Пример #1
0
void tate(element_t z, element_t P, element_t Q)
{
    mpz_t q1r;

    mpz_init(q1r);
    mpz_set_ui(q1r, 696);

    /*
    millertate(z, P, Q);
    element_printf("prepow: z = %B\n", z);
    element_pow_mpz(z, z, q1r);
    */
    {
	element_t R, QR;
	element_t z0;

	element_init_same_as(R, P);
	element_init_same_as(QR, P);
	element_init_same_as(z0, z);

	element_random(R);
	element_add(QR, Q, R);

	millertate(z, P, QR);
	millertate(z0, P, R);
	element_div(z, z, z0);
	element_pow_mpz(z, z, q1r);
	element_clear(R);
	element_clear(QR);
    }

    mpz_clear(q1r);
}
Пример #2
0
// The final powering, where we standardize the coset representative.
static void cc_tatepower(element_ptr out, element_ptr in, pairing_t pairing) {
  pptr p = pairing->data;
  #define qpower(sign) {                         \
    polymod_const_mul(e2, inre[1], p->xpowq);    \
    element_set(e0re, e2);                       \
    polymod_const_mul(e2, inre[2], p->xpowq2);   \
    element_add(e0re, e0re, e2);                 \
    element_add(e0re0, e0re0, inre[0]);          \
                                                 \
    if (sign > 0) {                              \
      polymod_const_mul(e2, inim[1], p->xpowq);  \
      element_set(e0im, e2);                     \
      polymod_const_mul(e2, inim[2], p->xpowq2); \
      element_add(e0im, e0im, e2);               \
      element_add(e0im0, e0im0, inim[0]);        \
    } else {                                     \
      polymod_const_mul(e2, inim[1], p->xpowq);  \
      element_neg(e0im, e2);                     \
      polymod_const_mul(e2, inim[2], p->xpowq2); \
      element_sub(e0im, e0im, e2);               \
      element_sub(e0im0, e0im0, inim[0]);        \
    }                                            \
  }
  if (p->k == 6) {
    // See thesis, section 6.9, "The Final Powering", which gives a formula
    // for the first step of the final powering when Fq6 has been implemented
    // as a quadratic extension on top of a cubic extension.
    element_t e0, e2, e3;
    element_init(e0, p->Fqk);
    element_init(e2, p->Fqd);
    element_init(e3, p->Fqk);
    element_ptr e0re = element_x(e0);
    element_ptr e0im = element_y(e0);
    element_ptr e0re0 = ((element_t *) e0re->data)[0];
    element_ptr e0im0 = ((element_t *) e0im->data)[0];
    element_t *inre = element_x(in)->data;
    element_t *inim = element_y(in)->data;
    // Expressions in the formula are similar, hence the following function.
    qpower(1);
    element_set(e3, e0);
    element_set(e0re, element_x(in));
    element_neg(e0im, element_y(in));
    element_mul(e3, e3, e0);
    qpower(-1);
    element_mul(e0, e0, in);
    element_invert(e0, e0);
    element_mul(in, e3, e0);

    element_set(e0, in);
    // We use Lucas sequences to complete the final powering.
    lucas_even(out, e0, pairing->phikonr);

    element_clear(e0);
    element_clear(e2);
    element_clear(e3);
  } else {
    element_pow_mpz(out, in, p->tateexp);
  }
  #undef qpower
}
Пример #3
0
static void f_tateexp(element_t out) {
  element_t x, y, epow;
  f_pairing_data_ptr p = out->field->pairing->data;
  element_init(x, p->Fq12);
  element_init(y, p->Fq12);
  element_init(epow, p->Fq2);

  #define qpower(e1, e) {                                         \
    element_set(element_item(e1, 0), element_item(out, 0));       \
    element_mul(element_item(e1, 1), element_item(out, 1), e);    \
    element_square(epow, e);                                      \
    element_mul(element_item(e1, 2), element_item(out, 2), epow); \
    element_mul(epow, epow, e);                                   \
    element_mul(element_item(e1, 3), element_item(out, 3), epow); \
    element_mul(epow, epow, e);                                   \
    element_mul(element_item(e1, 4), element_item(out, 4), epow); \
    element_mul(epow, epow, e);                                   \
    element_mul(element_item(e1, 5), element_item(out, 5), epow); \
  }

  qpower(y, p->xpowq8);
  qpower(x, p->xpowq6);
  element_mul(y, y, x);
  qpower(x, p->xpowq2);
  element_mul(x, x, out);
  element_invert(x, x);
  element_mul(out, y, x);

  element_clear(epow);
  element_clear(x);
  element_clear(y);
  element_pow_mpz(out, out, p->tateexp);
  #undef qpower
}
Пример #4
0
static void point_random(element_t a) {
    point_ptr p = DATA(a);
    element_ptr x = p->x, y = p->y;
    field_ptr f = x->field;
    p->isinf = 0;
    element_t t, t2, e1;
    element_init(t, f);
    element_init(e1, f);
    element_set1(e1);
    element_init(t2, f);
    do {
        element_random(x);
        if (element_is0(x))
            continue;
        element_cubic(t, x); // t == x^3
        element_sub(t, t, x); // t == x^3 - x
        element_add(t, t, e1); // t == x^3 - x + 1
        element_sqrt(y, t);  // y == sqrt(x^3 - x + 1)
        element_mul(t2, y, y); // t2 == x^3 - x + 1
    } while (element_cmp(t2, t)); // t2 != t

    // make sure order of $a$ is order of $G_1$
    pairing_ptr pairing = FIELD(a)->pairing;
    pairing_data_ptr dp = pairing->data;
    element_pow_mpz(a, a, dp->n2);

    element_clear(t);
    element_clear(t2);
    element_clear(e1);
}
Пример #5
0
static void gf3m_sqrt(element_t e, element_t a) {
    field_ptr f = e->field;
    mpz_t t;
    mpz_init(t); // t == (field_order  + 1) / 4
    mpz_set(t, f->order);
    mpz_add_ui(t, t, 1);
    mpz_tdiv_q_2exp(t, t, 2);
    element_pow_mpz(e, a, t);
    mpz_clear(t);
}
Пример #6
0
static void e_pairing(element_ptr out, element_ptr in1, element_ptr in2,
    pairing_t pairing) {
  e_pairing_data_ptr p = pairing->data;
  element_ptr Q = in2;
  element_t QR;
  element_init(QR, p->Eq);
  element_add(QR, Q, p->R);
  e_miller_fn(out, in1, QR, p->R, p);
  element_pow_mpz(out, out, pairing->phikonr);
  element_clear(QR);
}
Пример #7
0
//TODO: untested
static int even_curve_is_sqr(element_ptr e) {
  mpz_t z;
  element_t e1;
  int result;

  mpz_init(z);
  element_init(e1, e->field);
  mpz_sub_ui(z, e->field->order, 1);
  mpz_fdiv_q_2exp(z, z, 1);
  element_pow_mpz(e1, e, z);
  result = element_is1(e1);

  mpz_clear(z);
  element_clear(e1);
  return result;
}
Пример #8
0
static void test_gf3m_sqrt(void) {
    mpz_t t;
    mpz_init(t);
    mpz_sub_ui(t, a->field->order, 1); // t == field_order - 1
    element_random(a);
    element_pow_mpz(a, a, t);
    EXPECT(!element_cmp(a, e1));

    while(1){
        element_random(a);
        element_mul(b, a, a);
        element_sqrt(b, b);
        if(element_cmp(a, b)) {// a != b
            element_neg(b, b);
            if(!element_cmp(a, b)) break;
        }
    }
    mpz_clear(t);
}
Пример #9
0
static int curve_cmp(element_ptr a, element_ptr b) {
  if (a == b) {
    return 0;
  } else {
    // If we're working with a quotient group we must account for different
    // representatives of the same coset.
	  curve_data_ptr cdp = (curve_data_ptr)a->field->data;
    if (cdp->quotient_cmp) {
      element_t e;
      element_init_same_as(e, a);
      element_div(e, a, b);
      element_pow_mpz(e, e, cdp->quotient_cmp);
      int result = !element_is1(e);
      element_clear(e);
      return result;
    }
	return point_cmp((point_ptr)a->data, (point_ptr)b->data);
  }
}
Пример #10
0
Файл: 19.c Проект: blynn/pbc
static void tate_18(element_ptr out, element_ptr P, element_ptr Q, element_ptr R, element_ptr S) {
  mpz_t pow;
  element_t PR;
  element_t QS;
  element_init(PR, P->field);
  element_init(QS, P->field);
  element_t outd;

  element_init(outd, out->field);

  mpz_init(pow);
  mpz_set_ui(pow, (19*19-1)/18);

  element_add(PR, P, R);
  element_add(QS, Q, S);

  if (element_is0(QS)) {
    element_t S2;
    element_init(S2, P->field);
    element_double(S2, S);
    miller(out, PR, S, S2, 18);
    miller(outd, R, S, S2, 18);
    element_clear(S2);
  } else {
    miller(out, PR, QS, S, 18);
    miller(outd, R, QS, S, 18);
  }

  element_clear(PR);
  element_clear(QS);

  element_invert(outd, outd);
  element_mul(out, out, outd);
  element_pow_mpz(out, out, pow);

  element_clear(outd);
  mpz_clear(pow);
}
Пример #11
0
Файл: 19.c Проект: blynn/pbc
static void tate_3(element_ptr out, element_ptr P, element_ptr Q, element_ptr R) {
  mpz_t six;

  mpz_init(six);
  mpz_set_ui(six, 6);
  element_t QR;
  element_t e0;

  element_init(QR, P->field);
  element_init(e0, out->field);

  element_add(QR, Q, R);

