Пример #1
2
void eraNumat(double epsa, double dpsi, double deps, double rmatn[3][3])
/*
**  - - - - - - - - -
**   e r a N u m a t
**  - - - - - - - - -
**
**  Form the matrix of nutation.
**
**  Given:
**     epsa        double         mean obliquity of date (Note 1)
**     dpsi,deps   double         nutation (Note 2)
**
**  Returned:
**     rmatn       double[3][3]   nutation matrix (Note 3)
**
**  Notes:
**
**
**  1) The supplied mean obliquity epsa, must be consistent with the
**     precession-nutation models from which dpsi and deps were obtained.
**
**  2) The caller is responsible for providing the nutation components;
**     they are in longitude and obliquity, in radians and are with
**     respect to the equinox and ecliptic of date.
**
**  3) The matrix operates in the sense V(true) = rmatn * V(mean),
**     where the p-vector V(true) is with respect to the true
**     equatorial triad of date and the p-vector V(mean) is with
**     respect to the mean equatorial triad of date.
**
**  Called:
**     eraIr        initialize r-matrix to identity
**     eraRx        rotate around X-axis
**     eraRz        rotate around Z-axis
**
**  Reference:
**
**     Explanatory Supplement to the Astronomical Almanac,
**     P. Kenneth Seidelmann (ed), University Science Books (1992),
**     Section 3.222-3 (p114).
**
**  Copyright (C) 2013-2014, NumFOCUS Foundation.
**  Derived, with permission, from the SOFA library.  See notes at end of file.
*/
{
/* Build the rotation matrix. */
   eraIr(rmatn);
   eraRx(epsa, rmatn);
   eraRz(-dpsi, rmatn);
   eraRx(-(epsa + deps), rmatn);

   return;

}
Пример #2
2
void
palDeuler( const char *order, double phi, double theta, double psi,
                 double rmat[3][3] ) {
  int i = 0;
  double rotations[3];

  /* Initialise rmat */
  eraIr( rmat );

  /* copy the rotations into an array */
  rotations[0] = phi;
  rotations[1] = theta;
  rotations[2] = psi;

  /* maximum three rotations */
  while (i < 3 && order[i] != '\0') {

    switch (order[i]) {
    case 'X':
    case 'x':
    case '1':
      eraRx( rotations[i], rmat );
      break;

    case 'Y':
    case 'y':
    case '2':
      eraRy( rotations[i], rmat );
      break;

    case 'Z':
    case 'z':
    case '3':
      eraRz( rotations[i], rmat );
      break;

    default:
      /* break out the loop if we do not recognize something */
      i = 3;

    }

    /* Go to the next position */
    i++;
  }

  return;
}
Пример #3
0
void eraBp00(double date1, double date2,
             double rb[3][3], double rp[3][3], double rbp[3][3])
/*
**  - - - - - - - -
**   e r a B p 0 0
**  - - - - - - - -
**
**  Frame bias and precession, IAU 2000.
**
**  Given:
**     date1,date2  double         TT as a 2-part Julian Date (Note 1)
**
**  Returned:
**     rb           double[3][3]   frame bias matrix (Note 2)
**     rp           double[3][3]   precession matrix (Note 3)
**     rbp          double[3][3]   bias-precession matrix (Note 4)
**
**  Notes:
**
**  1) The TT date date1+date2 is a Julian Date, apportioned in any
**     convenient way between the two arguments.  For example,
**     JD(TT)=2450123.7 could be expressed in any of these ways,
**     among others:
**
**             date1         date2
**
**         2450123.7           0.0       (JD method)
**         2451545.0       -1421.3       (J2000 method)
**         2400000.5       50123.2       (MJD method)
**         2450123.5           0.2       (date & time method)
**
**     The JD method is the most natural and convenient to use in
**     cases where the loss of several decimal digits of resolution
**     is acceptable.  The J2000 method is best matched to the way
**     the argument is handled internally and will deliver the
**     optimum resolution.  The MJD method and the date & time methods
**     are both good compromises between resolution and convenience.
**
**  2) The matrix rb transforms vectors from GCRS to mean J2000.0 by
**     applying frame bias.
**
**  3) The matrix rp transforms vectors from J2000.0 mean equator and
**     equinox to mean equator and equinox of date by applying
**     precession.
**
**  4) The matrix rbp transforms vectors from GCRS to mean equator and
**     equinox of date by applying frame bias then precession.  It is
**     the product rp x rb.
**
**  5) It is permissible to re-use the same array in the returned
**     arguments.  The arrays are filled in the order given.
**
**  Called:
**     eraBi00      frame bias components, IAU 2000
**     eraPr00      IAU 2000 precession adjustments
**     eraIr        initialize r-matrix to identity
**     eraRx        rotate around X-axis
**     eraRy        rotate around Y-axis
**     eraRz        rotate around Z-axis
**     eraCr        copy r-matrix
**     eraRxr       product of two r-matrices
**
**  Reference:
**     "Expressions for the Celestial Intermediate Pole and Celestial
**     Ephemeris Origin consistent with the IAU 2000A precession-
**     nutation model", Astron.Astrophys. 400, 1145-1154 (2003)
**
**     n.b. The celestial ephemeris origin (CEO) was renamed "celestial
**          intermediate origin" (CIO) by IAU 2006 Resolution 2.
**
**  Copyright (C) 2013-2017, NumFOCUS Foundation.
**  Derived, with permission, from the SOFA library.  See notes at end of file.
*/
{
/* J2000.0 obliquity (Lieske et al. 1977) */
   const double EPS0 = 84381.448 * ERFA_DAS2R;

