/* computing of $(-t^2 +u*s -t*p -p^2)^3$ * The algorithm is by J.Beuchat et.al, in the paper of "Algorithms and Arithmetic Operators for Computing * the $eta_T$ Pairing in Characteristic Three", algorithm 4 in the appendix */ static void algorithm4a(element_t S, element_t t, element_t u) { field_ptr f = FIELD(t); element_t e1, c0, c1, m0, v0, v2; element_init(e1, f); element_init(c0, f); element_init(c1, f); element_init(m0, f); element_init(v0, f); element_init(v2, f); element_set1(e1); element_cubic(c0, t); // c0 == t^3 element_cubic(c1, u); element_neg(c1, c1); // c1 == -u^3 element_mul(m0, c0, c0); // m0 == c0^2 element_neg(v0, m0); // v0 == -c0^2 element_sub(v0, v0, c0); // v0 == -c0^2 -c0 element_sub(v0, v0, e1); // v0 == -c0^2 -c0 -1 element_set1(v2); element_sub(v2, v2, c0); // v2 == 1 -c0 // v1 == c1 // S == [[v0, v1], [v2, f3m.zero()], [f3m.two(), f3m.zero()]] element_set(ITEM(S,0,0), v0); element_set(ITEM(S,0,1), c1); element_set(ITEM(S,1,0), v2); element_set0(ITEM(S,1,1)); element_neg(ITEM(S,2,0), e1); element_set0(ITEM(S,2,1)); element_clear(e1); element_clear(c0); element_clear(c1); element_clear(m0); element_clear(v0); element_clear(v2); }
/* computing $c <- U^M, M=(3^{3m}-1)*(3^m+1)*(3^m+1-\mu*b*3^{(m+1)//2})$ * This is the algorithm 8 in the paper above. */ static void algorithm8(element_t c, element_t u) { field_ptr f6 = FIELD(u), f = FIELD(ITEM(u,0,0)); params *p = (params *) f->data; element_t v, w; element_init(v, f6); element_init(w, f6); algorithm6(v, u); algorithm7(v, v); element_set(w, v); int i; for (i = 0; i < (p->m + 1) / 2; i++) element_cubic(w, w); algorithm7(v, v); if (p->m % 12 == 1 || p->m % 12 == 11) { // w <= w^{-\mu*b} element_ptr e; e = ITEM(w,0,1); element_neg(e, e); e = ITEM(w,1,1); element_neg(e, e); e = ITEM(w,2,1); element_neg(e, e); } element_mul(c, v, w); element_clear(v); element_clear(w); }
void miller(element_t res, mpz_t q, element_t P, element_ptr Qx, element_ptr Qy) { int m; element_t v; element_t Z; element_t a, b, c; element_t t0; element_t e0; const element_ptr cca = curve_a_coeff(P); const element_ptr Px = curve_x_coord(P); const element_ptr Py = curve_y_coord(P); element_ptr Zx, Zy; void do_tangent(void) { // a = -(3 Zx^2 + cc->a) // b = 2 * Zy // c = -(2 Zy^2 + a Zx); element_square(a, Zx); mult1++; element_mul_si(a, a, 3); add1++; add1++; add1++; element_add(a, a, cca); add1++; element_neg(a, a); element_add(b, Zy, Zy); add1++; element_mul(t0, b, Zy); mult1++; element_mul(c, a, Zx); mult1++; element_add(c, c, t0); add1++; element_neg(c, c); d_miller_evalfn(e0, a, b, c, Qx, Qy); element_mul(v, v, e0); multk++; }
static void point_add(element_t c, element_t a, element_t b) { point_ptr p1 = DATA(a), p2 = DATA(b), p3 = DATA(c); int inf1 = p1->isinf, inf2 = p2->isinf; element_ptr x1 = p1->x, y1 = p1->y, x2 = p2->x, y2 = p2->y; field_ptr f = FIELD(x1); if (inf1) { point_set(c, b); return; } if (inf2) { point_set(c, a); return; } element_t v0, v1, v2, v3, v4, ny2; element_init(v0, f); element_init(v1, f); element_init(v2, f); element_init(v3, f); element_init(v4, f); element_init(ny2, f); if (!element_cmp(x1, x2)) { // x1 == x2 element_neg(ny2, y2); // ny2 == -y2 if (!element_cmp(y1, ny2)) { p3->isinf = 1; goto end; } if (!element_cmp(y1, y2)) { // y1 == y2 element_invert(v0, y1); // v0 == y1^{-1} element_mul(v1, v0, v0); // v1 == [y1^{-1}]^2 element_add(p3->x, v1, x1); // v1 == [y1^{-1}]^2 + x1 element_cubic(v2, v0); // v2 == [y1^{-1}]^3 element_add(v2, v2, y1); // v2 == [y1^{-1}]^3 + y1 element_neg(p3->y, v2); // p3 == -([y1^{-1}]^3 + y1) p3->isinf = 0; goto end; } } // $P1 \ne \pm P2$ element_sub(v0, x2, x1); // v0 == x2-x1 element_invert(v1, v0); // v1 == (x2-x1)^{-1} element_sub(v0, y2, y1); // v0 == y2-y1 element_mul(v2, v0, v1); // v2 == (y2-y1)/(x2-x1) element_mul(v3, v2, v2); // v3 == [(y2-y1)/(x2-x1)]^2 element_cubic(v4, v2); // v4 == [(y2-y1)/(x2-x1)]^3 element_add(v0, x1, x2); // v0 == x1+x2 element_sub(v3, v3, v0); // v3 == [(y2-y1)/(x2-x1)]^2 - (x1+x2) element_add(v0, y1, y2); // v0 == y1+y2 element_sub(v4, v0, v4); // v4 == (y1+y2) - [(y2-y1)/(x2-x1)]^3 p3->isinf = 0; element_set(p3->x, v3); element_set(p3->y, v4); end: element_clear(v0); element_clear(v1); element_clear(v2); element_clear(v3); element_clear(v4); element_clear(ny2); }
// Requires e to be a point on an elliptic curve. int element_from_bytes_compressed(element_ptr e, unsigned char *data) { curve_data_ptr cdp = (curve_data_ptr)e->field->data; point_ptr P = (point_ptr)e->data; int len; len = element_from_bytes(P->x, data); point_from_x(P, P->x, cdp->a, cdp->b); if (data[len]) { if (element_sign(P->y) < 0) element_neg(P->y, P->y); } else if (element_sign(P->y) > 0) { element_neg(P->y, P->y); } len++; return len; }
static void do_tangent(element_ptr z, element_ptr V, element_ptr Q) { element_ptr Vx = curve_x_coord(V); element_ptr Vy = curve_y_coord(V); element_ptr Qx = curve_x_coord(Q); element_ptr Qy = curve_y_coord(Q); element_t a, b, c; element_init_same_as(a, Vx); element_init_same_as(b, Vx); element_init_same_as(c, Vx); //a = -slope_tangent(V.x, V.y); //b = 1; //c = -(V.y + aV.x); /* //we could multiply by -2*V.y to avoid division so: //a = -(3 Vx^2 + cc->a) //b = 2 * Vy //c = -(2 Vy^2 + a Vx); // //actually no, since fasterweil won't work if we do this */ element_square(a, Vx); //element_mul_si(a, a, 3); element_add(b, a, a); element_add(a, b, a); element_set1(b); element_add(a, a, b); element_neg(a, a); element_double(b, Vy); element_div(a, a, b); element_set1(b); element_mul(c, a, Vx); element_add(c, c, Vy); element_neg(c, c); element_printf("tan at %B: %B %B %B\n", V, a, b, c); element_mul(a, a, Qx); element_mul(b, b, Qy); element_add(c, c, a); element_add(z, c, b); element_printf("tan eval = %B\n", z); element_clear(a); element_clear(b); element_clear(c); }