  //for subgroup size 3, -2P = P, hence
  //the tangent line at P has divisor 3(P) - 3(O)

  miller(out, P, QR, R, 3);

  element_pow_mpz(out, out, six);
  element_clear(QR);
  element_clear(e0);
  mpz_clear(six);
}
Пример #12
0
static void d_init_pairing(pairing_ptr pairing, void *data) {
  d_param_ptr param = data;
  pptr p;
  element_t a, b;
  element_t irred;
  int d = param->k / 2;
  int i;

  if (param->k % 2) pbc_die("k must be even");

  mpz_init(pairing->r);
  mpz_set(pairing->r, param->r);
  field_init_fp(pairing->Zr, pairing->r);
  pairing->map = cc_pairing;
  pairing->prod_pairings = cc_pairings_affine;
  pairing->is_almost_coddh = cc_is_almost_coddh;

  p = pairing->data = pbc_malloc(sizeof(*p));
  field_init_fp(p->Fq, param->q);
  element_init(a, p->Fq);
  element_init(b, p->Fq);
  element_set_mpz(a, param->a);
  element_set_mpz(b, param->b);
  field_init_curve_ab(p->Eq, a, b, pairing->r, param->h);

  field_init_poly(p->Fqx, p->Fq);
  element_init(irred, p->Fqx);
  poly_set_coeff1(irred, d);
  for (i = 0; i < d; i++) {
    element_set_mpz(element_item(irred, i), param->coeff[i]);
  }

  field_init_polymod(p->Fqd, irred);
  element_clear(irred);

  p->Fqd->nqr = pbc_malloc(sizeof(element_t));
  element_init(p->Fqd->nqr, p->Fqd);
  element_set_mpz(((element_t *) p->Fqd->nqr->data)[0], param->nqr);

  field_init_quadratic(p->Fqk, p->Fqd);

  // Compute constants involved in the final powering.
  if (param->k == 6) {
    mpz_ptr q = param->q;
    mpz_ptr z = pairing->phikonr;
    mpz_init(z);
    mpz_mul(z, q, q);
    mpz_sub(z, z, q);
    mpz_add_ui(z, z, 1);
    mpz_divexact(z, z, pairing->r);

    element_ptr e = p->xpowq;
    element_init(e, p->Fqd);
    element_set1(((element_t *) e->data)[1]);
    element_pow_mpz(e, e, q);

    element_init(p->xpowq2, p->Fqd);
    element_square(p->xpowq2, e);
  } else {
    mpz_init(p->tateexp);
    mpz_sub_ui(p->tateexp, p->Fqk->order, 1);
    mpz_divexact(p->tateexp, p->tateexp, pairing->r);
  }

  field_init_curve_ab_map(p->Etwist, p->Eq, element_field_to_polymod, p->Fqd, pairing->r, NULL);
  field_reinit_curve_twist(p->Etwist);

  mpz_t ndonr;
  mpz_init(ndonr);
  // ndonr temporarily holds the trace.
  mpz_sub(ndonr, param->q, param->n);
  mpz_add_ui(ndonr, ndonr, 1);
  // Negate it because we want the trace of the twist.
  mpz_neg(ndonr, ndonr);
  pbc_mpz_curve_order_extn(ndonr, param->q, ndonr, d);
  mpz_divexact(ndonr, ndonr, param->r);
  field_curve_set_quotient_cmp(p->Etwist, ndonr);
  mpz_clear(ndonr);

  element_init(p->nqrinv, p->Fqd);
  element_invert(p->nqrinv, field_get_nqr(p->Fqd));
  element_init(p->nqrinv2, p->Fqd);
  element_square(p->nqrinv2, p->nqrinv);

  pairing->G1 = p->Eq;
  pairing->G2 = p->Etwist;

  p->k = param->k;
  pairing_GT_init(pairing, p->Fqk);
  pairing->finalpow = cc_finalpow;

  // By default use affine coordinates.
  cc_miller_no_denom_fn = cc_miller_no_denom_affine;
  pairing->option_set = d_pairing_option_set;
  pairing->pp_init = d_pairing_pp_init;
  pairing->pp_clear = d_pairing_pp_clear;
  pairing->pp_apply = d_pairing_pp_apply;

  pairing->clear_func = d_pairing_clear;

  element_clear(a);
  element_clear(b);
}
Пример #13
0
int main(void) {
  mpz_t p, q, N, d;
  mpz_t dmp1, dmq1;
  mpz_t ipmq, iqmp;
  mpz_t adq, adp;

  field_t f;
  element_t a, b;
  double t0, t1, tnaive = 0, tcrt=0;
  int i, n;

  mpz_init(p);
  mpz_init(q);
  mpz_init(N);
  mpz_init(d);
  mpz_init(dmp1);
  mpz_init(dmq1);
  mpz_init(ipmq);
  mpz_init(iqmp);
  mpz_init(adp);
  mpz_init(adq);
  pbc_mpz_randomb(p, 512);
  pbc_mpz_randomb(q, 512);
  mpz_nextprime(p, p);
  mpz_nextprime(q, q);
  mpz_mul(N, p, q);
  mpz_invert(ipmq, p, q);
  mpz_invert(iqmp, q, p);

  field_init_fp(f, N);
  element_init(a, f);
  element_init(b, f);
  n = 10;
  for (i=0; i<n; i++) {
    pbc_mpz_random(d, N);
    element_random(a);
    t0 = pbc_get_time();
    element_pow_mpz(b, a, d);
    t1 = pbc_get_time();
    tnaive += t1 - t0;

    mpz_sub_ui(p, p, 1);
    mpz_sub_ui(q, q, 1);

    mpz_mod(dmp1, d, p);
    mpz_mod(dmq1, d, q);

    mpz_add_ui(p, p, 1);
    mpz_add_ui(q, q, 1);

    element_to_mpz(adq, a);
    element_to_mpz(adp, a);

    t0 = pbc_get_time();
    mpz_powm(adp, adp, d, p);
    mpz_powm(adq, adq, d, q);

    /* textbook CRT
    mpz_mul(adp, adp, q);
    mpz_mul(adp, adp, iqmp);
    mpz_mul(adq, adq, p);
    mpz_mul(adq, adq, ipmq);
    mpz_add(adp, adp, adq);
    */
    // Garner's algorithm
    mpz_sub(adq, adq, adp);
    mpz_mul(adq, adq, ipmq);
    mpz_mod(adq, adq, q);
    mpz_mul(adq, adq, p);
    mpz_add(adp, adp, adq);

    t1 = pbc_get_time();
    tcrt += t1 - t0;
    element_set_mpz(b, adp);
  }
  printf("average RSA exp time = %lf\n", tnaive / n);
  printf("average RSA exp time (CRT) = %lf\n", tcrt / n);
  return 0;
}
Пример #14
0
static void mulg_pow_mpz(element_t x, element_t a, mpz_t n) {
  element_pow_mpz(x->data, a->data, n);
}
Пример #15
0
// in1, in2 are from E(F_q), out from F_q^2.
// Pairing via elliptic nets (see Stange).
static void e_pairing_ellnet(element_ptr out, element_ptr in1, element_ptr in2,
    pairing_t pairing) {
  const element_ptr a = curve_a_coeff(in1);
  const element_ptr b = curve_b_coeff(in1);

  element_ptr x = curve_x_coord(in1);
  element_ptr y = curve_y_coord(in1);

  element_ptr x2 = curve_x_coord(in2);
  element_ptr y2 = curve_y_coord(in2);

