int main(void) { int i; int ret = 0; ec_enc enc; ec_dec dec; unsigned char *ptr; int val[10000], decay[10000]; ALLOC_STACK; ptr = (unsigned char *)malloc(DATA_SIZE); ec_enc_init(&enc,ptr,DATA_SIZE); val[0] = 3; decay[0] = 6000; val[1] = 0; decay[1] = 5800; val[2] = -1; decay[2] = 5600; for (i=3;i<10000;i++) { val[i] = rand()%15-7; decay[i] = rand()%11000+5000; } for (i=0;i<10000;i++) ec_laplace_encode(&enc, &val[i], ec_laplace_get_start_freq(decay[i]), decay[i]); ec_enc_done(&enc); ec_dec_init(&dec,ec_get_buffer(&enc),ec_range_bytes(&enc)); for (i=0;i<10000;i++) { int d = ec_laplace_decode(&dec, ec_laplace_get_start_freq(decay[i]), decay[i]); if (d != val[i]) { fprintf (stderr, "Got %d instead of %d\n", d, val[i]); ret = 1; } } free(ptr); return ret; }
int main(int _argc,char **_argv){ ec_enc enc; ec_dec dec; long nbits; long nbits2; double entropy; int ft; int ftb; int sz; int i; int ret; unsigned int sym; unsigned int seed; unsigned char *ptr; const char *env_seed; ret=0; entropy=0; if (_argc > 2) { fprintf(stderr, "Usage: %s [<seed>]\n", _argv[0]); return 1; } env_seed = getenv("SEED"); if (_argc > 1) seed = atoi(_argv[1]); else if (env_seed) seed = atoi(env_seed); else seed = time(NULL); /*Testing encoding of raw bit values.*/ ptr = (unsigned char *)malloc(DATA_SIZE); ec_enc_init(&enc,ptr, DATA_SIZE); for(ft=2;ft<1024;ft++){ for(i=0;i<ft;i++){ entropy+=log(ft)*M_LOG2E; ec_enc_uint(&enc,i,ft); } } /*Testing encoding of raw bit values.*/ for(ftb=1;ftb<16;ftb++){ for(i=0;i<(1<<ftb);i++){ entropy+=ftb; nbits=ec_tell(&enc); ec_enc_bits(&enc,i,ftb); nbits2=ec_tell(&enc); if(nbits2-nbits!=ftb){ fprintf(stderr,"Used %li bits to encode %i bits directly.\n", nbits2-nbits,ftb); ret=-1; } } } nbits=ec_tell_frac(&enc); ec_enc_done(&enc); fprintf(stderr, "Encoded %0.2lf bits of entropy to %0.2lf bits (%0.3lf%% wasted).\n", entropy,ldexp(nbits,-3),100*(nbits-ldexp(entropy,3))/nbits); fprintf(stderr,"Packed to %li bytes.\n",(long)ec_range_bytes(&enc)); ec_dec_init(&dec,ptr,DATA_SIZE); for(ft=2;ft<1024;ft++){ for(i=0;i<ft;i++){ sym=ec_dec_uint(&dec,ft); if(sym!=(unsigned)i){ fprintf(stderr,"Decoded %i instead of %i with ft of %i.\n",sym,i,ft); ret=-1; } } } for(ftb=1;ftb<16;ftb++){ for(i=0;i<(1<<ftb);i++){ sym=ec_dec_bits(&dec,ftb); if(sym!=(unsigned)i){ fprintf(stderr,"Decoded %i instead of %i with ftb of %i.\n",sym,i,ftb); ret=-1; } } } nbits2=ec_tell_frac(&dec); if(nbits!=nbits2){ fprintf(stderr, "Reported number of bits used was %0.2lf, should be %0.2lf.\n", ldexp(nbits2,-3),ldexp(nbits,-3)); ret=-1; } /*Testing an encoder bust prefers range coder data over raw bits. This isn't a general guarantee, will only work for data that is buffered in the encoder state and not yet stored in the user buffer, and should never get used in practice. It's mostly here for code coverage completeness.*/ /*Start with a 16-bit buffer.*/ ec_enc_init(&enc,ptr,2); /*Write 7 raw bits.