static void do_vert(element_ptr z, element_ptr V, element_ptr Q) { element_ptr Vx = curve_x_coord(V); element_ptr Qx = curve_x_coord(Q); element_ptr Qy = curve_y_coord(Q); element_t a, b, c; element_init_same_as(a, Vx); element_init_same_as(b, Vx); element_init_same_as(c, Vx); //a = 1 //b = 0; //c = -Vx element_set1(a); element_set0(b); element_neg(c, Vx); element_printf("vert at %B: %B %B %B\n", Vx, a, b, c); element_mul(a, a, Qx); element_mul(b, b, Qy); element_add(c, c, a); element_add(z, c, b); element_printf("vert eval = %B\n", z); element_clear(a); element_clear(b); element_clear(c); }
// The final powering, where we standardize the coset representative. static void cc_tatepower(element_ptr out, element_ptr in, pairing_t pairing) { pptr p = pairing->data; #define qpower(sign) { \ polymod_const_mul(e2, inre[1], p->xpowq); \ element_set(e0re, e2); \ polymod_const_mul(e2, inre[2], p->xpowq2); \ element_add(e0re, e0re, e2); \ element_add(e0re0, e0re0, inre[0]); \ \ if (sign > 0) { \ polymod_const_mul(e2, inim[1], p->xpowq); \ element_set(e0im, e2); \ polymod_const_mul(e2, inim[2], p->xpowq2); \ element_add(e0im, e0im, e2); \ element_add(e0im0, e0im0, inim[0]); \ } else { \ polymod_const_mul(e2, inim[1], p->xpowq); \ element_neg(e0im, e2); \ polymod_const_mul(e2, inim[2], p->xpowq2); \ element_sub(e0im, e0im, e2); \ element_sub(e0im0, e0im0, inim[0]); \ } \ } if (p->k == 6) { // See thesis, section 6.9, "The Final Powering", which gives a formula // for the first step of the final powering when Fq6 has been implemented // as a quadratic extension on top of a cubic extension. element_t e0, e2, e3; element_init(e0, p->Fqk); element_init(e2, p->Fqd); element_init(e3, p->Fqk); element_ptr e0re = element_x(e0); element_ptr e0im = element_y(e0); element_ptr e0re0 = ((element_t *) e0re->data)[0]; element_ptr e0im0 = ((element_t *) e0im->data)[0]; element_t *inre = element_x(in)->data; element_t *inim = element_y(in)->data; // Expressions in the formula are similar, hence the following function. qpower(1); element_set(e3, e0); element_set(e0re, element_x(in)); element_neg(e0im, element_y(in)); element_mul(e3, e3, e0); qpower(-1); element_mul(e0, e0, in); element_invert(e0, e0); element_mul(in, e3, e0); element_set(e0, in); // We use Lucas sequences to complete the final powering. lucas_even(out, e0, pairing->phikonr); element_clear(e0); element_clear(e2); element_clear(e3); } else { element_pow_mpz(out, in, p->tateexp); } #undef qpower }
static void curve_from_hash(element_t a, void *data, int len) { element_t t, t1; point_ptr p = (point_ptr)a->data; curve_data_ptr cdp = (curve_data_ptr)a->field->data; element_init(t, cdp->field); element_init(t1, cdp->field); p->inf_flag = 0; element_from_hash(p->x, data, len); for(;;) { element_square(t, p->x); element_add(t, t, cdp->a); element_mul(t, t, p->x); element_add(t, t, cdp->b); if (element_is_sqr(t)) break; // Compute x <- x^2 + 1 and try again. element_square(p->x, p->x); element_set1(t); element_add(p->x, p->x, t); } element_sqrt(p->y, t); if (element_sgn(p->y) < 0) element_neg(p->y, p->y); if (cdp->cofac) element_mul_mpz(a, a, cdp->cofac); element_clear(t); element_clear(t1); }
static void point_invert(element_ptr e, element_ptr a) { point_ptr r = DATA(e), p = DATA(a); r->isinf = p->isinf; if (!p->isinf) { element_set(r->x, p->x); element_neg(r->y, p->y); } }
static void sn_invert(element_ptr c, element_ptr a) { point_ptr r = c->data, p = a->data; if (p->inf_flag) { r->inf_flag = 1; return; } r->inf_flag = 0; element_set(r->x, p->x); element_neg(r->y, p->y); }
static void do_line(element_ptr z, element_ptr V, element_ptr P, element_ptr Q) { element_ptr Vx = curve_x_coord(V); element_ptr Vy = curve_y_coord(V); element_ptr Px = curve_x_coord(P); element_ptr Py = curve_y_coord(P); element_ptr Qx = curve_x_coord(Q); element_ptr Qy = curve_y_coord(Q); element_t a, b, c, e0; element_init_same_as(a, Vx); element_init_same_as(b, Vx); element_init_same_as(c, Vx); element_init_same_as(e0, Vx); //a = -(B.y - A.y) / (B.x - A.x); //b = 1; //c = -(A.y + a * A.x); element_sub(a, Py, Vy); element_sub(b, Vx, Px); element_div(a, a, b); element_set1(b); element_mul(c, a, Vx); element_add(c, c, Vy); element_neg(c, c); /* //but we could multiply by B.x - A.x to avoid division, so //a = -(By - Ay) //b = Bx - Ax //c = -(Ay b + a Ax); element_sub(a, Vy, Py); element_sub(b, Px, Vx); element_mul(c, Vx, Py); element_mul(e0, Vy, Px); element_sub(c, c, e0); // //actually no, since fasterweil won't work if we do this */ element_printf("line at %B: %B %B %B\n", V, a, b, c); element_mul(a, a, Qx); element_mul(b, b, Qy); element_add(c, c, a); element_add(z, c, b); element_printf(" = %B\n", z); element_clear(a); element_clear(b); element_clear(c); element_clear(e0); }