  //notation: cmi means c_{k-i}, ci means c_{k+i}
  element_t cm3, cm2, cm1, c0, c1, c2, c3, c4;
  element_t dm1, d0, d1;
  element_t A, B, C;

  element_init_same_as(cm3, x);
  element_init_same_as(cm2, x);
  element_init_same_as(cm1, x);
  element_init_same_as(c0, x);
  element_init_same_as(c1, x);
  element_init_same_as(c2, x);
  element_init_same_as(c3, x);
  element_init_same_as(c4, x);
  element_init_same_as(C, x);

  element_init_same_as(dm1, out);
  element_init_same_as(d0, out);
  element_init_same_as(d1, out);
  element_init_same_as(A, x);
  element_init_same_as(B, out);

  // c1 = 2y
  // cm3 = -2y
  element_double(c1, y);
  element_neg(cm3, c1);

  //use c0, cm1, cm2, C, c4 as temp variables for now
  //compute c3, c2
  element_square(cm2, x);
  element_square(C, cm2);
  element_mul(cm1, b, x);
  element_double(cm1, cm1);
  element_square(c4, a);

  element_mul(c2, cm1, cm2);
  element_double(c2, c2);
  element_mul(c0, a, C);
  element_add(c2, c2, c0);
  element_mul(c0, c4, cm2);
  element_sub(c2, c2, c0);
  element_double(c0, c2);
  element_double(c0, c0);
  element_add(c2, c2, c0);

  element_mul(c0, cm1, a);
  element_square(c3, b);
  element_double(c3, c3);
  element_double(c3, c3);
  element_add(c0, c0, c3);
  element_double(c0, c0);
  element_mul(c3, a, c4);
  element_add(c0, c0, c3);
  element_sub(c2, c2, c0);
  element_mul(c0, cm2, C);
  element_add(c3, c0, c2);
  element_mul(c3, c3, c1);
  element_double(c3, c3);

  element_mul(c0, a, cm2);
  element_add(c0, c0, cm1);
  element_double(c0, c0);
  element_add(c0, c0, C);
  element_double(c2, c0);
  element_add(c0, c0, c2);
  element_sub(c2, c0, c4);

  // c0 = 1
  // cm2 = -1
  element_set1(c0);
  element_neg(cm2, c0);

  // c4 = c_5 = c_2^3 c_4 - c_3^3 = c1^3 c3 - c2^3
  element_square(C, c1);
  element_mul(c4, C, c1);
  element_mul(c4, c4, c3);
  element_square(C, c2);
  element_mul(C, C, c2);
  element_sub(c4, c4, C);

  //compute A, B, d1 (which is d_2 since k = 1)
  element_sub(A, x, x2);
  element_double(C, x);
  element_add(C, C, x2);
  element_square(cm1, A);
  element_mul(cm1, C, cm1);
  element_add(d1, y, y2);
  element_square(d1, d1);
  element_sub(B, cm1, d1);
  element_invert(B, B);
  element_invert(A, A);

  element_sub(d1, y, y2);
  element_mul(d1, d1, A);
  element_square(d1, d1);
  element_sub(d1, C, d1);

  // cm1 = 0
  // C = (2y)^-1
  element_set0(cm1);
  element_invert(C, c1);

  element_set1(dm1);
  element_set1(d0);

  element_t sm2, sm1;
  element_t s0, s1, s2, s3;
  element_t tm2, tm1;
  element_t t0, t1, t2, t3;
  element_t e0, e1;
  element_t u, v;

  element_init_same_as(sm2, x);
  element_init_same_as(sm1, x);
  element_init_same_as(s0, x);
  element_init_same_as(s1, x);
  element_init_same_as(s2, x);
  element_init_same_as(s3, x);

  element_init_same_as(tm2, x);
  element_init_same_as(tm1, x);
  element_init_same_as(t0, x);
  element_init_same_as(t1, x);
  element_init_same_as(t2, x);
  element_init_same_as(t3, x);

  element_init_same_as(e0, x);
  element_init_same_as(e1, x);

  element_init_same_as(u, d0);
  element_init_same_as(v, d0);

  int m = mpz_sizeinbase(pairing->r, 2) - 2;
  for (;;) {
    element_square(sm2, cm2);
    element_square(sm1, cm1);
    element_square(s0, c0);
    element_square(s1, c1);
    element_square(s2, c2);
    element_square(s3, c3);

    element_mul(tm2, cm3, cm1);
    element_mul(tm1, cm2, c0);
    element_mul(t0, cm1, c1);
    element_mul(t1, c0, c2);
    element_mul(t2, c1, c3);
    element_mul(t3, c2, c4);

    element_square(u, d0);
    element_mul(v, dm1, d1);

    if (mpz_tstbit(pairing->r, m)) {
      //double-and-add
      element_mul(e0, t0, sm2);
      element_mul(e1, tm2, s0);
      element_sub(cm3, e0, e1);
      element_mul(cm3, cm3, C);

      element_mul(e0, t0, sm1);
      element_mul(e1, tm1, s0);
      element_sub(cm2, e0, e1);

      element_mul(e0, t1, sm1);
      element_mul(e1, tm1, s1);
      element_sub(cm1, e0, e1);
      element_mul(cm1, cm1, C);

      element_mul(e0, t1, s0);
      element_mul(e1, t0, s1);
      element_sub(c0, e0, e1);

      element_mul(e0, t2, s0);
      element_mul(e1, t0, s2);
      element_sub(c1, e0, e1);
      element_mul(c1, c1, C);

      element_mul(e0, t2, s1);
      element_mul(e1, t1, s2);
      element_sub(c2, e0, e1);

      element_mul(e0, t3, s1);
      element_mul(e1, t1, s3);
      element_sub(c3, e0, e1);
      element_mul(c3, c3, C);

      element_mul(e0, t3, s2);
      element_mul(e1, t2, s3);
      element_sub(c4, e0, e1);

      element_mul(out, u, t0);
      element_mul(dm1, v, s0);
      element_sub(dm1, dm1, out);

      element_mul(out, u, t1);
      element_mul(d0, v, s1);
      element_sub(d0, d0, out);
      element_mul(d0, d0, A);

      element_mul(out, u, t2);
      element_mul(d1, v, s2);
      element_sub(d1, d1, out);
      element_mul(d1, d1, B);
    } else {
      //double
      element_mul(e0, tm1, sm2);
      element_mul(e1, tm2, sm1);
      element_sub(cm3, e0, e1);

      element_mul(e0, t0, sm2);
      element_mul(e1, tm2, s0);
      element_sub(cm2, e0, e1);
      element_mul(cm2, cm2, C);

      element_mul(e0, t0, sm1);
      element_mul(e1, tm1, s0);
      element_sub(cm1, e0, e1);

      element_mul(e0, t1, sm1);
      element_mul(e1, tm1, s1);
      element_sub(c0, e0, e1);
      element_mul(c0, c0, C);

      element_mul(e0, t1, s0);
      element_mul(e1, t0, s1);
      element_sub(c1, e0, e1);

      element_mul(e0, t2, s0);
      element_mul(e1, t0, s2);
      element_sub(c2, e0, e1);
      element_mul(c2, c2, C);

      element_mul(e0, t2, s1);
      element_mul(e1, t1, s2);
      element_sub(c3, e0, e1);

      element_mul(e0, t3, s1);
      element_mul(e1, t1, s3);
      element_sub(c4, e0, e1);
      element_mul(c4, c4, C);

      element_mul(out, u, tm1);
      element_mul(dm1, v, sm1);
      element_sub(dm1, dm1, out);

      element_mul(out, u, t0);
      element_mul(d0, v, s0);
      element_sub(d0, d0, out);

      element_mul(out, u, t1);
      element_mul(d1, v, s1);
      element_sub(d1, d1, out);
      element_mul(d1, d1, A);
    }
    if (!m) break;
    m--;
  }
  element_invert(c1, c1);
  element_mul(d1, d1, c1);

  element_pow_mpz(out, d1, pairing->phikonr);

  element_clear(dm1);
  element_clear(d0);
  element_clear(d1);

  element_clear(cm3);
  element_clear(cm2);
  element_clear(cm1);
  element_clear(c0);
  element_clear(c1);
  element_clear(c2);
  element_clear(c3);
  element_clear(c4);

  element_clear(sm2);
  element_clear(sm1);
  element_clear(s0);
  element_clear(s1);
  element_clear(s2);
  element_clear(s3);

