void info_xml_creator::output_chips() { // iterate over executable devices execute_interface_iterator execiter(m_drivlist.config().root_device()); for (device_execute_interface *exec = execiter.first(); exec != NULL; exec = execiter.next()) { fprintf(m_output, "\t\t<chip"); fprintf(m_output, " type=\"cpu\""); fprintf(m_output, " tag=\"%s\"", xml_normalize_string(exec->device().tag())); fprintf(m_output, " name=\"%s\"", xml_normalize_string(exec->device().name())); fprintf(m_output, " clock=\"%d\"", exec->device().clock()); fprintf(m_output, "/>\n"); } // iterate over sound devices sound_interface_iterator sounditer(m_drivlist.config().root_device()); for (device_sound_interface *sound = sounditer.first(); sound != NULL; sound = sounditer.next()) { fprintf(m_output, "\t\t<chip"); fprintf(m_output, " type=\"audio\""); fprintf(m_output, " tag=\"%s\"", xml_normalize_string(sound->device().tag())); fprintf(m_output, " name=\"%s\"", xml_normalize_string(sound->device().name())); if (sound->device().clock() != 0) fprintf(m_output, " clock=\"%d\"", sound->device().clock()); fprintf(m_output, "/>\n"); } }
void info_xml_creator::output_chips(device_t &device, const char *root_tag) { // iterate over executable devices execute_interface_iterator execiter(device); for (device_execute_interface *exec = execiter.first(); exec != NULL; exec = execiter.next()) { if (strcmp(exec->device().tag(), device.tag())) { astring newtag(exec->device().tag()), oldtag(":"); newtag.substr(newtag.find(oldtag.cat(root_tag)) + oldtag.len()); fprintf(m_output, "\t\t<chip"); fprintf(m_output, " type=\"cpu\""); fprintf(m_output, " tag=\"%s\"", xml_normalize_string(newtag)); fprintf(m_output, " name=\"%s\"", xml_normalize_string(exec->device().name())); fprintf(m_output, " clock=\"%d\"", exec->device().clock()); fprintf(m_output, "/>\n"); } } // iterate over sound devices sound_interface_iterator sounditer(device); for (device_sound_interface *sound = sounditer.first(); sound != NULL; sound = sounditer.next()) { if (strcmp(sound->device().tag(), device.tag())) { astring newtag(sound->device().tag()), oldtag(":"); newtag.substr(newtag.find(oldtag.cat(root_tag)) + oldtag.len()); fprintf(m_output, "\t\t<chip"); fprintf(m_output, " type=\"audio\""); fprintf(m_output, " tag=\"%s\"", xml_normalize_string(newtag)); fprintf(m_output, " name=\"%s\"", xml_normalize_string(sound->device().name())); if (sound->device().clock() != 0) fprintf(m_output, " clock=\"%d\"", sound->device().clock()); fprintf(m_output, "/>\n"); } } }
void menu_device_config::populate() { std::ostringstream str; device_t *dev; util::stream_format(str, "[This option is%s currently mounted in the running system]\n\n", m_mounted ? "" : " NOT"); util::stream_format(str, "Option: %s\n", m_option->name()); dev = const_cast<machine_config &>(machine().config()).device_add(&machine().config().root_device(), m_option->name(), m_option->devtype(), 0); util::stream_format(str, "Device: %s\n", dev->name()); if (!m_mounted) str << "\nIf you select this option, the following items will be enabled:\n"; else str << "\nThe selected option enables the following items:\n"; // loop over all CPUs execute_interface_iterator execiter(*dev); if (execiter.count() > 0) { str << "* CPU:\n"; std::unordered_set<std::string> exectags; for (device_execute_interface &exec : execiter) { if (!exectags.insert(exec.device().tag()).second) continue; // get cpu specific clock that takes internal multiplier/dividers into account int clock = exec.device().clock(); // count how many identical CPUs we have int count = 1; const char *name = exec.device().name(); for (device_execute_interface &scan : execiter) { if (exec.device().type() == scan.device().type() && strcmp(name, scan.device().name()) == 0 && exec.device().clock() == scan.device().clock()) if (exectags.insert(scan.device().tag()).second) count++; } // if more than one, prepend a #x in front of the CPU name if (count > 1) util::stream_format(str, " %d" UTF8_MULTIPLY, count); else str << " "; str << name; // display clock in kHz or MHz if (clock >= 1000000) util::stream_format(str, " %d.