void weil(element_t w, element_t g, element_t h) { element_t gr; element_t hs; element_t r; element_t s; element_t z, z0, z1; element_init(z, Fq2); element_init(z0, Fq2); element_init(z1, Fq2); element_init_same_as(gr, g); element_init_same_as(hs, h); element_init_same_as(r, g); element_init_same_as(s, h); element_random(r); element_random(s); //point_random always takes the same square root //why not take the other one for once? element_neg(r, r); element_set_str(r, "[[40,0],[54,0]]", 0); element_set_str(s, "[[48,55],[28,51]]", 0); element_printf("chose R = %B\n", r); element_printf("chose S = %B\n", s); element_add(gr, g, r); element_add(hs, h, s); element_printf("P+R = %B\n", gr); element_printf("Q+S = %B\n", hs); miller(z, gr, r, g, hs); miller(z0, gr, r, g, s); element_div(z1, z, z0); element_printf("num: %B\n", z1); miller(z, hs, s, h, gr); miller(z0, hs, s, h, r); element_div(w, z, z0); element_printf("denom: %B\n", w); element_div(w, z1, w); element_clear(gr); element_clear(r); element_clear(hs); element_clear(s); element_clear(z); element_clear(z0); element_clear(z1); }
void do_tangent(element_t e, element_t edenom) { //a = -(3x^2 + cca z^4) //b = 2 y z^3 //c = -(2 y^2 + x a) //a = z^2 a element_square(a, z2); element_mul(a, a, cca); element_square(b, Zx); //element_mul_si(b, b, 3); element_double(e0, b); element_add(b, b, e0); element_add(a, a, b); element_neg(a, a); //element_mul_si(e0, Zy, 2); element_double(e0, Zy); element_mul(b, e0, z2); element_mul(b, b, z); element_mul(c, Zx, a); element_mul(a, a, z2); element_mul(e0, e0, Zy); element_add(c, c, e0); element_neg(c, c); element_mul(e0, a, numx); element_mul(e1, b, numy); element_add(e0, e0, e1); element_add(e0, e0, c); element_mul(e, e, e0); element_mul(e0, a, denomx); element_mul(e1, b, denomy); element_add(e0, e0, e1); element_add(e0, e0, c); element_mul(edenom, edenom, e0); }
/* $e <- a^3$ */ static void gf32m_cubic(element_t e, element_t a) { element_ptr a0 = GF32M(a)->_0, a1 = GF32M(a)->_1, e0 = GF32M(e)->_0, e1 = GF32M(e)->_1; field_ptr base = BASE(a); element_t c0, c1; element_init(c0, base); element_init(c1, base); element_cubic(c0, a0); element_cubic(c1, a1); element_neg(c1, c1); // c1 == -(a1^3) element_set(e0, c0); element_set(e1, c1); element_clear(c0); element_clear(c1); }
void do_line(void) { // a = -(B.y - A.y) / (B.x - A.x); // b = 1; // c = -(A.y + a * A.x); // but we multiply by B.x - A.x to avoid division. element_sub(b, Px, Zx); add1++; element_sub(a, Zy, Py); add1++; element_mul(t0, b, Zy); mult1++; element_mul(c, a, Zx); mult1++; element_add(c, c, t0); add1++; element_neg(c, c); d_miller_evalfn(e0, a, b, c, Qx, Qy); element_mul(v, v, e0); multk++; }
static void fi_invert(element_ptr n, element_ptr a) { eptr p = a->data; eptr r = n->data; element_t e0, e1; element_init(e0, p->x->field); element_init(e1, e0->field); element_square(e0, p->x); element_square(e1, p->y); element_add(e0, e0, e1); element_invert(e0, e0); element_mul(r->x, p->x, e0); element_neg(e0, e0); element_mul(r->y, p->y, e0); element_clear(e0); element_clear(e1); }
static void test_gf3m_sqrt(void) { mpz_t t; mpz_init(t); mpz_sub_ui(t, a->field->order, 1); // t == field_order - 1 element_random(a); element_pow_mpz(a, a, t); EXPECT(!element_cmp(a, e1)); while(1){ element_random(a); element_mul(b, a, a); element_sqrt(b, b); if(element_cmp(a, b)) {// a != b element_neg(b, b); if(!element_cmp(a, b)) break; } } mpz_clear(t); }
// USER JOIN PHASE 5 - user key generation (Join) int xsgs_user_join_phase5(XSGS_PUBLIC_KEY* gpk, XSGS_USER_CERT* ucert, XSGS_USER_KEY* uk, XSGS_JOIN_PHASE4* jpd4) { int ret; pairing_ptr pairing = gpk->pairing; field_ptr Fp = pairing->Zr; element_t gt1, gt2, y_neg, g1; element_init(ucert->x, Fp); element_set(ucert->x, jpd4->x); // check A^(x + gamma) = G1 * H^y // i.e.: e(A, G2)^x * e(A, W) * e(H, G2)^-y == e(G1, G2) element_init(y_neg, Fp); element_init_G1(g1, pairing); element_init_GT(gt1, pairing); element_init_GT(gt2, pairing); // gt1 = e(A, G2)^x * e(A, W) * e(H, G2)^-y // = e(A^x * H^-y, G2) * e(A, W) element_neg(y_neg, uk->y); element_pow_naf2(g1, ucert->A, ucert->x, gpk->H, y_neg); element_pairing(gt1, g1, gpk->G2); element_pairing(gt2, ucert->A, gpk->W); element_mul(gt1, gt1, gt2); // gt2 = e(G1, G2) element_pairing(gt2, gpk->G1, gpk->G2); // check gt1 == gt2 ret = element_cmp(gt1, gt2); element_clear(g1); element_clear(y_neg); element_clear(gt1); element_clear(gt2); return ret; }
void setup(void) { field_init_gf3m(f97, 97, 12); element_init(a, f97); element_init(b, f97); element_init(e0, f97); element_init(e1, f97); element_init(e2, f97); element_set1(e1); element_neg(e2, e1); field_init_gf32m(f97_2, f97); element_init(a2, f97_2); element_init(b2, f97_2); field_init_gf33m(f97_3, f97); element_init(a3, f97_3); element_init(b3, f97_3); field_init_gf33m(f97_6, f97_2); element_init(a6, f97_6); element_init(b6, f97_6); data = pbc_malloc(f97->fixed_length_in_bytes); }