   double t, dpsibi, depsbi, dra0, psia77, oma77, chia,
          dpsipr, depspr, psia, oma, rbw[3][3];


/* Interval between fundamental epoch J2000.0 and current date (JC). */
   t = ((date1 - ERFA_DJ00) + date2) / ERFA_DJC;

/* Frame bias. */
   eraBi00(&dpsibi, &depsbi, &dra0);

/* Precession angles (Lieske et al. 1977) */
   psia77 = (5038.7784 + (-1.07259 + (-0.001147) * t) * t) * t * ERFA_DAS2R;
   oma77  =       EPS0 + ((0.05127 + (-0.007726) * t) * t) * t * ERFA_DAS2R;
   chia   = (  10.5526 + (-2.38064 + (-0.001125) * t) * t) * t * ERFA_DAS2R;

/* Apply IAU 2000 precession corrections. */
   eraPr00(date1, date2, &dpsipr, &depspr);
   psia = psia77 + dpsipr;
   oma  = oma77  + depspr;

/* Frame bias matrix: GCRS to J2000.0. */
   eraIr(rbw);
   eraRz(dra0, rbw);
   eraRy(dpsibi*sin(EPS0), rbw);
   eraRx(-depsbi, rbw);
   eraCr(rbw, rb);

/* Precession matrix: J2000.0 to mean of date. */
   eraIr(rp);
   eraRx(EPS0, rp);
   eraRz(-psia, rp);
   eraRx(-oma, rp);
   eraRz(chia, rp);

/* Bias-precession matrix: GCRS to mean of date. */
   eraRxr(rp, rbw, rbp);

   return;

}
Пример #4
0
void eraFw2m(double gamb, double phib, double psi, double eps,
             double r[3][3])
/*
**  - - - - - - - -
**   e r a F w 2 m
**  - - - - - - - -
**
**  Form rotation matrix given the Fukushima-Williams angles.
**
**  Given:
**     gamb     double         F-W angle gamma_bar (radians)
**     phib     double         F-W angle phi_bar (radians)
**     psi      double         F-W angle psi (radians)
**     eps      double         F-W angle epsilon (radians)
**
**  Returned:
**     r        double[3][3]   rotation matrix
**
**  Notes:
**
**  1) Naming the following points:
**
**           e = J2000.0 ecliptic pole,
**           p = GCRS pole,
**           E = ecliptic pole of date,
**     and   P = CIP,
**
**     the four Fukushima-Williams angles are as follows:
**
**        gamb = gamma = epE
**        phib = phi = pE
**        psi = psi = pEP
**        eps = epsilon = EP
**
**  2) The matrix representing the combined effects of frame bias,
**     precession and nutation is:
**
**        NxPxB = R_1(-eps).R_3(-psi).R_1(phib).R_3(gamb)
**
**  3) Three different matrices can be constructed, depending on the
**     supplied angles:
**
**     o  To obtain the nutation x precession x frame bias matrix,
**        generate the four precession angles, generate the nutation
**        components and add them to the psi_bar and epsilon_A angles,
**        and call the present function.
**
**     o  To obtain the precession x frame bias matrix, generate the
**        four precession angles and call the present function.
**
**     o  To obtain the frame bias matrix, generate the four precession
**        angles for date J2000.0 and call the present function.
**
**     The nutation-only and precession-only matrices can if necessary
**     be obtained by combining these three appropriately.
**
**  Called:
**     eraIr        initialize r-matrix to identity
**     eraRz        rotate around Z-axis
**     eraRx        rotate around X-axis
**
**  Reference:
**
**     Hilton, J. et al., 2006, Celest.Mech.Dyn.Astron. 94, 351
**
**  Copyright (C) 2013-2015, NumFOCUS Foundation.
**  Derived, with permission, from the SOFA library.  See notes at end of file.
*/
{
/* Construct the matrix. */
   eraIr(r);
   eraRz(gamb, r);
   eraRx(phib, r);
   eraRz(-psi, r);
   eraRx(-eps, r);

   return;

}