius,center[2], 0.2f, duRGBA(192,0,128,255), 2.0f); duDebugDrawCircle(&dd, center[0],center[1]+radius,center[2], ag->params.collisionQueryRange, duRGBA(192,0,128,128), 2.0f); dd.begin(DU_DRAW_LINES, 3.0f); for (int j = 0; j < ag->boundary.getSegmentCount(); ++j) { const float* s = ag->boundary.getSegment(j); unsigned int col = duRGBA(192,0,128,192); if (dtTriArea2D(pos, s, s+3) < 0.0f) col = duDarkenCol(col); duAppendArrow(&dd, s[0],s[1]+0.2f,s[2], s[3],s[4]+0.2f,s[5], 0.0f, 0.3f, col); } dd.end(); } if (m_toolParams.m_showNeis) { duDebugDrawCircle(&dd, pos[0],pos[1]+radius,pos[2], ag->params.collisionQueryRange, duRGBA(0,192,128,128), 2.0f); dd.begin(DU_DRAW_LINES, 2.0f); for (int j = 0; j < ag->nneis; ++j) { // Get 'n'th active agent. // TODO: fix this properly. const dtCrowdAgent* nei = crowd->getAgent(ag->neis[j].idx); if (nei) { dd.vertex(pos[0],pos[1]+radius,pos[2], duRGBA(0,192,128,128)); dd.vertex(nei->npos[0],nei->npos[1]+radius,nei->npos[2], duRGBA(0,192,128,128)); } } dd.end(); } if (m_toolParams.m_showOpt) { dd.begin(DU_DRAW_LINES, 2.0f); dd.vertex(m_agentDebug.optStart[0],m_agentDebug.optStart[1]+0.3f,m_agentDebug.optStart[2], duRGBA(0,128,0,192)); dd.vertex(m_agentDebug.optEnd[0],m_agentDebug.optEnd[1]+0.3f,m_agentDebug.optEnd[2], duRGBA(0,128,0,192)); dd.end(); } } // Agent cylinders. for (int i = 0; i < crowd->getAgentCount(); ++i) { const dtCrowdAgent* ag = crowd->getAgent(i); if (!ag->active) continue; const float radius = ag->params.radius; const float* pos = ag->npos; unsigned int col = duRGBA(0,0,0,32); if (m_agentDebug.idx == i) col = duRGBA(255,0,0,128); duDebugDrawCircle(&dd, pos[0], pos[1], pos[2], radius, col, 2.0f); } for (int i = 0; i < crowd->getAgentCount(); ++i) { const dtCrowdAgent* ag = crowd->getAgent(i); if (!ag->active) continue; const float height = ag->params.height; const float radius = ag->params.radius; const float* pos = ag->npos; unsigned int col = duRGBA(220,220,220,128); if (ag->targetState == DT_CROWDAGENT_TARGET_REQUESTING || ag->targetState == DT_CROWDAGENT_TARGET_WAITING_FOR_QUEUE) col = duLerpCol(col, duRGBA(128,0,255,128), 32); else if (ag->targetState == DT_CROWDAGENT_TARGET_WAITING_FOR_PATH) col = duLerpCol(col, duRGBA(128,0,255,128), 128); else if (ag->targetState == DT_CROWDAGENT_TARGET_FAILED) col = duRGBA(255,32,16,128); else if (ag->targetState == DT_CROWDAGENT_TARGET_VELOCITY) col = duLerpCol(col, duRGBA(64,255,0,128), 128); duDebugDrawCylinder(&dd, pos[0]-radius, pos[1]+radius*0.1f, pos[2]-radius, pos[0]+radius, pos[1]+height, pos[2]+radius, col); } if (m_toolParams.m_showVO) { for (int i = 0; i < crowd->getAgentCount(); i++) { if (m_toolParams.m_showDetailAll == false && i != m_agentDebug.idx) continue; const dtCrowdAgent* ag =crowd->getAgent(i); if (!ag->active) continue; // Draw detail about agent sela const dtObstacleAvoidanceDebugData* vod = m_agentDebug.vod; const float dx = ag->npos[0]; const float dy = ag->npos[1]+ag->params.height; const float dz = ag->npos[2]; duDebugDrawCircle(&dd, dx,dy,dz, ag->params.maxSpeed, duRGBA(255,255,255,64), 2.0f); dd.begin(DU_DRAW_QUADS); for (int j = 0; j < vod->getSampleCount(); ++j) { const float* p = vod->getSampleVelocity(j); const float sr = vod->getSampleSize(j); const float pen = vod->getSamplePenalty(j); const float pen2 = vod->getSamplePreferredSidePenalty(j); unsigned int col = duLerpCol(duRGBA(255,255,255,220), duRGBA(128,96,0,220), (int)(pen*255)); col = duLerpCol(col, duRGBA(128,0,0,220), (int)(pen2*128)); dd.vertex(dx+p[0]-sr, dy, dz+p[2]-sr, col); dd.vertex(dx+p[0]-sr, dy, dz+p[2]+sr, col); dd.vertex(dx+p[0]+sr, dy, dz+p[2]+sr, col); dd.vertex(dx+p[0]+sr, dy, dz+p[2]-sr, col); } dd.end(); } } // Velocity stuff. for (int i = 0; i < crowd->getAgentCount(); ++i) { const dtCrowdAgent* ag = crowd->getAgent(i); if (!ag->active) continue; const float radius = ag->params.radius; const float height = ag->params.height; const float* pos = ag->npos; const float* vel = ag->vel; const float* dvel = ag->dvel; unsigned int col = duRGBA(220,220,220,192); if (ag->targetState == DT_CROWDAGENT_TARGET_REQUESTING || ag->targetState == DT_CROWDAGENT_TARGET_WAITING_FOR_QUEUE) col = duLerpCol(col, duRGBA(128,0,255,192), 32); else if (ag->targetState == DT_CROWDAGENT_TARGET_WAITING_FOR_PATH) col = duLerpCol(col, duRGBA(128,0,255,192), 128); else if (ag->targetState == DT_CROWDAGENT_TARGET_FAILED) col = duRGBA(255,32,16,192); else if (ag->targetState == DT_CROWDAGENT_TARGET_VELOCITY) col = duLerpCol(col, duRGBA(64,255,0,192), 128); duDebugDrawCircle(&dd, pos[0], pos[1]+height, pos[2], radius, col, 2.0f); duDebugDrawArrow(&dd, pos[0],pos[1]+height,pos[2], pos[0]+dvel[0],pos[1]+height+dvel[1],pos[2]+dvel[2], 0.0f, 0.4f, duRGBA(0,192,255,192), (m_agentDebug.idx == i) ? 2.0f : 1.0f); duDebugDrawArrow(&dd, pos[0],pos[1]+height,pos[2], pos[0]+vel[0],pos[1]+height+vel[1],pos[2]+vel[2], 0.0f, 0.4f, duRGBA(0,0,0,160), 2.0f); } dd.depthMask(true); }