// USER JOIN PHASE 3 - user key generation (Join) int xsgs_user_join_phase3(XSGS_PUBLIC_KEY* gpk, XSGS_USER_CERT* ucert, XSGS_JOIN_PHASE1* jpd1, XSGS_JOIN_PHASE2* jpd2, XSGS_JOIN_PHASE3* jpd3, char* usk_pem_filename) { int ret; pairing_ptr pairing = gpk->pairing; field_ptr Fp = pairing->Zr; element_t B, D, R1, R2, h, g1, gt; // B = e(G1 * C, G2) / e(A, W) = e(G1 * C, G2) * e(A^-1, W) element_init_GT(B, pairing); element_init_G1(g1, pairing); element_init_GT(gt, pairing); element_mul(g1, gpk->G1, jpd1->C); element_pairing(B, g1, gpk->G2); element_invert(g1, jpd2->A); element_pairing(gt, g1, gpk->W); element_mul(B, B, gt); // D = e(A, G2) element_init_GT(D, pairing); element_pairing(D, jpd2->A, gpk->G2); // verifies A e Group1, Checks V element_init(h, Fp); element_from_hash(h, jpd1->U.hash, JOIN_HASH_BITS / 8); element_neg(h, h); // R1 = B^s * T1^h element_init_GT(R1, pairing); element_pow_naf2(R1, B, jpd2->V.s, jpd2->V.T1, h); // R2 = D^s * T2^h element_init_GT(R2, pairing); element_pow_naf2(R2, D, jpd2->V.s, jpd2->V.T2, h); // clear tmp element_clear(g1); element_clear(gt); element_clear(h); // h = H(B, D, T1, T2, R1, R2) DWORD data_len = element_length_in_bytes(B) + element_length_in_bytes(D) + element_length_in_bytes(jpd2->V.T1) + element_length_in_bytes(jpd2->V.T2) + element_length_in_bytes(R1) + element_length_in_bytes(R2); BYTE* data_buf = (BYTE*) malloc(data_len); data_buf += element_to_bytes(data_buf, B); data_buf += element_to_bytes(data_buf, D); data_buf += element_to_bytes(data_buf, jpd2->V.T1); data_buf += element_to_bytes(data_buf, jpd2->V.T2); data_buf += element_to_bytes(data_buf, R1); data_buf += element_to_bytes(data_buf, R2); data_buf -= data_len; BYTE* hash = (BYTE*) malloc(JOIN_HASH_BITS / 8); xsgs_hash(data_buf, data_len * 8, hash, JOIN_HASH_BITS); free(data_buf); element_clear(B); element_clear(D); element_clear(R1); element_clear(R2); // compare hashes ret = memcmp(jpd2->V.hash, hash, JOIN_HASH_BITS / 8); free(hash); if (!ret) { element_init_G1(ucert->A, pairing); element_set(ucert->A, jpd2->A); // S = sign(A) DWORD msg_len = element_length_in_bytes(ucert->A); BYTE* msg = (BYTE*) malloc(msg_len); element_to_bytes(msg, ucert->A); ret = xsgs_rsa_sign(usk_pem_filename, msg, msg_len, &(jpd3->S.sig), &(jpd3->S.len)); free(msg); } // return ( S = (rsa signature length, rsa signature) ) return ret; }
void pbc_param_init_f_gen(pbc_param_t p, int bits) { f_init(p); f_param_ptr fp = p->data; //36 is a 6-bit number int xbit = (bits - 6) / 4; //TODO: use binary search to find smallest appropriate x mpz_t x, t; mpz_ptr q = fp->q; mpz_ptr r = fp->r; mpz_ptr b = fp->b; field_t Fq, Fq2, Fq2x; element_t e1; element_t f; field_t c; element_t P; mpz_init(x); mpz_init(t); mpz_setbit(x, xbit); for (;;) { mpz_mul(t, x, x); mpz_mul_ui(t, t, 6); mpz_add_ui(t, t, 1); tryminusx(q, x); mpz_sub(r, q, t); mpz_add_ui(r, r, 1); if (mpz_probab_prime_p(q, 10) && mpz_probab_prime_p(r, 10)) break; tryplusx(q, x); mpz_sub(r, q, t); mpz_add_ui(r, r, 1); if (mpz_probab_prime_p(q, 10) && mpz_probab_prime_p(r, 10)) break; mpz_add_ui(x, x, 1); } field_init_fp(Fq, q); element_init(e1, Fq); for (;;) { element_random(e1); field_init_curve_b(c, e1, r, NULL); element_init(P, c); element_random(P); element_mul_mpz(P, P, r); if (element_is0(P)) break; element_clear(P); field_clear(c); } element_to_mpz(b, e1); element_clear(e1); field_init_quadratic(Fq2, Fq); element_to_mpz(fp->beta, field_get_nqr(Fq)); field_init_poly(Fq2x, Fq2); element_init(f, Fq2x); // Find an irreducible polynomial of the form f = x^6 + alpha. // Call poly_set_coeff1() first so we can use element_item() for the other // coefficients. poly_set_coeff1(f, 6); for (;;) { element_random(element_item(f, 0)); if (poly_is_irred(f)) break; } //extend F_q^2 using f = x^6 + alpha //see if sextic twist contains a subgroup of order r //if not, it's the wrong twist: replace alpha with alpha^5 { field_t ctest; element_t Ptest; mpz_t z0, z1; mpz_init(z0); mpz_init(z1); element_init(e1, Fq2); element_set_mpz(e1, fp->b); element_mul(e1, e1, element_item(f, 0)); element_neg(e1, e1); field_init_curve_b(ctest, e1, r, NULL); element_init(Ptest, ctest); element_random(Ptest); //I'm not sure what the #E'(F_q^2) is, but //it definitely divides n_12 = #E(F_q^12). It contains a //subgroup of order r if and only if //(n_12 / r^2)P != O for some (in fact most) P in E'(F_q^6) mpz_pow_ui(z0, q, 12); mpz_add_ui(z0, z0, 1); pbc_mpz_trace_n(z1, q, t, 12); mpz_sub(z1, z0, z1); mpz_mul(z0, r, r); mpz_divexact(z1, z1, z0); element_mul_mpz(Ptest, Ptest, z1); if (element_is0(Ptest)) { mpz_set_ui(z0, 5); element_pow_mpz(element_item(f, 0), element_item(f, 0), z0); } element_clear(e1); element_clear(Ptest); field_clear(ctest); mpz_clear(z0); mpz_clear(z1); } element_to_mpz(fp->alpha0, element_x(element_item(f, 0))); element_to_mpz(fp->alpha1, element_y(element_item(f, 0))); element_clear(f); field_clear(Fq2x); field_clear(Fq2); field_clear(Fq); mpz_clear(t); mpz_clear(x); }
static void fq_neg(element_ptr n, element_ptr a) { eptr p = a->data; eptr r = n->data; element_neg(r->x, p->x); element_neg(r->y, p->y); }
/* $c <- (-a)$ */ static void gf32m_neg(element_t c, element_t a) { element_ptr a0 = GF32M(a)->_0, a1 = GF32M(a)->_1, c0 = GF32M(c)->_0, c1 = GF32M(c)->_1; element_neg(c0, a0); element_neg(c1, a1); }
static val_ptr run_neg(val_ptr v[]) { element_neg(v[0]->elem, v[0]->elem); return v[0]; }