  element_clear(tm2);
  element_clear(tm1);
  element_clear(t0);
  element_clear(t1);
  element_clear(t2);
  element_clear(t3);

  element_clear(e0);
  element_clear(e1);
  element_clear(A);
  element_clear(B);
  element_clear(C);
  element_clear(u);
  element_clear(v);
}
Пример #16
0
static void e_finalpow(element_ptr e) {
  element_pow_mpz(e->data, e->data, e->field->pairing->phikonr);
}
Пример #17
0
int main(int argc, char **argv) {
  pairing_t pairing;
  element_t g1, u1, up1, g2, u2, up2, r;
  mpz_t r_mpz;
  element_pp_t g1_pp, g2_pp;
  double t0, t1;
  int i, n;

  printf("reading pairing from stdin...\n");
  pbc_demo_pairing_init(pairing, argc, argv);

  element_init(r, pairing->Zr);
  element_init(g1, pairing->G1);
  element_init(u1, pairing->G1);
  element_init(up1, pairing->G1);
  element_init(g2, pairing->G2);
  element_init(u2, pairing->G2);
  element_init(up2, pairing->G2);

  element_random(r);
  element_random(g1);
  element_random(g2);

  mpz_init(r_mpz);
  element_to_mpz(r_mpz, r);

  element_pp_init(g1_pp, g1);
  element_pp_init(g2_pp, g2);

  n = 100;
  t0 = pbc_get_time();
  for (i=0; i<n; i++) {
    element_pow_mpz(u1, g1, r_mpz);
  }
  t1 = pbc_get_time();
  printf("G1 exp:\t\t%fs\n", t1 - t0);

  n = 100;
  t0 = pbc_get_time();
  for (i=0; i<n; i++) {
    element_pow_mpz(u2, g2, r_mpz);
  }
  t1 = pbc_get_time();
  printf("G2 exp:\t\t%fs\n", t1 - t0);

  n = 100;
  t0 = pbc_get_time();
  for (i=0; i<n; i++) {
    element_pp_pow(up1, r_mpz, g1_pp);
  }
  t1 = pbc_get_time();
  printf("G1 pp exp:\t%fs\n", t1 - t0);

  n = 100;
  t0 = pbc_get_time();
  for (i=0; i<n; i++) {
    element_pp_pow(up2, r_mpz, g2_pp);
  }
  t1 = pbc_get_time();
  printf("G2 pp exp:\t%fs\n", t1 - t0);

  if (element_cmp(u1, up1)) {
    printf("Oops 1!\n");
  }
  if (element_cmp(u2, up2)) {
    printf("Oops 2!\n");
  }

  mpz_clear(r_mpz);
  element_clear(g1);
  element_clear(u1);
  element_clear(up1);
  element_clear(g2);
  element_clear(u2);
  element_clear(up2);
  element_clear(r);
  element_pp_clear(g1_pp);
  element_pp_clear(g2_pp);
  pairing_clear(pairing);

  return 0;
}
Пример #18
0
int main(int argc, char *argv[])
{  
  ///list all the files in the directory///
   DIR *d;
   FILE  *fpub, *fpriv, *fciph, *fplain, *ftag, *fpairing, *ftemp, *frand;//, *fp6, *fp7;
   paillier_pubkey_t *pub;
   paillier_prvkey_t *priv;
   paillier_get_rand_t get_rand;
   paillier_plaintext_t *plain;
   paillier_ciphertext_t *cipher, *cipher_copy;
   paillier_tag* tag;
   mpz_t tag_sig, *rand_prf;
   gmp_randstate_t rand;
   char *len;
   struct stat st= {0};
   unsigned char *data;
   int count=0, count1=0, gbytes, n, no_copies=10;
   struct dirent *dir;
   ///pairing parameters
   pairing_t pairing;
   //pairing_t p;
    //printf("setting pairing parameters\n");
    //pairing_init_set_str(pairing, param_str);
  // printf("after pairing setup\n");
   element_t g, h, u, temp_pow, test1, test2;
   element_t public_key, sig;
   element_t secret_key;
   ///end of pairing parameters
   //initialize pairing parametrs
   pbc_demo_pairing_init(pairing, argc, argv);
   element_init_G2(g, pairing);
   element_init_G1(u, pairing);
   element_init_G1(test1, pairing);
   element_init_G2(test2, pairing);
   element_init_G1(temp_pow, pairing);
   element_init_G2(public_key, pairing);
  // element_from_hash(h, "hashofmessage", 13);
   element_init_G1(h, pairing);
   element_init_G1(sig, pairing);
   element_init_Zr(secret_key, pairing);
   //end of pairing parameters initialization
   //set up pairing parameters
   //generate system parameters
   element_random(g);
  // n = pairing_length_in_bytes_x_only_G1(pairing);
  // data = pbc_malloc(n);
  // gbytes = pairing_length_in_bytes_G2(pairing);
  // printf(" \n g in bytes %d \n", gbytes);
  // element_printf("system parameter g = %B\n", g);
   //generate private key
   element_random(secret_key);
   //generate u
   element_random(u);
   //calculating hash of a file name and mapping it to element in group G1
  // element_from_hash(h, "FileName", 8);	
   element_random(h);
   //element_printf("private key = %B\n", secret_key);
   //compute corresponding public key
   element_pow_zn(public_key, g, secret_key);
   //element_printf("public key = %B\n", public_key);
   //end of setup
   tag = (paillier_tag*) malloc(sizeof(paillier_tag));
   plain = (paillier_plaintext_t*) malloc(sizeof(paillier_plaintext_t));
   cipher = (paillier_ciphertext_t*) malloc(sizeof(paillier_ciphertext_t));
   mpz_init(plain->m);
   mpz_init(tag->t);	
   mpz_init(cipher->c);
   mpz_init(tag_sig);	
   rand_prf = (mpz_t*) malloc(n*sizeof(mpz_t));
   
   len = (char *)malloc(2048*sizeof(char));
  //****paillier key generation****
   if(!(fpub = fopen("pub.txt", "r")))
    {
       //fputs("Not able to read public key file!\n", stderr);
       paillier_keygen(&pub, &priv, get_rand,450);
       //fclose(fpub);	
       fpub = fopen("pub.txt", "w");
       gmp_fprintf(fpub, "%Zd\n", pub->p); 
       gmp_fprintf(fpub, "%Zd\n", pub->q);	
       gmp_fprintf(fpub, "%Zd\n", pub->n_plusone);
       //***Writing private keys into a file***
       fpriv = fopen("priv.txt", "w"); 	
       gmp_fprintf(fpriv, "%Zd\n", priv->lambda);  		
       gmp_fprintf(fpriv, "%Zd\n", priv->x);  		
       fclose(fpriv);
       //****End of writing private key in a file***	
    }
   else
    {
        printf("\n in else");
	pub = (paillier_pubkey_t*) malloc(sizeof(paillier_pubkey_t));
	priv = (paillier_prvkey_t*) malloc(sizeof(paillier_prvkey_t));	
	mpz_init(pub->n_squared);
	mpz_init(pub->n);
	fgets(len, 1000, fpub);
   	mpz_init_set_str(pub->p, len, 10);
	fgets(len, 1000, fpub);
   	mpz_init_set_str(pub->q, len, 10);
	fgets(len, 1000, fpub);
   	mpz_init_set_str(pub->n_plusone, len, 10);
	//printf("value of nplusone : \n");
	//mpz_out_str(stdout, 10, pub->n_plusone);
	paillier_keygen(&pub, &priv, get_rand, 0);
        pub->bits = mpz_sizeinbase(pub->n, 2);	
    }
   fclose(fpub);
  //****end of paillier key generation****
  //printf("writing pairing parameters to a file\n");
  //writing pairing keys to file
  fpairing = fopen("pairing.txt", "w"); 
  