*/ ec_enc_bits(&enc,0x55,7); /*Write 12.3 bits of range coder data.*/ ec_enc_uint(&enc,1,2); ec_enc_uint(&enc,1,3); ec_enc_uint(&enc,1,4); ec_enc_uint(&enc,1,5); ec_enc_uint(&enc,2,6); ec_enc_uint(&enc,6,7); ec_enc_done(&enc); ec_dec_init(&dec,ptr,2); if(!enc.error /*The raw bits should have been overwritten by the range coder data.*/ ||ec_dec_bits(&dec,7)!=0x05 /*And all the range coder data should have been encoded correctly.*/ ||ec_dec_uint(&dec,2)!=1 ||ec_dec_uint(&dec,3)!=1 ||ec_dec_uint(&dec,4)!=1 ||ec_dec_uint(&dec,5)!=1 ||ec_dec_uint(&dec,6)!=2 ||ec_dec_uint(&dec,7)!=6){ fprintf(stderr,"Encoder bust overwrote range coder data with raw bits.\n"); ret=-1; } srand(seed); fprintf(stderr,"Testing random streams... Random seed: %u (%.4X)\n", seed, rand() % 65536); for(i=0;i<409600;i++){ unsigned *data; unsigned *tell; unsigned tell_bits; int j; int zeros; ft=rand()/((RAND_MAX>>(rand()%11U))+1U)+10; sz=rand()/((RAND_MAX>>(rand()%9U))+1U); data=(unsigned *)malloc(sz*sizeof(*data)); tell=(unsigned *)malloc((sz+1)*sizeof(*tell)); ec_enc_init(&enc,ptr,DATA_SIZE2); zeros = rand()%13==0; tell[0]=ec_tell_frac(&enc); for(j=0;j<sz;j++){ if (zeros) data[j]=0; else data[j]=rand()%ft; ec_enc_uint(&enc,data[j],ft); tell[j+1]=ec_tell_frac(&enc); } if (rand()%2==0) while(ec_tell(&enc)%8 != 0) ec_enc_uint(&enc, rand()%2, 2); tell_bits = ec_tell(&enc); ec_enc_done(&enc); if(tell_bits!=(unsigned)ec_tell(&enc)){ fprintf(stderr,"ec_tell() changed after ec_enc_done(): %i instead of %i (Random seed: %u)\n", ec_tell(&enc),tell_bits,seed); ret=-1; } if ((tell_bits+7)/8 < ec_range_bytes(&enc)) { fprintf (stderr, "ec_tell() lied, there's %i bytes instead of %d (Random seed: %u)\n", ec_range_bytes(&enc), (tell_bits+7)/8,seed); ret=-1; } ec_dec_init(&dec,ptr,DATA_SIZE2); if(ec_tell_frac(&dec)!=tell[0]){ fprintf(stderr, "Tell mismatch between encoder and decoder at symbol %i: %i instead of %i (Random seed: %u).\n", 0,ec_tell_frac(&dec),tell[0],seed); } for(j=0;j<sz;j++){ sym=ec_dec_uint(&dec,ft); if(sym!=data[j]){ fprintf(stderr, "Decoded %i instead of %i with ft of %i at position %i of %i (Random seed: %u).\n", sym,data[j],ft,j,sz,seed); ret=-1; } if(ec_tell_frac(&dec)!=tell[j+1]){ fprintf(stderr, "Tell mismatch between encoder and decoder at symbol %i: %i instead of %i (Random seed: %u).\n", j+1,ec_tell_frac(&dec),tell[j+1],seed); } } free(tell); free(data); } /*Test compatibility between multiple different encode/decode routines.*/ for(i=0;i<409600;i++){ unsigned *logp1; unsigned *data; unsigned *tell; unsigned *enc_method; int j; sz=rand()/((RAND_MAX>>(rand()%9U))+1U); logp1=(unsigned *)malloc(sz*sizeof(*logp1)); data=(unsigned *)malloc(sz*sizeof(*data)); tell=(unsigned *)malloc((sz+1)*sizeof(*tell)); enc_method=(unsigned *)malloc(sz*sizeof(*enc_method)); ec_enc_init(&enc,ptr,DATA_SIZE2); tell[0]=ec_tell_frac(&enc); for(j=0;j<sz;j++){ data[j]=rand()/((RAND_MAX>>1)+1); logp1[j]=(rand()%15)+1; enc_method[j]=rand()/((RAND_MAX>>2)+1); switch(enc_method[j]){ case 0:{ ec_encode(&enc,data[j]?