static void e_miller_proj(element_t res, element_t P, element_ptr QR, element_ptr R, e_pairing_data_ptr p) { //collate divisions int n; element_t v, vd; element_t v1, vd1; element_t Z, Z1; element_t a, b, c; const element_ptr cca = curve_a_coeff(P); element_t e0, e1; const element_ptr e2 = a, e3 = b; element_t z, z2; int i; element_ptr Zx, Zy; const element_ptr Px = curve_x_coord(P); const element_ptr numx = curve_x_coord(QR); const element_ptr numy = curve_y_coord(QR); const element_ptr denomx = curve_x_coord(R); const element_ptr denomy = curve_y_coord(R); //convert Z from weighted projective (Jacobian) to affine //i.e. (X, Y, Z) --> (X/Z^2, Y/Z^3) //also sets z to 1 #define to_affine() { \ element_invert(z, z); \ element_square(e0, z); \ element_mul(Zx, Zx, e0); \ element_mul(e0, e0, z); \ element_mul(Zy, Zy, e0); \ element_set1(z); \ element_set1(z2); \ } #define proj_double() { \ const element_ptr x = Zx; \ const element_ptr y = Zy; \ /* e0 = 3x^2 + (cc->a) z^4 */ \ element_square(e0, x); \ /* element_mul_si(e0, e0, 3); */ \ element_double(e1, e0); \ element_add(e0, e0, e1); \ element_square(e1, z2); \ element_mul(e1, e1, cca); \ element_add(e0, e0, e1); \ \ /* z_out = 2 y z */ \ element_mul(z, y, z); \ /* element_mul_si(z, z, 2); */ \ element_double(z, z); \ element_square(z2, z); \ \ /* e1 = 4 x y^2 */ \ element_square(e2, y); \ element_mul(e1, x, e2); \ /* element_mul_si(e1, e1, 4); */ \ element_double(e1, e1); \ element_double(e1, e1); \ \ /* x_out = e0^2 - 2 e1 */ \ /* element_mul_si(e3, e1, 2); */ \ element_double(e3, e1); \ element_square(x, e0); \ element_sub(x, x, e3); \ \ /* e2 = 8y^4 */ \ element_square(e2, e2); \ /* element_mul_si(e2, e2, 8); */ \ element_double(e2, e2); \ element_double(e2, e2); \ element_double(e2, e2); \ \ /* y_out = e0(e1 - x_out) - e2 */ \ element_sub(e1, e1, x); \ element_mul(e0, e0, e1); \ element_sub(y, e0, e2); \ } #define do_tangent(e, edenom) { \ /* a = -(3x^2 + cca z^4) */ \ /* b = 2 y z^3 */ \ /* c = -(2 y^2 + x a) */ \ /* a = z^2 a */ \ element_square(a, z2); \ element_mul(a, a, cca); \ element_square(b, Zx); \ /* element_mul_si(b, b, 3); */ \ element_double(e0, b); \ element_add(b, b, e0); \ element_add(a, a, b); \ element_neg(a, a); \ \ /* element_mul_si(e0, Zy, 2); */ \ element_double(e0, Zy); \ element_mul(b, e0, z2); \ element_mul(b, b, z); \ \ element_mul(c, Zx, a); \ element_mul(a, a, z2); \ element_mul(e0, e0, Zy); \ element_add(c, c, e0); \ element_neg(c, c); \ \ element_mul(e0, a, numx); \ element_mul(e1, b, numy); \ element_add(e0, e0, e1); \ element_add(e0, e0, c); \ element_mul(e, e, e0); \ \ element_mul(e0, a, denomx); \ element_mul(e1, b, denomy); \ element_add(e0, e0, e1); \ element_add(e0, e0, c); \ element_mul(edenom, edenom, e0); \ } #define do_vertical(e, edenom, Ax) { \ element_mul(e0, numx, z2); \ element_sub(e0, e0, Ax); \ element_mul(e, e, e0); \ \ element_mul(e0, denomx, z2); \ element_sub(e0, e0, Ax); \ element_mul(edenom, edenom, e0); \ } #define do_line(e, edenom, A, B) { \ element_ptr Ax = curve_x_coord(A); \ element_ptr Ay = curve_y_coord(A); \ element_ptr Bx = curve_x_coord(B); \ element_ptr By = curve_y_coord(B); \ \ element_sub(b, Bx, Ax); \ element_sub(a, Ay, By); \ element_mul(c, Ax, By); \ element_mul(e0, Ay, Bx); \ element_sub(c, c, e0); \ \ element_mul(e0, a, numx); \ element_mul(e1, b, numy); \ element_add(e0, e0, e1); \ element_add(e0, e0, c); \ element_mul(e, e, e0); \ \ element_mul(e0, a, denomx); \ element_mul(e1, b, denomy); \ element_add(e0, e0, e1); \ element_add(e0, e0, c); \ element_mul(edenom, edenom, e0); \ } element_init(a, res->field); element_init(b, res->field); element_init(c, res->field); element_init(e0, res->field); element_init(e1, res->field); element_init(z, res->field); element_init(z2, res->field); element_set1(z); element_set1(z2); element_init(v, res->field); element_init(vd, res->field); element_init(v1, res->field); element_init(vd1, res->field); element_init(Z, P->field); element_init(Z1, P->field); element_set(Z, P); Zx = curve_x_coord(Z); Zy = curve_y_coord(Z); element_set1(v); element_set1(vd); element_set1(v1); element_set1(vd1); n = p->exp1; for (i=0; i<n; i++) { element_square(v, v); element_square(vd, vd); do_tangent(v, vd); proj_double(); do_vertical(vd, v, Zx); } to_affine(); if (p->sign1 < 0) { element_set(v1, vd); element_set(vd1, v); do_vertical(vd1, v1, Zx); element_neg(Z1, Z); } else { element_set(v1, v); element_set(vd1, vd); element_set(Z1, Z); } n = p->exp2; for (; i<n; i++) { element_square(v, v); element_square(vd, vd); do_tangent(v, vd); proj_double(); do_vertical(vd, v, Zx); } to_affine(); element_mul(v, v, v1); element_mul(vd, vd, vd1); do_line(v, vd, Z, Z1); element_add(Z, Z, Z1); do_vertical(vd, v, Zx); if (p->sign0 > 0) { do_vertical(v, vd, Px); } element_invert(vd, vd); element_mul(res, v, vd); element_clear(v); element_clear(vd); element_clear(v1); element_clear(vd1); element_clear(z); element_clear(z2); element_clear(Z); element_clear(Z1); element_clear(a); element_clear(b); element_clear(c); element_clear(e0); element_clear(e1); #undef to_affine #undef proj_double #undef do_tangent #undef do_vertical #undef do_line }
