ConstraintSet::ConstraintSet(): m_nc(0), m_internalPose(F_identity), m_externalPose(F_identity), m_constraintCallback(NULL), m_constraintParam(NULL), m_toggle(false),m_substep(false), m_threshold(0.0),m_maxIter(0) { m_maxDeltaChi = e_scalar(0.52); }
ConstraintSet::ConstraintSet(unsigned int _nc,double accuracy,unsigned int maximum_iterations): m_nc(_nc), m_Cf(e_zero_matrix(m_nc,6)), m_Wy(e_scalar_vector(m_nc,1.0)), m_y(m_nc),m_ydot(e_zero_vector(m_nc)),m_chi(e_zero_vector(6)), m_S(6),m_temp(6),m_tdelta(6), m_Jf(e_identity_matrix(6,6)), m_U(e_identity_matrix(6,6)),m_V(e_identity_matrix(6,6)),m_B(e_zero_matrix(6,6)), m_Jf_inv(e_zero_matrix(6,6)), m_internalPose(F_identity), m_externalPose(F_identity), m_constraintCallback(NULL), m_constraintParam(NULL), m_toggle(false),m_substep(false), m_threshold(accuracy),m_maxIter(maximum_iterations) { m_maxDeltaChi = e_scalar(0.52); }
ControlledObject::ControlledObject(): Object(Controlled),m_nq(0),m_nc(0),m_nee(0) { // max joint variable = 0.52 radian or 0.52 meter in one timestep m_maxDeltaQ = e_scalar(0.52); }
bool WSDLSSolver::solve(const e_matrix& A, const e_vector& Wy, const e_vector& ydot, const e_matrix& Wq, e_vector& qdot, e_scalar& nlcoef) { unsigned int i, j, l; e_scalar N, M; // Create the Weighted jacobian m_AWq = (A*Wq).lazy(); for (i=0; i<m_nc; i++) m_WyAWq.row(i) = Wy(i)*m_AWq.row(i); // Compute the SVD of the weighted jacobian int ret; if (m_transpose) { m_WyAWqt = m_WyAWq.transpose(); ret = KDL::svd_eigen_HH(m_WyAWqt,m_V,m_S,m_U,m_temp); } else { ret = KDL::svd_eigen_HH(m_WyAWq,m_U,m_S,m_V,m_temp); } if(ret<0) return false; m_Wy_ydot = Wy.cwise() * ydot; m_WqV = (Wq*m_V).lazy(); qdot.setZero(); e_scalar maxDeltaS = e_scalar(0.0); e_scalar prevS = e_scalar(0.0); e_scalar maxS = e_scalar(1.0); for(i=0;i<m_ns;++i) { e_scalar norm, mag, alpha, _qmax, Sinv, vmax, damp; e_scalar S = m_S(i); bool prev; if (S < KDL::epsilon) break; Sinv = e_scalar(1.)/S; if (i > 0) { if ((prevS-S) > maxDeltaS) { maxDeltaS = (prevS-S); maxS = prevS; } } N = M = e_scalar(0.); for (l=0, prev=m_ytask[0], norm=e_scalar(0.); l<m_nc; l++) { if (prev == m_ytask[l]) { norm += m_U(l,i)*m_U(l,i); } else { N += std::sqrt(norm); norm = m_U(l,i)*m_U(l,i); } prev = m_ytask[l]; } N += std::sqrt(norm); for (j=0; j<m_nq; j++) { for (l=0, prev=m_ytask[0], norm=e_scalar(0.), mag=e_scalar(0.); l<m_nc; l++) { if (prev == m_ytask[l]) { norm += m_WyAWq(l,j)*m_WyAWq(l,j); } else { mag += std::sqrt(norm); norm = m_WyAWq(l,j)*m_WyAWq(l,j); } prev = m_ytask[l]; } mag += std::sqrt(norm); M += fabs(m_V(j,i))*mag; } M *= Sinv; alpha = m_U.col(i).dot(m_Wy_ydot); _qmax = (N < M) ? m_qmax*N/M : m_qmax; vmax = m_WqV.col(i).cwise().abs().maxCoeff(); norm = fabs(Sinv*alpha*vmax); if (norm > _qmax) { damp = Sinv*alpha*_qmax/norm; } else { damp = Sinv*alpha; } qdot += m_WqV.col(i)*damp; prevS = S; } if (maxDeltaS == e_scalar(0.0)) nlcoef = e_scalar(KDL::epsilon); else nlcoef = (maxS-maxDeltaS)/maxS; return true; }