 /* n = pairing_length_in_bytes_compressed_G2(pairing);
  data = pbc_malloc(n);

  element_to_bytes_compressed(data, g);	
  element_printf(" decomp g %B\n", g);
  element_from_bytes_compressed(test2, data);
  element_printf(" decomp g %B\n", test2); */
  //writing compressed g to file
  element_fprintf(fpairing, "%B\n", g); 
//  element_printf(" g = %B\n", g);
  /*n = pairing_length_in_bytes_compressed_G1(pairing);
  data = pbc_malloc(n);
  element_to_bytes_compressed(data, u);	
  element_printf(" decomp g %B\n", u);
  element_from_bytes_compressed(test1, data);
  element_printf(" decomp g %B\n", test1);  
  //writing compressed u to file */
  element_fprintf(fpairing, "%B\n", u);
  //element_printf(" u = %B\n", u);
  //writing secret key to file
  element_fprintf(fpairing, "%B\n", secret_key); 
  //element_printf(" sk = %B\n", secret_key);
//  printf("secret key = %s\n",secret_key);	
 /* n = pairing_length_in_bytes_compressed_G2(pairing);
  data = pbc_malloc(n);
  element_to_bytes_compressed(data, public_key); 
  //writing compressed public key to file	*/ 
  element_fprintf(fpairing, "%B\n", public_key); 
  //element_printf("pk = %B\n", public_key);	
 /* n = pairing_length_in_bytes_compressed_G1(pairing);
  data = pbc_malloc(n);
  element_to_bytes_compressed(data, h);	
  element_printf(" decomp g %B\n", h);
  element_from_bytes_compressed(test1, data);
  element_printf(" decomp g %B\n", test1);  
  //writing compressed h to file */
  element_fprintf(fpairing, "%B\n", h);
  //element_printf("h = %B\n", h);
  //writing n to file
  gmp_fprintf(fpairing, "%Zd\n", pub->n);  		
  fclose(fpairing);
  //end of writing pairing keys to file  
  cipher_copy = (paillier_ciphertext_t*)malloc(no_copies*sizeof(paillier_ciphertext_t));
  frand = fopen("rand.txt","w");
  int i;
   init_rand(rand, get_rand, pub->bits / 8 + 1);
   for(i = 0; i< no_copies; i++)
   {
	mpz_init(rand_prf[i]);
	do
		mpz_urandomb(rand_prf[i], rand, pub->bits);
	while( mpz_cmp(rand_prf[i], pub->n) >= 0 );
	gmp_fprintf(frand, "%Zd\n", rand_prf[i]); 
	//printf("\nrandom : \n");
        //mpz_out_str(stdout, 10, rand_prf[i]);
   }
  fclose(frand);
  //****Opening files to read files and encrypt***** 
  d = opendir("./split");
   if (d)
   {
    while ((dir = readdir(d)) != NULL)
    {
     //printf("%s\n", dir->d_name);
     char fileName[1000], copy[1000];
     strcpy(fileName, "./split/");
     strcat(fileName,dir->d_name);	
     //printf("\nfile name %s", fileName);
     if(!(fplain = fopen(fileName, "r")))
      {
        printf("\n not able to read %s", fileName);
      //  fputs("not possible to read  file!\n", stderr);
	 count1++;
      }
      else
      {
	//printf("\n able to read %s", fileName);
	fgets(len, 2048, fplain);
        mpz_init_set_str(plain->m, len, 10);	
       // mpz_out_str(stdout, 10, plain->m);
	fclose(fplain);	
	//Writing cipher text to files
	strcpy(fileName, "./cipher/");
        //strcat(fileName,dir->d_name);	
        //printf("\nfilename %s",fileName);
        
         paillier_enc(tag, cipher_copy, pub,plain, get_rand, no_copies, rand_prf);
	// mpz_out_str(stdout, 10, tag->t);
	 int j;
         for(j=0;j < no_copies; j++)
         {
	    char num[20];
	    strcpy(copy, fileName);

	    sprintf(num, "copy%d/", (j+1));
	   // strcat(copy, );
	    strcat(copy, num);
	   if(stat(copy, &st) == -1)
	      mkdir(copy,0777);

            strcat(copy,dir->d_name);
            if(!(fciph = fopen(copy, "w")))
            {
	         printf("\nnot able to open file for writing cipher text %s", copy);
	    }
            else
            {
		// printf("\nbefore enc");
		
	        gmp_fprintf(fciph, "%Zd\n", cipher_copy[j].c); 	
                fclose(fciph); 	
	    }
         }	
	//writing tags to files
	strcpy(fileName, "./tag/");
        strcat(fileName,dir->d_name);	
        //printf("\nfilename %s",fileName);
        if(!(ftag = fopen(fileName, "w")))
        {
         printf("not able to open file for writing tag  %s", fileName);
        }
        else
        {
	
	 element_pow_mpz(temp_pow,u, tag->t);
	 element_mul(temp_pow, temp_pow, h);
	 element_pow_zn(sig, temp_pow, secret_key);
	 element_fprintf(ftag, "%B", sig);
	 fclose(ftag); 
        } 	
      }	
	count++;
    }	
   
    closedir(d);
   }
   
   printf("\nTotal number of files : %d, unreadable files %d", count, count1);
  
   return 0;
}
Пример #19
0
static void f_init_pairing(pairing_t pairing, void *data) {
  f_param_ptr param = data;
  f_pairing_data_ptr p;
  element_t irred;
  element_t e0, e1, e2;
  p = pairing->data = pbc_malloc(sizeof(f_pairing_data_t));
  mpz_init(pairing->r);
  mpz_set(pairing->r, param->r);
  field_init_fp(pairing->Zr, pairing->r);
  field_init_fp(p->Fq, param->q);
  p->Fq->nqr = pbc_malloc(sizeof(element_t));
  element_init(p->Fq->nqr, p->Fq);
  element_set_mpz(p->Fq->nqr, param->beta);
  field_init_quadratic(p->Fq2, p->Fq);
  field_init_poly(p->Fq2x, p->Fq2);
  element_init(irred, p->Fq2x);
  // Call poly_set_coeff1() first so we can use element_item() for the other
  // coefficients.
  poly_set_coeff1(irred, 6);

  element_init(p->negalpha, p->Fq2);
  element_init(p->negalphainv, p->Fq2);
  element_set_mpz(element_x(p->negalpha), param->alpha0);
  element_set_mpz(element_y(p->negalpha), param->alpha1);

  element_set(element_item(irred, 0), p->negalpha);
  field_init_polymod(p->Fq12, irred);
  element_neg(p->negalpha, p->negalpha);
  element_invert(p->negalphainv, p->negalpha);
  element_clear(irred);

  element_init(e0, p->Fq);
  element_init(e1, p->Fq);
  element_init(e2, p->Fq2);

  // Initialize the curve Y^2 = X^3 + b.
  element_set_mpz(e1, param->b);
  field_init_curve_ab(p->Eq, e0, e1, pairing->r, NULL);

  // Initialize the curve Y^2 = X^3 - alpha0 b - alpha1 sqrt(beta) b.
  element_set_mpz(e0, param->alpha0);
  element_neg(e0, e0);
  element_mul(element_x(e2), e0, e1);
  element_set_mpz(e0, param->alpha1);
  element_neg(e0, e0);
  element_mul(element_y(e2), e0, e1);
  element_clear(e0);
  element_init(e0, p->Fq2);
  field_init_curve_ab(p->Etwist, e0, e2, pairing->r, NULL);
  element_clear(e0);
  element_clear(e1);
  element_clear(e2);

  mpz_t ndonr;
  mpz_init(ndonr);
  // ndonr temporarily holds the trace.
  mpz_sub(ndonr, param->q, param->r);
  mpz_add_ui(ndonr, ndonr, 1);
  // TODO: We can use a smaller quotient_cmp, but I have to figure out
  // BN curves again.
  pbc_mpz_curve_order_extn(ndonr, param->q, ndonr, 12);
  mpz_divexact(ndonr, ndonr, param->r);
  mpz_divexact(ndonr, ndonr, param->r);
  field_curve_set_quotient_cmp(p->Etwist, ndonr);
  mpz_clear(ndonr);

  pairing->G1 = p->Eq;
  pairing->G2 = p->Etwist;
  pairing_GT_init(pairing, p->Fq12);
  pairing->finalpow = f_finalpow;
  pairing->map = f_pairing;
  pairing->clear_func = f_pairing_clear;

  mpz_init(p->tateexp);
  /* unoptimized tate exponent
  mpz_pow_ui(p->tateexp, param->q, 12);
  mpz_sub_ui(p->tateexp, p->tateexp, 1);
  mpz_divexact(p->tateexp, p->tateexp, param->r);
  */
  mpz_ptr z = p->tateexp;
  mpz_mul(z, param->q, param->q);
  mpz_sub_ui(z, z, 1);
  mpz_mul(z, z, param->q);
  mpz_mul(z, z, param->q);
  mpz_add_ui(z, z, 1);
  mpz_divexact(z, z, param->r);

  element_init(p->xpowq2, p->Fq2);
  element_init(p->xpowq6, p->Fq2);
  element_init(p->xpowq8, p->Fq2);
  element_t xpowq;
  element_init(xpowq, p->Fq12);