// in1, in2 are from E(F_q), out from F_q^2. // Pairing via elliptic nets (see Stange). static void e_pairing_ellnet(element_ptr out, element_ptr in1, element_ptr in2, pairing_t pairing) { const element_ptr a = curve_a_coeff(in1); const element_ptr b = curve_b_coeff(in1); element_ptr x = curve_x_coord(in1); element_ptr y = curve_y_coord(in1); element_ptr x2 = curve_x_coord(in2); element_ptr y2 = curve_y_coord(in2); //notation: cmi means c_{k-i}, ci means c_{k+i} element_t cm3, cm2, cm1, c0, c1, c2, c3, c4; element_t dm1, d0, d1; element_t A, B, C; element_init_same_as(cm3, x); element_init_same_as(cm2, x); element_init_same_as(cm1, x); element_init_same_as(c0, x); element_init_same_as(c1, x); element_init_same_as(c2, x); element_init_same_as(c3, x); element_init_same_as(c4, x); element_init_same_as(C, x); element_init_same_as(dm1, out); element_init_same_as(d0, out); element_init_same_as(d1, out); element_init_same_as(A, x); element_init_same_as(B, out); // c1 = 2y // cm3 = -2y element_double(c1, y); element_neg(cm3, c1); //use c0, cm1, cm2, C, c4 as temp variables for now //compute c3, c2 element_square(cm2, x); element_square(C, cm2); element_mul(cm1, b, x); element_double(cm1, cm1); element_square(c4, a); element_mul(c2, cm1, cm2); element_double(c2, c2); element_mul(c0, a, C); element_add(c2, c2, c0); element_mul(c0, c4, cm2); element_sub(c2, c2, c0); element_double(c0, c2); element_double(c0, c0); element_add(c2, c2, c0); element_mul(c0, cm1, a); element_square(c3, b); element_double(c3, c3); element_double(c3, c3); element_add(c0, c0, c3); element_double(c0, c0); element_mul(c3, a, c4); element_add(c0, c0, c3); element_sub(c2, c2, c0); element_mul(c0, cm2, C); element_add(c3, c0, c2); element_mul(c3, c3, c1); element_double(c3, c3); element_mul(c0, a, cm2); element_add(c0, c0, cm1); element_double(c0, c0); element_add(c0, c0, C); element_double(c2, c0); element_add(c0, c0, c2); element_sub(c2, c0, c4); // c0 = 1 // cm2 = -1 element_set1(c0); element_neg(cm2, c0); // c4 = c_5 = c_2^3 c_4 - c_3^3 = c1^3 c3 - c2^3 element_square(C, c1); element_mul(c4, C, c1); element_mul(c4, c4, c3); element_square(C, c2); element_mul(C, C, c2); element_sub(c4, c4, C); //compute A, B, d1 (which is d_2 since k = 1) element_sub(A, x, x2); element_double(C, x); element_add(C, C, x2); element_square(cm1, A); element_mul(cm1, C, cm1); element_add(d1, y, y2); element_square(d1, d1); element_sub(B, cm1, d1); element_invert(B, B); element_invert(A, A); element_sub(d1, y, y2); element_mul(d1, d1, A); element_square(d1, d1); element_sub(d1, C, d1); // cm1 = 0 // C = (2y)^-1 element_set0(cm1); element_invert(C, c1); element_set1(dm1); element_set1(d0); element_t sm2, sm1; element_t s0, s1, s2, s3; element_t tm2, tm1; element_t t0, t1, t2, t3; element_t e0, e1; element_t u, v; element_init_same_as(sm2, x); element_init_same_as(sm1, x); element_init_same_as(s0, x); element_init_same_as(s1, x); element_init_same_as(s2, x); element_init_same_as(s3, x); element_init_same_as(tm2, x); element_init_same_as(tm1, x); element_init_same_as(t0, x); element_init_same_as(t1, x); element_init_same_as(t2, x); element_init_same_as(t3, x); element_init_same_as(e0, x); element_init_same_as(e1, x); element_init_same_as(u, d0); element_init_same_as(v, d0); int m = mpz_sizeinbase(pairing->r, 2) - 2; for (;;) { element_square(sm2, cm2); element_square(sm1, cm1); element_square(s0, c0); element_square(s1, c1); element_square(s2, c2); element_square(s3, c3); element_mul(tm2, cm3, cm1); element_mul(tm1, cm2, c0); element_mul(t0, cm1, c1); element_mul(t1, c0, c2); element_mul(t2, c1, c3); element_mul(t3, c2, c4); element_square(u, d0); element_mul(v, dm1, d1); if (mpz_tstbit(pairing->r, m)) { //double-and-add element_mul(e0, t0, sm2); element_mul(e1, tm2, s0); element_sub(cm3, e0, e1); element_mul(cm3, cm3, C); element_mul(e0, t0, sm1); element_mul(e1, tm1, s0); element_sub(cm2, e0, e1); element_mul(e0, t1, sm1); element_mul(e1, tm1, s1); element_sub(cm1, e0, e1); element_mul(cm1, cm1, C); element_mul(e0, t1, s0); element_mul(e1, t0, s1); element_sub(c0, e0, e1); element_mul(e0, t2, s0); element_mul(e1, t0, s2); element_sub(c1, e0, e1); element_mul(c1, c1, C); element_mul(e0, t2, s1); element_mul(e1, t1, s2); element_sub(c2, e0, e1); element_mul(e0, t3, s1); element_mul(e1, t1, s3); element_sub(c3, e0, e1); element_mul(c3, c3, C); element_mul(e0, t3, s2); element_mul(e1, t2, s3); element_sub(c4, e0, e1); element_mul(out, u, t0); element_mul(dm1, v, s0); element_sub(dm1, dm1, out); element_mul(out, u, t1); element_mul(d0, v, s1); element_sub(d0, d0, out); element_mul(d0, d0, A); element_mul(out, u, t2); element_mul(d1, v, s2); element_sub(d1, d1, out); element_mul(d1, d1, B); } else { //double element_mul(e0, tm1, sm2); element_mul(e1, tm2, sm1); element_sub(cm3, e0, e1); element_mul(e0, t0, sm2); element_mul(e1, tm2, s0); element_sub(cm2, e0, e1); element_mul(cm2, cm2, C); element_mul(e0, t0, sm1); element_mul(e1, tm1, s0); element_sub(cm1, e0, e1); element_mul(e0, t1, sm1); element_mul(e1, tm1, s1); element_sub(c0, e0, e1); element_mul(c0, c0, C); element_mul(e0, t1, s0); element_mul(e1, t0, s1); element_sub(c1, e0, e1); element_mul(e0, t2, s0); element_mul(e1, t0, s2); element_sub(c2, e0, e1); element_mul(c2, c2, C); element_mul(e0, t2, s1); element_mul(e1, t1, s2); element_sub(c3, e0, e1); element_mul(e0, t3, s1); element_mul(e1, t1, s3); element_sub(c4, e0, e1); element_mul(c4, c4, C); element_mul(out, u, tm1); element_mul(dm1, v, sm1); element_sub(dm1, dm1, out); element_mul(out, u, t0); element_mul(d0, v, s0); element_sub(d0, d0, out); element_mul(out, u, t1); element_mul(d1, v, s1); element_sub(d1, d1, out); element_mul(d1, d1, A); } if (!m) break; m--; } element_invert(c1, c1); element_mul(d1, d1, c1); element_pow_mpz(out, d1, pairing->phikonr); element_clear(dm1); element_clear(d0); element_clear(d1); element_clear(cm3); element_clear(cm2); element_clear(cm1); element_clear(c0); element_clear(c1); element_clear(c2); element_clear(c3); element_clear(c4); element_clear(sm2); element_clear(sm1); element_clear(s0); element_clear(s1); element_clear(s2); element_clear(s3); element_clear(tm2); element_clear(tm1); element_clear(t0); element_clear(t1); element_clear(t2); element_clear(t3); element_clear(e0); element_clear(e1); element_clear(A); element_clear(B); element_clear(C); element_clear(u); element_clear(v); }