(1<<logp1[j])-1:0, (1<<logp1[j])-(data[j]?0:1),1<<logp1[j]); }break; case 1:{ ec_encode_bin(&enc,data[j]?(1<<logp1[j])-1:0, (1<<logp1[j])-(data[j]?0:1),logp1[j]); }break; case 2:{ ec_enc_bit_logp(&enc,data[j],logp1[j]); }break; case 3:{ unsigned char icdf[2]; icdf[0]=1; icdf[1]=0; ec_enc_icdf(&enc,data[j],icdf,logp1[j]); }break; } tell[j+1]=ec_tell_frac(&enc); } ec_enc_done(&enc); if((ec_tell(&enc)+7U)/8U<ec_range_bytes(&enc)){ fprintf(stderr,"tell() lied, there's %i bytes instead of %d (Random seed: %u)\n", ec_range_bytes(&enc),(ec_tell(&enc)+7)/8,seed); ret=-1; } ec_dec_init(&dec,ptr,DATA_SIZE2); if(ec_tell_frac(&dec)!=tell[0]){ fprintf(stderr, "Tell mismatch between encoder and decoder at symbol %i: %i instead of %i (Random seed: %u).\n", 0,ec_tell_frac(&dec),tell[0],seed); } for(j=0;j<sz;j++){ int fs; int dec_method; dec_method=rand()/((RAND_MAX>>2)+1); switch(dec_method){ case 0:{ fs=ec_decode(&dec,1<<logp1[j]); sym=fs>=(1<<logp1[j])-1; ec_dec_update(&dec,sym?(1<<logp1[j])-1:0, (1<<logp1[j])-(sym?0:1),1<<logp1[j]); }break; case 1:{ fs=ec_decode_bin(&dec,logp1[j]); sym=fs>=(1<<logp1[j])-1; ec_dec_update(&dec,sym?(1<<logp1[j])-1:0, (1<<logp1[j])-(sym?0:1),1<<logp1[j]); }break; case 2:{ sym=ec_dec_bit_logp(&dec,logp1[j]); }break; case 3:{ unsigned char icdf[2]; icdf[0]=1; icdf[1]=0; sym=ec_dec_icdf(&dec,icdf,logp1[j]); }break; } if(sym!=data[j]){ fprintf(stderr, "Decoded %i instead of %i with logp1 of %i at position %i of %i (Random seed: %u).\n", sym,data[j],logp1[j],j,sz,seed); fprintf(stderr,"Encoding method: %i, decoding method: %i\n", enc_method[j],dec_method); ret=-1; } if(ec_tell_frac(&dec)!=tell[j+1]){ fprintf(stderr, "Tell mismatch between encoder and decoder at symbol %i: %i instead of %i (Random seed: %u).\n", j+1,ec_tell_frac(&dec),tell[j+1],seed); } } free(enc_method); free(tell); free(data); free(logp1); } ec_enc_init(&enc,ptr,DATA_SIZE2); ec_enc_bit_logp(&enc,0,1); ec_enc_bit_logp(&enc,0,1); ec_enc_bit_logp(&enc,0,1); ec_enc_bit_logp(&enc,0,1); ec_enc_bit_logp(&enc,0,2); ec_enc_patch_initial_bits(&enc,3,2); if(enc.error){ fprintf(stderr,"patch_initial_bits failed"); ret=-1; } ec_enc_patch_initial_bits(&enc,0,5); if(!enc.error){ fprintf(stderr,"patch_initial_bits didn't fail when it should have"); ret=-1; } ec_enc_done(&enc); if(ec_range_bytes(&enc)!=1||ptr[0]!=192){ fprintf(stderr,"Got %d when expecting 192 for patch_initial_bits",ptr[0]); ret=-1; } ec_enc_init(&enc,ptr,DATA_SIZE2); ec_enc_bit_logp(&enc,0,1); ec_enc_bit_logp(&enc,0,1); ec_enc_bit_logp(&enc,1,6); ec_enc_bit_logp(&enc,0,2); ec_enc_patch_initial_bits(&enc,0,2); if(enc.error){ fprintf(stderr,"patch_initial_bits failed"); ret=-1; } ec_enc_done(&enc); if(ec_range_bytes(&enc)!=2||ptr[0]!=63){ fprintf(stderr,"Got %d when expecting 63 for patch_initial_bits",ptr[0]); ret=-1; } ec_enc_init(&enc,ptr,2); ec_enc_bit_logp(&enc,0,2); for(i=0;i<48;i++){ ec_enc_bits(&enc,0,1); } ec_enc_done(&enc); if(!enc.error){ fprintf(stderr,"Raw bits overfill didn't fail when it should have"); ret=-1; } ec_enc_init(&enc,ptr,2); for(i=0;i<17;i++){ ec_enc_bits(&enc,0,1); } ec_enc_done(&enc); if(!enc.error){ fprintf(stderr,"17 raw bits encoded in two bytes"); ret=-1; } free(ptr); return ret; }