%06d" UTF8_NBSP "MHz\n", clock / 1000000, clock % 1000000); else util::stream_format(str, " %d.%03d" UTF8_NBSP "kHz\n", clock / 1000, clock % 1000); } } // display screen information screen_device_iterator scriter(*dev); if (scriter.count() > 0) { str << "* Video:\n"; for (screen_device &screen : scriter) { util::stream_format(str, " Screen '%s': ", screen.tag()); if (screen.screen_type() == SCREEN_TYPE_VECTOR) str << "Vector\n"; else { const rectangle &visarea = screen.visible_area(); util::stream_format(str, "%d " UTF8_MULTIPLY " %d (%s) %f" UTF8_NBSP "Hz\n", visarea.width(), visarea.height(), (machine().system().flags & ORIENTATION_SWAP_XY) ? "V" : "H", ATTOSECONDS_TO_HZ(screen.frame_period().attoseconds())); } } } // loop over all sound chips sound_interface_iterator snditer(*dev); if (snditer.count() > 0) { str << "* Sound:\n"; std::unordered_set<std::string> soundtags; for (device_sound_interface &sound : snditer) { if (!soundtags.insert(sound.device().tag()).second) continue; // count how many identical sound chips we have int count = 1; for (device_sound_interface &scan : snditer) { if (sound.device().type() == scan.device().type() && sound.device().clock() == scan.device().clock()) if (soundtags.insert(scan.device().tag()).second) count++; } // if more than one, prepend a #x in front of the CPU name if (count > 1) util::stream_format(str," %d" UTF8_MULTIPLY, count); else str << " "; str << sound.device().name(); // display clock in kHz or MHz int clock = sound.device().clock(); if (clock >= 1000000) util::stream_format(str," %d.%06d" UTF8_NBSP "MHz\n", clock / 1000000, clock % 1000000); else if (clock != 0) util::stream_format(str," %d.%03d" UTF8_NBSP "kHz\n", clock / 1000, clock % 1000); else str << '\n'; } } // scan for BIOS settings int bios = 0; if (dev->rom_region()) { std::string bios_str; // first loop through roms in search of default bios (shortname) for (const rom_entry &rom : dev->rom_region_vector()) if (ROMENTRY_ISDEFAULT_BIOS(&rom)) bios_str.assign(ROM_GETNAME(&rom)); // then loop again to count bios options and to get the default bios complete name for (const rom_entry &rom : dev->rom_region_vector()) { if (ROMENTRY_ISSYSTEM_BIOS(&rom)) { bios++; if (bios_str.compare(ROM_GETNAME(&rom))==0) bios_str.assign(ROM_GETHASHDATA(&rom)); } } if (bios) util::stream_format(str, "* BIOS settings:\n %d options [default: %s]\n", bios, bios_str.c_str()); } int input = 0, input_mj = 0, input_hana = 0, input_gamble = 0, input_analog = 0, input_adjust = 0; int input_keypad = 0, input_keyboard = 0, dips = 0, confs = 0; std::string errors; std::ostringstream dips_opt, confs_opt; ioport_list portlist; for (device_t &iptdev : device_iterator(*dev)) portlist.append(iptdev, errors); // check if the device adds inputs to the system for (auto &port : portlist) for (ioport_field &field : port.second->fields()) { if (field.type() >= IPT_MAHJONG_FIRST && field.type() < IPT_MAHJONG_LAST) input_mj++; else if (field.type() >= IPT_HANAFUDA_FIRST && field.type() < IPT_HANAFUDA_LAST) input_hana++; else if (field.type() >= IPT_GAMBLING_FIRST && field.type() < IPT_GAMBLING_LAST) input_gamble++; else if (field.type() >= IPT_ANALOG_FIRST && field.type() < IPT_ANALOG_LAST) input_analog++; else if (field.type() == IPT_ADJUSTER) input_adjust++; else if (field.type() == IPT_KEYPAD) input_keypad++; else if (field.type() == IPT_KEYBOARD) input_keyboard++; else if (field.type() >= IPT_START1 && field.type() < IPT_UI_FIRST) input++; else if (field.type() == IPT_DIPSWITCH) { dips++; dips_opt << " " << field.name(); for (ioport_setting &setting : field.settings()) { if (setting.value() == field.defvalue()) { util::stream_format(dips_opt, " [default: %s]\n", setting.name()); break; } } } else if (field.type() == IPT_CONFIG) { confs++; confs_opt << " " << field.name(); for (ioport_setting &setting : field.settings()) { if (setting.value() == field.defvalue()) { util::stream_format(confs_opt, " [default: %s]\n", setting.name()); break; } } } } if (dips) str << "* Dispwitch settings:\n" << dips_opt.str(); if (confs) str << "* Configuration settings:\n" << confs_opt.str(); if (input + input_mj + input_hana + input_gamble + input_analog + input_adjust + input_keypad + input_keyboard) str << "* Input device(s):\n"; if (input) util::stream_format(str, " User inputs [%d inputs]\n", input); if (input_mj) util::stream_format(str, " Mahjong inputs [%d inputs]\n", input_mj); if (input_hana) util::stream_format(str, " Hanafuda inputs [%d inputs]\n", input_hana); if (input_gamble) util::stream_format(str, " Gambling inputs [%d inputs]\n", input_gamble); if (input_analog) util::stream_format(str, " Analog inputs [%d inputs]\n", input_analog); if (input_adjust) util::stream_format(str, " Adjuster inputs [%d inputs]\n", input_adjust); if (input_keypad) util::stream_format(str, " Keypad inputs [%d inputs]\n", input_keypad); if (input_keyboard) util::stream_format(str, " Keyboard inputs [%d inputs]\n", input_keyboard); image_interface_iterator imgiter(*dev); if (imgiter.count() > 0) { str << "* Media Options:\n"; for (const device_image_interface &imagedev : imgiter) util::stream_format(str, " %s [tag: %s]\n", imagedev.image_type_name(), imagedev.device().tag()); } slot_interface_iterator slotiter(*dev); if (slotiter.count() > 0) { str << "* Slot Options:\n"; for (const device_slot_interface &slot : slotiter) util::stream_format(str, " %s [default: %s]\n", slot.device().tag(), slot.default_option() ? slot.default_option() : "----"); } if ((execiter.count() + scriter.count() + snditer.count() + imgiter.count() + slotiter.count() + bios + dips + confs + input + input_mj + input_hana + input_gamble + input_analog + input_adjust + input_keypad + input_keyboard) == 0) str << "[None]\n"; const_cast<machine_config &>(machine().config()).device_remove(&machine().config().root_device(), m_option->name()); item_append(str.str(), "", FLAG_MULTILINE, nullptr); }
std::string machine_info::game_info_string() { std::ostringstream buf; // print description, manufacturer, and CPU: util::stream_format(buf, _("%1$s\n%2$s %3$s\nDriver: %4$s\n\nCPU:\n"), m_machine.system().description, m_machine.system().year, m_machine.system().manufacturer, core_filename_extract_base(m_machine.system().source_file)); // loop over all CPUs execute_interface_iterator execiter(m_machine.root_device()); std::unordered_set<std::string> exectags; for (device_execute_interface &exec : execiter) { if (!exectags.insert(exec.device().tag()).second) continue; // get cpu specific clock that takes internal multiplier/dividers into account int clock = exec.device().clock(); // count how many identical CPUs we have int count = 1; const char *name = exec.device().name(); for (device_execute_interface &scan : execiter) { if (exec.device().type() == scan.device().type() && strcmp(name, scan.device().name()) == 0 && exec.device().clock() == scan.device().clock()) if (exectags.insert(scan.device().tag()).second) count++; } // if more than one, prepend a #x in front of the CPU name // display clock in kHz or MHz util::stream_format(buf, (count > 1) ? "%1$d" UTF8_MULTIPLY "%2$s %3$d.%4$0*5$d%6$s\n" : "%2$s %3$d.%4$0*5$d%6$s\n", count, name, (clock >= 1000000) ? (clock / 1000000) : (clock / 1000), (clock >= 1000000) ? (clock % 1000000) : (clock % 1000), (clock >= 1000000) ? 6 : 3, (clock >= 1000000) ? _("MHz") : _("kHz")); } // loop over all sound chips sound_interface_iterator snditer(m_machine.root_device()); std::unordered_set<std::string> soundtags; bool found_sound = false; for (device_sound_interface &sound : snditer) { if (!soundtags.insert(sound.device().tag()).second) continue; // append the Sound: string if (!found_sound) buf << _("\nSound:\n"); found_sound = true; // count how many identical sound chips we have int count = 1; for (device_sound_interface &scan : snditer) { if (sound.device().type() == scan.device().type() && sound.device().clock() == scan.device().clock()) if (soundtags.insert(scan.device().tag()).second) count++; } // if more than one, prepend a #x in front of the CPU name // display clock in kHz or MHz int clock = sound.device().clock(); util::stream_format(buf, (count > 1) ? ((clock != 0) ? "%1$d" UTF8_MULTIPLY "%2$s %3$d.