  //there are smarter ways since we know q = 1 mod 6
  //and that x^6 = -alpha
  //but this is fast enough
  element_set1(element_item(xpowq, 1));
  element_pow_mpz(xpowq, xpowq, param->q);
  element_pow_mpz(xpowq, xpowq, param->q);
  element_set(p->xpowq2, element_item(xpowq, 1));

  element_pow_mpz(xpowq, xpowq, param->q);
  element_pow_mpz(xpowq, xpowq, param->q);
  element_pow_mpz(xpowq, xpowq, param->q);
  element_pow_mpz(xpowq, xpowq, param->q);
  element_set(p->xpowq6, element_item(xpowq, 1));

  element_pow_mpz(xpowq, xpowq, param->q);
  element_pow_mpz(xpowq, xpowq, param->q);
  element_set(p->xpowq8, element_item(xpowq, 1));

  element_clear(xpowq);
}
Пример #20
0
// x in Z_r, g, h in some group of order r
// finds x such that g^x = h
void element_dlog_pollard_rho(element_t x, element_t g, element_t h) {
// see Blake, Seroussi and Smart
// only one snark for this implementation
  int i, s = 20;
  field_ptr Zr = x->field, G = g->field;
  element_t asum;
  element_t bsum;
  element_t a[s];
  element_t b[s];
  element_t m[s];
  element_t g0, snark;
  darray_t hole;
  int interval = 5;
  mpz_t counter;
  int found = 0;

  mpz_init(counter);
  element_init(g0, G);
  element_init(snark, G);
  element_init(asum, Zr);
  element_init(bsum, Zr);
  darray_init(hole);
  //set up multipliers
  for (i = 0; i < s; i++) {
    element_init(a[i], Zr);
    element_init(b[i], Zr);
    element_init(m[i], G);
    element_random(a[i]);
    element_random(b[i]);
    element_pow_zn(g0, g, a[i]);
    element_pow_zn(m[i], h, b[i]);
    element_mul(m[i], m[i], g0);
  }

  element_random(asum);
  element_random(bsum);
  element_pow_zn(g0, g, asum);
  element_pow_zn(snark, h, bsum);
  element_mul(snark, snark, g0);

  record(asum, bsum, snark, hole, counter);
  for (;;) {
    int len = element_length_in_bytes(snark);
    unsigned char *buf = pbc_malloc(len);
    unsigned char hash = 0;

    element_to_bytes(buf, snark);
    for (i = 0; i < len; i++) {
      hash += buf[i];
    }
    i = hash % s;
    pbc_free(buf);

    element_mul(snark, snark, m[i]);
    element_add(asum, asum, a[i]);
    element_add(bsum, bsum, b[i]);

    for (i = 0; i < hole->count; i++) {
      snapshot_ptr ss = hole->item[i];
      if (!element_cmp(snark, ss->snark)) {
        element_sub(bsum, bsum, ss->b);
        element_sub(asum, ss->a, asum);
        //answer is x such that x * bsum = asum
        //complications arise if gcd(bsum, r) > 1
        //which can happen if r is not prime
        if (!mpz_probab_prime_p(Zr->order, 10)) {
          mpz_t za, zb, zd, zm;

          mpz_init(za);
          mpz_init(zb);
          mpz_init(zd);
          mpz_init(zm);

          element_to_mpz(za, asum);
          element_to_mpz(zb, bsum);
          mpz_gcd(zd, zb, Zr->order);
          mpz_divexact(zm, Zr->order, zd);
          mpz_divexact(zb, zb, zd);
          //if zd does not divide za there is no solution
          mpz_divexact(za, za, zd);
          mpz_invert(zb, zb, zm);
          mpz_mul(zb, za, zb);
          mpz_mod(zb, zb, zm);
          do {
            element_pow_mpz(g0, g, zb);
            if (!element_cmp(g0, h)) {
              element_set_mpz(x, zb);
              break;
            }
            mpz_add(zb, zb, zm);
            mpz_sub_ui(zd, zd, 1);
          } while (mpz_sgn(zd));
          mpz_clear(zm);
          mpz_clear(za);
          mpz_clear(zb);
          mpz_clear(zd);
        } else {
          element_div(x, asum, bsum);
        }
        found = 1;
        break;
      }
    }
    if (found) break;

    mpz_add_ui(counter, counter, 1);
    if (mpz_tstbit(counter, interval)) {
      record(asum, bsum, snark, hole, counter);
      interval++;
    }
  }

  for (i = 0; i < s; i++) {
    element_clear(a[i]);
    element_clear(b[i]);
    element_clear(m[i]);
  }
  element_clear(g0);
  element_clear(snark);
  for (i = 0; i < hole->count; i++) {
    snapshot_ptr ss = hole->item[i];
    element_clear(ss->a);
    element_clear(ss->b);
    element_clear(ss->snark);
    pbc_free(ss);
  }
  darray_clear(hole);
  element_clear(asum);
  element_clear(bsum);
  mpz_clear(counter);
}
Пример #21
0
void pbc_param_init_f_gen(pbc_param_t p, int bits) {
  f_init(p);
  f_param_ptr fp = p->data;
  //36 is a 6-bit number
  int xbit = (bits - 6) / 4;
  //TODO: use binary search to find smallest appropriate x
  mpz_t x, t;
  mpz_ptr q = fp->q;
  mpz_ptr r = fp->r;
  mpz_ptr b = fp->b;
  field_t Fq, Fq2, Fq2x;
  element_t e1;
  element_t f;
  field_t c;
  element_t P;

  mpz_init(x);
  mpz_init(t);
  mpz_setbit(x, xbit);
  for (;;) {
    mpz_mul(t, x, x);
    mpz_mul_ui(t, t, 6);
    mpz_add_ui(t, t, 1);
    tryminusx(q, x);
    mpz_sub(r, q, t);
    mpz_add_ui(r, r, 1);
    if (mpz_probab_prime_p(q, 10) && mpz_probab_prime_p(r, 10)) break;

    tryplusx(q, x);
    mpz_sub(r, q, t);
    mpz_add_ui(r, r, 1);
    if (mpz_probab_prime_p(q, 10) && mpz_probab_prime_p(r, 10)) break;

    mpz_add_ui(x, x, 1);
  }

  field_init_fp(Fq, q);
  element_init(e1, Fq);

  for (;;) {
    element_random(e1);
    field_init_curve_b(c, e1, r, NULL);
    element_init(P, c);

    element_random(P);

    element_mul_mpz(P, P, r);
    if (element_is0(P)) break;
    element_clear(P);
    field_clear(c);
  }
  element_to_mpz(b, e1);
  element_clear(e1);
  field_init_quadratic(Fq2, Fq);
  element_to_mpz(fp->beta, field_get_nqr(Fq));
  field_init_poly(Fq2x, Fq2);
  element_init(f, Fq2x);

  // Find an irreducible polynomial of the form f = x^6 + alpha.
  // Call poly_set_coeff1() first so we can use element_item() for the other
  // coefficients.
  poly_set_coeff1(f, 6);
  for (;;) {
    element_random(element_item(f, 0));
    if (poly_is_irred(f)) break;
  }

  //extend F_q^2 using f = x^6 + alpha
  //see if sextic twist contains a subgroup of order r
  //if not, it's the wrong twist: replace alpha with alpha^5
  {
    field_t ctest;
    element_t Ptest;
    mpz_t z0, z1;
    mpz_init(z0);
    mpz_init(z1);
    element_init(e1, Fq2);
    element_set_mpz(e1, fp->b);
    element_mul(e1, e1, element_item(f, 0));
    element_neg(e1, e1);

    field_init_curve_b(ctest, e1, r, NULL);
    element_init(Ptest, ctest);
    element_random(Ptest);

