void eraNumat(double epsa, double dpsi, double deps, double rmatn[3][3]) /* ** - - - - - - - - - ** e r a N u m a t ** - - - - - - - - - ** ** Form the matrix of nutation. ** ** Given: ** epsa double mean obliquity of date (Note 1) ** dpsi,deps double nutation (Note 2) ** ** Returned: ** rmatn double[3][3] nutation matrix (Note 3) ** ** Notes: ** ** ** 1) The supplied mean obliquity epsa, must be consistent with the ** precession-nutation models from which dpsi and deps were obtained. ** ** 2) The caller is responsible for providing the nutation components; ** they are in longitude and obliquity, in radians and are with ** respect to the equinox and ecliptic of date. ** ** 3) The matrix operates in the sense V(true) = rmatn * V(mean), ** where the p-vector V(true) is with respect to the true ** equatorial triad of date and the p-vector V(mean) is with ** respect to the mean equatorial triad of date. ** ** Called: ** eraIr initialize r-matrix to identity ** eraRx rotate around X-axis ** eraRz rotate around Z-axis ** ** Reference: ** ** Explanatory Supplement to the Astronomical Almanac, ** P. Kenneth Seidelmann (ed), University Science Books (1992), ** Section 3.222-3 (p114). ** ** Copyright (C) 2013-2014, NumFOCUS Foundation. ** Derived, with permission, from the SOFA library. See notes at end of file. */ { /* Build the rotation matrix. */ eraIr(rmatn); eraRx(epsa, rmatn); eraRz(-dpsi, rmatn); eraRx(-(epsa + deps), rmatn); return; }
void palDeuler( const char *order, double phi, double theta, double psi, double rmat[3][3] ) { int i = 0; double rotations[3]; /* Initialise rmat */ eraIr( rmat ); /* copy the rotations into an array */ rotations[0] = phi; rotations[1] = theta; rotations[2] = psi; /* maximum three rotations */ while (i < 3 && order[i] != '\0') { switch (order[i]) { case 'X': case 'x': case '1': eraRx( rotations[i], rmat ); break; case 'Y': case 'y': case '2': eraRy( rotations[i], rmat ); break; case 'Z': case 'z': case '3': eraRz( rotations[i], rmat ); break; default: /* break out the loop if we do not recognize something */ i = 3; } /* Go to the next position */ i++; } return; }
void eraBp00(double date1, double date2, double rb[3][3], double rp[3][3], double rbp[3][3]) /* ** - - - - - - - - ** e r a B p 0 0 ** - - - - - - - - ** ** Frame bias and precession, IAU 2000. ** ** Given: ** date1,date2 double TT as a 2-part Julian Date (Note 1) ** ** Returned: ** rb double[3][3] frame bias matrix (Note 2) ** rp double[3][3] precession matrix (Note 3) ** rbp double[3][3] bias-precession matrix (Note 4) ** ** Notes: ** ** 1) The TT date date1+date2 is a Julian Date, apportioned in any ** convenient way between the two arguments. For example, ** JD(TT)=2450123.7 could be expressed in any of these ways, ** among others: ** ** date1 date2 ** ** 2450123.7 0.0 (JD method) ** 2451545.0 -1421.3 (J2000 method) ** 2400000.5 50123.2 (MJD method) ** 2450123.5 0.2 (date & time method) ** ** The JD method is the most natural and convenient to use in ** cases where the loss of several decimal digits of resolution ** is acceptable. The J2000 method is best matched to the way ** the argument is handled internally and will deliver the ** optimum resolution. The MJD method and the date & time methods ** are both good compromises between resolution and convenience. ** ** 2) The matrix rb transforms vectors from GCRS to mean J2000.0 by ** applying frame bias. ** ** 3) The matrix rp transforms vectors from J2000.0 mean equator and ** equinox to mean equator and equinox of date by applying ** precession. ** ** 4) The matrix rbp transforms vectors from GCRS to mean equator and ** equinox of date by applying frame bias then precession. It is ** the product rp x rb. ** ** 5) It is permissible to re-use the same array in the returned ** arguments. The arrays are filled in the order given. ** ** Called: ** eraBi00 frame bias components, IAU 2000 ** eraPr00 IAU 2000 precession adjustments ** eraIr initialize r-matrix to identity ** eraRx rotate around X-axis ** eraRy rotate around Y-axis ** eraRz rotate around Z-axis ** eraCr copy r-matrix ** eraRxr product of two r-matrices ** ** Reference: ** "Expressions for the Celestial Intermediate Pole and Celestial ** Ephemeris Origin consistent with the IAU 2000A precession- ** nutation model", Astron.Astrophys. 