static void e_miller_affine(element_t res, element_t P, element_ptr QR, element_ptr R, e_pairing_data_ptr p) { //collate divisions int n; element_t v, vd; element_t v1, vd1; element_t Z, Z1; element_t a, b, c; element_t e0, e1; const element_ptr Px = curve_x_coord(P); const element_ptr cca = curve_a_coeff(P); element_ptr Zx, Zy; int i; const element_ptr numx = curve_x_coord(QR); const element_ptr numy = curve_y_coord(QR); const element_ptr denomx = curve_x_coord(R); const element_ptr denomy = curve_y_coord(R); #define do_vertical(e, edenom, Ax) { \ element_sub(e0, numx, Ax); \ element_mul(e, e, e0); \ \ element_sub(e0, denomx, Ax); \ element_mul(edenom, edenom, e0); \ } #define do_tangent(e, edenom) { \ /* a = -slope_tangent(A.x, A.y); */ \ /* b = 1; */ \ /* c = -(A.y + a * A.x); */ \ /* but we multiply by 2*A.y to avoid division */ \ \ /* a = -Ax * (Ax + Ax + Ax + twicea_2) - a_4; */ \ /* Common curves: a2 = 0 (and cc->a is a_4), so */ \ /* a = -(3 Ax^2 + cc->a) */ \ /* b = 2 * Ay */ \ /* c = -(2 Ay^2 + a Ax); */ \ \ element_square(a, Zx); \ element_mul_si(a, a, 3); \ element_add(a, a, cca); \ element_neg(a, a); \ \ element_add(b, Zy, Zy); \ \ element_mul(e0, b, Zy); \ element_mul(c, a, Zx); \ element_add(c, c, e0); \ element_neg(c, c); \ \ element_mul(e0, a, numx); \ element_mul(e1, b, numy); \ element_add(e0, e0, e1); \ element_add(e0, e0, c); \ element_mul(e, e, e0); \ \ element_mul(e0, a, denomx); \ element_mul(e1, b, denomy); \ element_add(e0, e0, e1); \ element_add(e0, e0, c); \ element_mul(edenom, edenom, e0); \ } #define do_line(e, edenom, A, B) { \ element_ptr Ax = curve_x_coord(A); \ element_ptr Ay = curve_y_coord(A); \ element_ptr Bx = curve_x_coord(B); \ element_ptr By = curve_y_coord(B); \ \ element_sub(b, Bx, Ax); \ element_sub(a, Ay, By); \ element_mul(c, Ax, By); \ element_mul(e0, Ay, Bx); \ element_sub(c, c, e0); \ \ element_mul(e0, a, numx); \ element_mul(e1, b, numy); \ element_add(e0, e0, e1); \ element_add(e0, e0, c); \ element_mul(e, e, e0); \ \ element_mul(e0, a, denomx); \ element_mul(e1, b, denomy); \ element_add(e0, e0, e1); \ element_add(e0, e0, c); \ element_mul(edenom, edenom, e0); \ } element_init(a, res->field); element_init(b, res->field); element_init(c, res->field); element_init(e0, res->field); element_init(e1, res->field); element_init(v, res->field); element_init(vd, res->field); element_init(v1, res->field); element_init(vd1, res->field); element_init(Z, P->field); element_init(Z1, P->field); element_set(Z, P); Zx = curve_x_coord(Z); Zy = curve_y_coord(Z); element_set1(v); element_set1(vd); element_set1(v1); element_set1(vd1); n = p->exp1; for (i=0; i<n; i++) { element_square(v, v); element_square(vd, vd); do_tangent(v, vd); element_double(Z, Z); do_vertical(vd, v, Zx); } if (p->sign1 < 0) { element_set(v1, vd); element_set(vd1, v); do_vertical(vd1, v1, Zx); element_neg(Z1, Z); } else { element_set(v1, v); element_set(vd1, vd); element_set(Z1, Z); } n = p->exp2; for (; i<n; i++) { element_square(v, v); element_square(vd, vd); do_tangent(v, vd); element_double(Z, Z); do_vertical(vd, v, Zx); } element_mul(v, v, v1); element_mul(vd, vd, vd1); do_line(v, vd, Z, Z1); element_add(Z, Z, Z1); do_vertical(vd, v, Zx); if (p->sign0 > 0) { do_vertical(v, vd, Px); } element_invert(vd, vd); element_mul(res, v, vd); element_clear(v); element_clear(vd); element_clear(v1); element_clear(vd1); element_clear(Z); element_clear(Z1); element_clear(a); element_clear(b); element_clear(c); element_clear(e0); element_clear(e1); #undef do_vertical #undef do_tangent #undef do_line }
static void test_gf3m_neg(void) { element_random(a); element_neg(b, a); element_add(b, a, b); EXPECT(!element_cmp(b, e0)); }
void shipseystange(element_t z, element_t P, element_t Q) { mpz_t q1r; mpz_init(q1r); mpz_set_ui(q1r, 696); element_ptr x = curve_x_coord(P); element_ptr y = curve_y_coord(P); element_ptr x2 = curve_x_coord(Q); element_ptr y2 = curve_y_coord(Q); element_t v0m1, v0m2, v0m3; element_t v00, v01, v02, v03, v04; element_t v1m1, v10, v11; element_t t0, t1, t2; element_t W20inv; element_t Wm11inv; element_t W2m1inv; element_t sm2, sm1, s0, s1, s2, s3; element_t