void quant_coarse_energy(const CELTMode *m, int start, int end, int effEnd, const opus_val16 *eBands, opus_val16 *oldEBands, opus_uint32 budget, opus_val16 *error, ec_enc *enc, int C, int LM, int nbAvailableBytes, int force_intra, opus_val32 *delayedIntra, int two_pass, int loss_rate) { int intra; opus_val16 max_decay; VARDECL(opus_val16, oldEBands_intra); VARDECL(opus_val16, error_intra); ec_enc enc_start_state; opus_uint32 tell; int badness1=0; opus_int32 intra_bias; opus_val32 new_distortion; SAVE_STACK; intra = force_intra || (!two_pass && *delayedIntra>2*C*(end-start) && nbAvailableBytes > (end-start)*C); intra_bias = (opus_int32)((budget**delayedIntra*loss_rate)/(C*512)); new_distortion = loss_distortion(eBands, oldEBands, start, effEnd, m->nbEBands, C); tell = ec_tell(enc); if (tell+3 > budget) two_pass = intra = 0; /* Encode the global flags using a simple probability model (first symbols in the stream) */ max_decay = QCONST16(16.f,DB_SHIFT); if (end-start>10) { #ifdef FIXED_POINT max_decay = MIN32(max_decay, SHL32(EXTEND32(nbAvailableBytes),DB_SHIFT-3)); #else max_decay = MIN32(max_decay, .125f*nbAvailableBytes); #endif } enc_start_state = *enc; ALLOC(oldEBands_intra, C*m->nbEBands, opus_val16); ALLOC(error_intra, C*m->nbEBands, opus_val16); OPUS_COPY(oldEBands_intra, oldEBands, C*m->nbEBands); if (two_pass || intra) { badness1 = quant_coarse_energy_impl(m, start, end, eBands, oldEBands_intra, budget, tell, e_prob_model[LM][1], error_intra, enc, C, LM, 1, max_decay); } if (!intra) { unsigned char *intra_buf; ec_enc enc_intra_state; opus_int32 tell_intra; opus_uint32 nstart_bytes; opus_uint32 nintra_bytes; int badness2; VARDECL(unsigned char, intra_bits); tell_intra = ec_tell_frac(enc); enc_intra_state = *enc; nstart_bytes = ec_range_bytes(&enc_start_state); nintra_bytes = ec_range_bytes(&enc_intra_state); intra_buf = ec_get_buffer(&enc_intra_state) + nstart_bytes; ALLOC(intra_bits, nintra_bytes-nstart_bytes, unsigned char); /* Copy bits from intra bit-stream */ OPUS_COPY(intra_bits, intra_buf, nintra_bytes - nstart_bytes); *enc = enc_start_state; badness2 = quant_coarse_energy_impl(m, start, end, eBands, oldEBands, budget, tell, e_prob_model[LM][intra], error, enc, C, LM, 0, max_decay); if (two_pass && (badness1 < badness2 || (badness1 == badness2 && ((opus_int32)ec_tell_frac(enc))+intra_bias > tell_intra))) { *enc = enc_intra_state; /* Copy intra bits to bit-stream */ OPUS_COPY(intra_buf, intra_bits, nintra_bytes - nstart_bytes); OPUS_COPY(oldEBands, oldEBands_intra, C*m->nbEBands); OPUS_COPY(error, error_intra, C*m->nbEBands); intra = 1; } } else {