400, 1145-1154 (2003) ** ** n.b. The celestial ephemeris origin (CEO) was renamed "celestial ** intermediate origin" (CIO) by IAU 2006 Resolution 2. ** ** Copyright (C) 2013-2017, NumFOCUS Foundation. ** Derived, with permission, from the SOFA library. See notes at end of file. */ { /* J2000.0 obliquity (Lieske et al. 1977) */ const double EPS0 = 84381.448 * ERFA_DAS2R; double t, dpsibi, depsbi, dra0, psia77, oma77, chia, dpsipr, depspr, psia, oma, rbw[3][3]; /* Interval between fundamental epoch J2000.0 and current date (JC). */ t = ((date1 - ERFA_DJ00) + date2) / ERFA_DJC; /* Frame bias. */ eraBi00(&dpsibi, &depsbi, &dra0); /* Precession angles (Lieske et al. 1977) */ psia77 = (5038.7784 + (-1.07259 + (-0.001147) * t) * t) * t * ERFA_DAS2R; oma77 = EPS0 + ((0.05127 + (-0.007726) * t) * t) * t * ERFA_DAS2R; chia = ( 10.5526 + (-2.38064 + (-0.001125) * t) * t) * t * ERFA_DAS2R; /* Apply IAU 2000 precession corrections. */ eraPr00(date1, date2, &dpsipr, &depspr); psia = psia77 + dpsipr; oma = oma77 + depspr; /* Frame bias matrix: GCRS to J2000.0. */ eraIr(rbw); eraRz(dra0, rbw); eraRy(dpsibi*sin(EPS0), rbw); eraRx(-depsbi, rbw); eraCr(rbw, rb); /* Precession matrix: J2000.0 to mean of date. */ eraIr(rp); eraRx(EPS0, rp); eraRz(-psia, rp); eraRx(-oma, rp); eraRz(chia, rp); /* Bias-precession matrix: GCRS to mean of date. */ eraRxr(rp, rbw, rbp); return; }
void eraFw2m(double gamb, double phib, double psi, double eps, double r[3][3]) /* ** - - - - - - - - ** e r a F w 2 m ** - - - - - - - - ** ** Form rotation matrix given the Fukushima-Williams angles. ** ** Given: ** gamb double F-W angle gamma_bar (radians) ** phib double F-W angle phi_bar (radians) ** psi double F-W angle psi (radians) ** eps double F-W angle epsilon (radians) ** ** Returned: ** r double[3][3] rotation matrix ** ** Notes: ** ** 1) Naming the following points: ** ** e = J2000.0 ecliptic pole, ** p = GCRS pole, ** E = ecliptic pole of date, ** and P = CIP, ** ** the four Fukushima-Williams angles are as follows: ** ** gamb = gamma = epE ** phib = phi = pE ** psi = psi = pEP ** eps = epsilon = EP ** ** 2) The matrix representing the combined effects of frame bias, ** precession and nutation is: ** ** NxPxB = R_1(-eps).R_3(-psi).R_1(phib).R_3(gamb) ** ** 3) Three different matrices can be constructed, depending on the ** supplied angles: ** ** o To obtain the nutation x precession x frame bias matrix, ** generate the four precession angles, generate the nutation ** components and add them to the psi_bar and epsilon_A angles, ** and call the present function. ** ** o To obtain the precession x frame bias matrix, generate the ** four precession angles and call the present function. ** ** o To obtain the frame bias matrix, generate the four precession ** angles for date J2000.0 and call the present function. ** ** The nutation-only and precession-only matrices can if necessary ** be obtained by combining these three appropriately. ** ** Called: ** eraIr initialize r-matrix to identity ** eraRz rotate around Z-axis ** eraRx rotate around X-axis ** ** Reference: ** ** Hilton, J. et al., 2006, Celest.Mech.Dyn.Astron. 94, 351 ** ** Copyright (C) 2013-2015, NumFOCUS Foundation. ** Derived, with permission, from the SOFA library. See notes at end of file. */ { /* Construct the matrix. */ eraIr(r); eraRz(gamb, r); eraRx(phib, r); eraRz(-psi, r); eraRx(-eps, r); return; }