pm2, pm1, p0, p1, p2, p3; element_init_same_as(sm2, z); element_init_same_as(sm1, z); element_init_same_as(s0, z); element_init_same_as(s1, z); element_init_same_as(s2, z); element_init_same_as(s3, z); element_init_same_as(pm2, z); element_init_same_as(pm1, z); element_init_same_as(p0, z); element_init_same_as(p1, z); element_init_same_as(p2, z); element_init_same_as(p3, z); element_init_same_as(v0m3, z); element_init_same_as(v0m2, z); element_init_same_as(v0m1, z); element_init_same_as(v00, z); element_init_same_as(v01, z); element_init_same_as(v02, z); element_init_same_as(v03, z); element_init_same_as(v04, z); element_init_same_as(v1m1, z); element_init_same_as(v10, z); element_init_same_as(v11, z); element_init_same_as(W20inv, z); element_init_same_as(Wm11inv, z); element_init_same_as(W2m1inv, z); element_init_same_as(t0, z); element_init_same_as(t1, z); element_init_same_as(t2, z); element_set0(v0m1); element_set1(v00); element_neg(v0m2, v00); element_double(v01, y); element_neg(v0m3, v01); element_invert(W20inv, v01); element_sub(Wm11inv, x, x2); element_square(t1, Wm11inv); element_invert(Wm11inv, Wm11inv); element_double(t0, x); element_add(t0, t0, x2); element_mul(t1, t0, t1); element_add(t0, y, y2); element_square(t0, t0); element_sub(t0, t0, t1); element_invert(W2m1inv, t0); /* Let P=(x,y) since A=1, B=0 we have: * W(3,0) = 3x^4 + 6x^2 - 1 * W(4,0) = 4y(x^6 + 5x^4 - 5x^2 - 1) */ //t0 = x^2 element_square(t0, x); //t1 = x^4 element_square(t1, t0); //t2 = x^4 + 2 x^2 element_double(t2, t0); element_add(t2, t2, t1); //v02 = W(3,0) element_double(v02, t2); element_add(v02, v02, t2); element_add(v02, v02, v0m2); //t2 = x^4 - x^2 element_sub(t2, t1, t0); //v03 = 5(x^4 - x^2) element_double(v03, t2); element_double(v03, v03); element_add(v03, v03, t2); //t2 = x^6 element_mul(t2, t0, t1); //v03 = W(4,0) element_add(v03, v03, t2); element_add(v03, v03, v0m2); element_double(v03, v03); element_double(v03, v03); element_mul(v03, v03, y); //v04 = W(5,0) = W(2,0)^3 W(4,0) - W(3,0)^3 element_square(t0, v01); element_mul(t0, t0, v01); element_mul(v04, t0, v03); element_square(t0, v02); element_mul(t0, t0, v02); element_sub(v04, v04, t0); element_set1(v1m1); element_set1(v10); element_printf("x y: %B %B\n", x, y); element_printf("x2 y2: %B %B\n", x2, y2); element_sub(t0, x2, x); element_sub(t1, y2, y); element_div(t0, t1, t0); element_square(t0, t0); element_double(v11, x); element_add(v11, v11, x2); element_sub(v11, v11, t0); element_printf("VEC1: %B %B %B\n", v1m1, v10, v11); element_printf("VEC0: %B %B %B %B %B %B %B %B\n", v0m3, v0m2, v0m1, v00, v01, v02, v03, v04); //Double element_square(sm2, v0m2); element_square(sm1, v0m1); element_square(s0, v00); element_square(s1, v01); element_square(s2, v02); element_square(s3, v03); element_mul(pm2, v0m3, v0m1); element_mul(pm1, v0m2, v00); element_mul(p0, v0m1, v01); element_mul(p1, v00, v02); element_mul(p2, v01, v03); element_mul(p3, v02, v04); element_mul(t0, pm1, sm2); element_mul(t1, pm2, sm1); element_sub(v0m3, t0, t1); element_mul(t1, pm2, s0); element_mul(t0, p0, sm2); element_sub(v0m2, t0, t1); element_mul(v0m2, v0m2, W20inv); element_mul(t0, p0, sm1); element_mul(t1, pm1, s0); element_sub(v0m1, t0, t1); element_mul(t1, pm1, s1); element_mul(t0, p1, sm1); element_sub(v00, t0, t1); element_mul(v00, v00, W20inv); element_mul(t0, p1, s0); element_mul(t1, p0, s1); element_sub(v01, t0, t1); element_mul(t1, p0, s2); element_mul(t0, p2, s0); element_sub(v02, t0, t1); element_mul(v02, v02, W20inv); element_mul(t0, p2, s1); element_mul(t1, p1, s2); element_sub(v03, t0, t1); element_mul(t1, p1, s3); element_mul(t0, p3, s1); element_sub(v04, t0, t1); element_mul(v04, v04, W20inv); element_square(t0, v10); element_mul(t1, v1m1, v11); element_mul(t2, pm1, t0); element_mul(v1m1, t1, sm1); element_sub(v1m1, v1m1, t2); element_mul(t2, p0, t0); element_mul(v10, t1, s0); element_sub(v10, v10, t2); element_mul(t2, p1, t0); element_mul(v11, t1, s1); element_sub(v11, v11, t2); element_mul(v11, v11, Wm11inv); element_printf("VEC1: %B %B %B\n", v1m1, v10, v11); element_printf("VEC0: %B %B %B %B %B %B %B %B\n", v0m3, v0m2, v0m1, v00, v01, v02, v03, v04); //DoubleAdd element_square(sm2, v0m2); element_square(sm1, v0m1); element_square(s0, v00); element_square(s1, v01); element_square(s2, v02); element_square(s3, v03); element_mul(pm2, v0m3, v0m1); element_mul(pm1, v0m2, v00); element_mul(p0, v0m1, v01); element_mul(p1, v00, v02); element_mul(p2, v01, v03); element_mul(p3, v02, v04); element_mul(t1, pm2, s0); element_mul(t0, p0, sm2); element_sub(v0m3, t0, t1); element_mul(v0m3, v0m3, W20inv); element_mul(t0, p0, sm1); element_mul(t1, pm1, s0); element_sub(v0m2, t0, t1); element_mul(t1, pm1, s1); element_mul(t0, p1, sm1); element_sub(v0m1, t0, t1); element_mul(v0m1, v0m1, W20inv); element_mul(t0, p1, s0); element_mul(t1, p0, s1); element_sub(v00, t0, t1); element_mul(t1, p0, s2); element_mul(t0, p2, s0); element_sub(v01, t0, t1); element_mul(v01, v01, W20inv); element_mul(t0, p2, s1); element_mul(t1, p1, s2); element_sub(v02, t0, t1); element_mul(t1, p1, s3); element_mul(t0, p3, s1); element_sub(v03, t0, t1); element_mul(v03, v03, W20inv); element_mul(t0, p3, s2); element_mul(t1, p2, s3); element_sub(v04, t0, t1); element_square(t0, v10); element_mul(t1, v1m1, v11); element_mul(t2, p0, t0); element_mul(v1m1, t1, s0); element_sub(v1m1, v1m1, t2); element_mul(t2, p1, t0); element_mul(v10, t1, s1); element_sub(v10, v10, t2); element_mul(v10, v10, Wm11inv); element_mul(t2, t1, s2); element_mul(v11, p2, t0); element_sub(v11, v11, t2); element_mul(v11, v11, W2m1inv); element_printf("VEC1: %B %B %B\n", v1m1, v10, v11); element_printf("VEC0: %B %B %B %B %B %B %B %B\n", v0m3, v0m2, v0m1, v00, v01, v02, v03, v04); element_div(z, v11, v01); element_printf("prepow: %B\n", z); element_pow_mpz(z, z, q1r); mpz_clear(q1r); }