    //I'm not sure what the #E'(F_q^2) is, but
    //it definitely divides n_12 = #E(F_q^12). It contains a
    //subgroup of order r if and only if
    //(n_12 / r^2)P != O for some (in fact most) P in E'(F_q^6)
    mpz_pow_ui(z0, q, 12);
    mpz_add_ui(z0, z0, 1);
    pbc_mpz_trace_n(z1, q, t, 12);
    mpz_sub(z1, z0, z1);
    mpz_mul(z0, r, r);
    mpz_divexact(z1, z1, z0);

    element_mul_mpz(Ptest, Ptest, z1);
    if (element_is0(Ptest)) {
      mpz_set_ui(z0, 5);
      element_pow_mpz(element_item(f, 0), element_item(f, 0), z0);
    }
    element_clear(e1);
    element_clear(Ptest);
    field_clear(ctest);
    mpz_clear(z0);
    mpz_clear(z1);
  }

  element_to_mpz(fp->alpha0, element_x(element_item(f, 0)));
  element_to_mpz(fp->alpha1, element_y(element_item(f, 0)));

  element_clear(f);

  field_clear(Fq2x);
  field_clear(Fq2);
  field_clear(Fq);

  mpz_clear(t);
  mpz_clear(x);
}
Пример #22
0
int main(int argc, char **argv) {
  
  FILE  *fpairing, *ftag, *fdata, *fresult, *fplain, *fkey, *fcipher, *fpub;
  pairing_t pairing;
  paillier_pubkey_t *pub;
  paillier_prvkey_t *priv;
  element_t g, h, u, sig1, sig2, sig3, temp_pow, m, g1, g2;
  element_t public_key, tag, tag_prod;
  element_t secret_key;
  paillier_get_rand_t get_rand;
  paillier_ciphertext_t *cipher1, *cipher2;
  paillier_plaintext_t *plain1, *plain2;
 
  mpz_t pub_n, a, b, data2, nsquare;
  

  int count = 0, val=5;
  pairing_init_set_str(pairing, param_str);
  //mpz_init_set_str(data_sum, "0", 10);

  plain1 = (paillier_plaintext_t*) malloc(sizeof(paillier_plaintext_t));
  plain2 = (paillier_plaintext_t*) malloc(sizeof(paillier_plaintext_t));
  cipher1 = (paillier_ciphertext_t*) malloc(sizeof(paillier_ciphertext_t));
  cipher2 = (paillier_ciphertext_t*) malloc(sizeof(paillier_ciphertext_t));

  //pbc_demo_pairing_init(pairing, argc, argv);
  element_init_G1(g1, pairing);
  element_init_G1(g2, pairing);
  element_init_G2(g, pairing);
  element_init_G2(public_key, pairing);
  element_init_G1(u, pairing);
  element_init_G1(temp_pow, pairing);
  element_init_G2(public_key, pairing);
  element_init_G1(h, pairing);
  element_init_G1(m, pairing);
  element_init_G1(sig1, pairing);
  element_init_G1(sig2, pairing);
  element_init_G1(sig3, pairing); 
  element_init_G1(tag, pairing); 
  element_init_G1(tag_prod, pairing);
  element_init_Zr(secret_key, pairing);
//  mpz_init(pub_n);
  char *len;
  mpz_init(a);
  mpz_init(b);
  mpz_init(data2);
  printf("Short signature test\n");
  len = (char *)malloc(2048*sizeof(char));

 if((fpub = fopen("pub.txt", "r")))
    {
       	pub = (paillier_pubkey_t*) malloc(sizeof(paillier_pubkey_t));
	priv = (paillier_prvkey_t*) malloc(sizeof(paillier_prvkey_t));	
	mpz_init(pub->n_squared);
	mpz_init(pub->n);
	fgets(len, 1000, fpub);
   	mpz_init_set_str(pub->p, len, 10);
	fgets(len, 1000, fpub);
   	mpz_init_set_str(pub->q, len, 10);
	fgets(len, 1000, fpub);
   	mpz_init_set_str(pub->n_plusone, len, 10);
	//printf("value of nplusone : \n");
	//mpz_out_str(stdout, 10, pub->n_plusone);
	paillier_keygen(&pub, &priv, get_rand, 0);
        pub->bits = mpz_sizeinbase(pub->n, 2);	
        fclose(fpub);
    }  

  
//setting already known pairing parameters
  if((fpairing = fopen("pairing.txt", "r")))
    {
	fgets(len, 1000, fpairing);
	//printf("\n %s\n", len);
   	element_set_str(g, len, 10);
	//element_printf(" g = %B\n", g);
	fgets(len, 1000, fpairing);
	//printf("\n %s\n", len);
   	element_set_str(u, len, 10);
	//element_printf("\n u= %B\n", u);
	fgets(len, 1000, fpairing);
	element_set_str(secret_key, len, 10);
	//element_printf(" secretkey %B\n",secret_key);
	fgets(len, 1000, fpairing);
	element_set_str(public_key, len, 10);
        //element_printf(" publickey %B\n", public_key);
	fgets(len, 1000, fpairing);
	element_set_str(h, len, 10);
        //element_printf(" \nh = %B\n", h);
	fgets(len, 1000, fpairing);
	mpz_init_set_str(pub_n, len, 10);
	//printf("\n n = ");
	//mpz_out_str(stdout, 10, pub_n);
	fclose(fpairing);
    }
   
  element_set1(tag_prod);
 
   ftag = fopen("./tag/output5.txt", "r");
   fgets(len, 1000, ftag);
   element_set_str(g1, len, 10);
   element_printf("\ng1 = %B\n", g1);
   fclose(ftag);  
 
   ftag = fopen("./tag/output6.txt", "r");
   fgets(len, 1000, ftag);
   element_set_str(g2, len, 10);
   element_printf("\ng2 = %B\n", g2);
   fclose(ftag);

   fplain = fopen("./split/output5.txt", "r");
   fgets(len, 1000, fplain);
//   printf("\nlen %s", len);
   mpz_set_str(a, len, 10);
   //element_printf("\na = %Zd\n", a);
   fclose(fplain);
  fplain = fopen("./split/output6.txt", "r");
   fgets(len, 1000, fplain);
   mpz_set_str(b, len, 10);

  fcipher = fopen("./cipher/copy1/output5.txt", "r");
   fgets(len, 1000, fcipher);
   mpz_init_set_str(cipher1->c, len, 10);
  fclose(fcipher);

   fcipher = fopen("./cipher/copy1/output6.txt", "r");
   fgets(len, 1000, fcipher);
   mpz_init_set_str(cipher2->c, len, 10);
   fclose(fcipher);
  
   paillier_mul(pub, cipher2, cipher2, cipher1);
   plain1 = paillier_dec(plain1, pub, priv, cipher2);
  //tag
    mpz_t an;
    mpz_init(an);
    mpz_init(nsquare);
   // mpz_mul(an, a, pub_n);
    mpz_mul(nsquare, pub_n, pub_n);
    element_pow_mpz(temp_pow,u, plain1->m); 
    element_mul(temp_pow, temp_pow, h);
    element_pow_zn(sig1, temp_pow, secret_key);
    element_printf("\n signature of plain = %B\n", sig1);  

    //mpz_mul(an, b, pub_n);
   // mpz_mul(nsquare, pub_n, pub_n);
    element_pow_mpz(temp_pow,u, b); 
    element_mul(temp_pow, temp_pow, h);
    element_pow_zn(sig2, temp_pow, secret_key);
    element_printf("\n signature of b = %B\n", sig2);  
   
   //element_printf("\nb = %Zd\n", b);
   fclose(fplain);
     mpz_add(a, a, b);
   //  mpz_mod(a, a, pub_n);
  // mpz_mul(a, a, pub_n);
  // mpz_mod(a, a, nsquare);
   count = 2;
   element_pow_mpz(temp_pow,u, a);
   mpz_set_ui(data2, count);
  //  itoa(count, len, 10);+
    //element_printf(" \nh = %B\n", h);
    element_pow_mpz(h, h, data2);
    element_mul(temp_pow, temp_pow, h);
    //element_printf("\n h. u^bN = %B\n", temp_pow);
    element_pow_zn(sig3, temp_pow, secret_key);
    element_printf("\n sig 3 %B\n", sig3); 
    element_mul(g2, g2, g1);
    element_printf("\n Direct Product %B\n", g2); 
    element_mul(sig2, sig1, sig2);
    element_printf("\n Direct Product %B\n", sig2); 
   
 return 0;
}
Пример #23
0
void shipseystange(element_t z, element_t P, element_t Q)
{
    mpz_t q1r;

    mpz_init(q1r);
    mpz_set_ui(q1r, 696);

    element_ptr x = curve_x_coord(P);
    element_ptr y = curve_y_coord(P);

    element_ptr x2 = curve_x_coord(Q);
    element_ptr y2 = curve_y_coord(Q);

    element_t v0m1, v0m2, v0m3;
    element_t v00, v01, v02, v03, v04;
    element_t v1m1, v10, v11;
    element_t t0, t1, t2;
    element_t W20inv;
    element_t Wm11inv;
    element_t W2m1inv;
    element_t sm2, sm1, s0, s1, s2, s3;
    element_t pm2, pm1, p0, p1, p2, p3;

    element_init_same_as(sm2, z);
    element_init_same_as(sm1, z);
    element_init_same_as(s0, z);
    element_init_same_as(s1, z);
    element_init_same_as(s2, z);
    element_init_same_as(s3, z);

    element_init_same_as(pm2, z);
    element_init_same_as(pm1, z);
    element_init_same_as(p0, z);
    element_init_same_as(p1, z);
    element_init_same_as(p2, z);
    element_init_same_as(p3, z);

    element_init_same_as(v0m3, z);
    element_init_same_as(v0m2, z);
    element_init_same_as(v0m1, z);
    element_init_same_as(v00, z);
    element_init_same_as(v01, z);
    element_init_same_as(v02, z);
    element_init_same_as(v03, z);
    element_init_same_as(v04, z);

    element_init_same_as(v1m1, z);
    element_init_same_as(v10, z);
    element_init_same_as(v11, z);

    element_init_same_as(W20inv, z);
    element_init_same_as(Wm11inv, z);
    element_init_same_as(W2m1inv, z);

    element_init_same_as(t0, z);
    element_init_same_as(t1, z);
    element_init_same_as(t2, z);

    element_set0(v0m1);
    element_set1(v00);
    element_neg(v0m2, v00);
    element_double(v01, y);

    element_neg(v0m3, v01);

    element_invert(W20inv, v01);

    element_sub(Wm11inv, x, x2);
    element_square(t1, Wm11inv);
    element_invert(Wm11inv, Wm11inv);
    element_double(t0, x);
    element_add(t0, t0, x2);
    element_mul(t1, t0, t1);
    element_add(t0, y, y2);
    element_square(t0, t0);
    element_sub(t0, t0, t1);
    element_invert(W2m1inv, t0);

    /* Let P=(x,y) since A=1, B=0 we have:
     * W(3,0) = 3x^4 + 6x^2 - 1
     * W(4,0) = 4y(x^6 + 5x^4 - 5x^2 - 1)
     */

    //t0 = x^2
    element_square(t0, x);

    //t1 = x^4
    element_square(t1, t0);

    //t2 = x^4 + 2 x^2
    element_double(t2, t0);
    element_add(t2, t2, t1);

    //v02 = W(3,0)
    element_double(v02, t2);
    element_add(v02, v02, t2);
    element_add(v02, v02, v0m2);

    //t2 = x^4 - x^2
    element_sub(t2, t1, t0);

    //v03 = 5(x^4 - x^2)
    element_double(v03, t2);
    element_double(v03, v03);
    element_add(v03, v03, t2);

    //t2 = x^6
    element_mul(t2, t0, t1);

    //v03 = W(4,0)
    element_add(v03, v03, t2);
    element_add(v03, v03, v0m2);
    element_double(v03, v03);
    element_double(v03, v03);
    element_mul(v03, v03, y);

    //v04 = W(5,0) = W(2,0)^3 W(4,0) - W(3,0)^3
    element_square(t0, v01);
    element_mul(t0, t0, v01);
    element_mul(v04, t0, v03);
    element_square(t0, v02);
    element_mul(t0, t0, v02);
    element_sub(v04, v04, t0);

    element_set1(v1m1);
    element_set1(v10);

    element_printf("x y: %B %B\n", x, y);
    element_printf("x2 y2: %B %B\n", x2, y2);
    element_sub(t0, x2, x);
    element_sub(t1, y2, y);
    element_div(t0, t1, t0);
    element_square(t0, t0);
    element_double(v11, x);
    element_add(v11, v11, x2);
    element_sub(v11, v11, t0);

    element_printf("VEC1: %B %B %B\n", v1m1, v10, v11);
    element_printf("VEC0: %B %B %B %B %B %B %B %B\n",
	    v0m3, v0m2, v0m1, v00, v01, v02, v03, v04);

    //Double
    element_square(sm2, v0m2);
    element_square(sm1, v0m1);
    element_square(s0, v00);
    element_square(s1, v01);
    element_square(s2, v02);
    element_square(s3, v03);

    element_mul(pm2, v0m3, v0m1);
    element_mul(pm1, v0m2, v00);
    element_mul(p0, v0m1, v01);
    element_mul(p1, v00, v02);
    element_mul(p2, v01, v03);
    element_mul(p3, v02, v04);

    element_mul(t0, pm1, sm2);
    element_mul(t1, pm2, sm1);
    element_sub(v0m3, t0, t1);

    element_mul(t1, pm2, s0);
    element_mul(t0, p0, sm2);
    element_sub(v0m2, t0, t1);
    element_mul(v0m2, v0m2, W20inv);

    element_mul(t0, p0, sm1);
    element_mul(t1, pm1, s0);
    element_sub(v0m1, t0, t1);

    element_mul(t1, pm1, s1);
    element_mul(t0, p1, sm1);
    element_sub(v00, t0, t1);
    element_mul(v00, v00, W20inv);

    element_mul(t0, p1, s0);
    element_mul(t1, p0, s1);
    element_sub(v01, t0, t1);

    element_mul(t1, p0, s2);
    element_mul(t0, p2, s0);
    element_sub(v02, t0, t1);
    element_mul(v02, v02, W20inv);

    element_mul(t0, p2, s1);
    element_mul(t1, p1, s2);
    element_sub(v03, t0, t1);

    element_mul(t1, p1, s3);
    element_mul(t0, p3, s1);
    element_sub(v04, t0, t1);
    element_mul(v04, v04, W20inv);

    element_square(t0, v10);
    element_mul(t1, v1m1, v11);

    element_mul(t2, pm1, t0);
    element_mul(v1m1, t1, sm1);
    element_sub(v1m1, v1m1, t2);

    element_mul(t2, p0, t0);
    element_mul(v10, t1, s0);
    element_sub(v10, v10, t2);

    element_mul(t2, p1, t0);
    element_mul(v11, t1, s1);
    element_sub(v11, v11, t2);
    element_mul(v11, v11, Wm11inv);

    element_printf("VEC1: %B %B %B\n", v1m1, v10, v11);
    element_printf("VEC0: %B %B %B %B %B %B %B %B\n",
	    v0m3, v0m2, v0m1, v00, v01, v02, v03, v04);

    //DoubleAdd
    element_square(sm2, v0m2);
    element_square(sm1, v0m1);
    element_square(s0, v00);
    element_square(s1, v01);
    element_square(s2, v02);
    element_square(s3, v03);

    element_mul(pm2, v0m3, v0m1);
    element_mul(pm1, v0m2, v00);
    element_mul(p0, v0m1, v01);
    element_mul(p1, v00, v02);
    element_mul(p2, v01, v03);
    element_mul(p3, v02, v04);

    element_mul(t1, pm2, s0);
    element_mul(t0, p0, sm2);
    element_sub(v0m3, t0, t1);
    element_mul(v0m3, v0m3, W20inv);

    element_mul(t0, p0, sm1);
    element_mul(t1, pm1, s0);
    element_sub(v0m2, t0, t1);

    element_mul(t1, pm1, s1);
    element_mul(t0, p1, sm1);
    element_sub(v0m1, t0, t1);
    element_mul(v0m1, v0m1, W20inv);

    element_mul(t0, p1, s0);
    element_mul(t1, p0, s1);
    element_sub(v00, t0, t1);

    element_mul(t1, p0, s2);
    element_mul(t0, p2, s0);
    element_sub(v01, t0, t1);
    element_mul(v01, v01, W20inv);

    element_mul(t0, p2, s1);
    element_mul(t1, p1, s2);
    element_sub(v02, t0, t1);

    element_mul(t1, p1, s3);
    element_mul(t0, p3, s1);
    element_sub(v03, t0, t1);
    element_mul(v03, v03, W20inv);

    element_mul(t0, p3, s2);
    element_mul(t1, p2, s3);
    element_sub(v04, t0, t1);

    element_square(t0, v10);
    element_mul(t1, v1m1, v11);

    element_mul(t2, p0, t0);
    element_mul(v1m1, t1, s0);
    element_sub(v1m1, v1m1, t2);

    element_mul(t2, p1, t0);
    element_mul(v10, t1, s1);
    element_sub(v10, v10, t2);
    element_mul(v10, v10, Wm11inv);

    element_mul(t2, t1, s2);
    element_mul(v11, p2, t0);
    element_sub(v11, v11, t2);
    element_mul(v11, v11, W2m1inv);

    element_printf("VEC1: %B %B %B\n", v1m1, v10, v11);
    element_printf("VEC0: %B %B %B %B %B %B %B %B\n",
	    v0m3, v0m2, v0m1, v00, v01, v02, v03, v04);
    element_div(z, v11, v01);
    element_printf("prepow: %B\n", z);

    element_pow_mpz(z, z, q1r);

    mpz_clear(q1r);
}