%4$0*5$d%6$s\n" : "%1$d" UTF8_MULTIPLY "%2$s\n") : ((clock != 0) ? "%2$s %3$d.%4$0*5$d%6$s\n" : "%2$s\n"), count, sound.device().name(), (clock >= 1000000) ? (clock / 1000000) : (clock / 1000), (clock >= 1000000) ? (clock % 1000000) : (clock % 1000), (clock >= 1000000) ? 6 : 3, (clock >= 1000000) ? _("MHz") : _("kHz")); } // display screen information buf << _("\nVideo:\n"); screen_device_iterator scriter(m_machine.root_device()); int scrcount = scriter.count(); if (scrcount == 0) buf << _("None\n"); else { for (screen_device &screen : scriter) { std::string detail; if (screen.screen_type() == SCREEN_TYPE_VECTOR) detail = _("Vector"); else { const rectangle &visarea = screen.visible_area(); detail = string_format("%d " UTF8_MULTIPLY " %d (%s) %f" UTF8_NBSP "Hz", visarea.width(), visarea.height(), (m_machine.system().flags & ORIENTATION_SWAP_XY) ? "V" : "H", ATTOSECONDS_TO_HZ(screen.frame_period().attoseconds())); } util::stream_format(buf, (scrcount > 1) ? _("%1$s: %2$s\n") : _("%2$s\n"), get_screen_desc(screen), detail); } } return buf.str(); }
void ui_menu_device_config::populate() { astring string; device_t *dev; string.printf("[This option is%s currently mounted in the running system]\n\n", m_mounted ? "" : " NOT"); string.catprintf("Option: %s\n", m_option->name()); dev = const_cast<machine_config &>(machine().config()).device_add(&machine().config().root_device(), m_option->name(), m_option->devtype(), 0); string.catprintf("Device: %s\n", dev->name()); if (!m_mounted) string.cat("\nIf you select this option, the following items will be enabled:\n"); else string.cat("\nThe selected option enables the following items:\n"); // loop over all CPUs execute_interface_iterator execiter(*dev); if (execiter.count() > 0) { string.cat("* CPU:\n"); tagmap_t<UINT8> exectags; for (device_execute_interface *exec = execiter.first(); exec != NULL; exec = execiter.next()) { if (exectags.add(exec->device().tag(), 1, FALSE) == TMERR_DUPLICATE) continue; // get cpu specific clock that takes internal multiplier/dividers into account int clock = exec->device().clock(); // count how many identical CPUs we have int count = 1; const char *name = exec->device().name(); execute_interface_iterator execinneriter(*dev); for (device_execute_interface *scan = execinneriter.first(); scan != NULL; scan = execinneriter.next()) { if (exec->device().type() == scan->device().type() && strcmp(name, scan->device().name()) == 0 && exec->device().clock() == scan->device().clock()) if (exectags.add(scan->device().tag(), 1, FALSE) != TMERR_DUPLICATE) count++; } // if more than one, prepend a #x in front of the CPU name if (count > 1) string.catprintf(" %d" UTF8_MULTIPLY, count); else string.cat(" "); string.cat(name); // display clock in kHz or MHz if (clock >= 1000000) string.catprintf(" %d.%06d" UTF8_NBSP "MHz\n", clock / 1000000, clock % 1000000); else string.catprintf(" %d.%03d" UTF8_NBSP "kHz\n", clock / 1000, clock % 1000); } } // display screen information screen_device_iterator scriter(*dev); if (scriter.count() > 0) { string.cat("* Video:\n"); for (screen_device *screen = scriter.first(); screen != NULL; screen = scriter.next()) { string.catprintf(" Screen '%s': ", screen->tag()); if (screen->screen_type() == SCREEN_TYPE_VECTOR) string.cat("Vector\n"); else { const rectangle &visarea = screen->visible_area(); string.catprintf("%d " UTF8_MULTIPLY " %d (%s) %f" UTF8_NBSP "Hz\n", visarea.width(), visarea.height(), (machine().system().flags & ORIENTATION_SWAP_XY) ? "V" : "H", ATTOSECONDS_TO_HZ(screen->frame_period().attoseconds)); } } } // loop over all sound chips sound_interface_iterator snditer(*dev); if (snditer.count() > 0) { string.cat("* Sound:\n"); tagmap_t<UINT8> soundtags; for (device_sound_interface *sound = snditer.first(); sound != NULL; sound = snditer.next()) { if (soundtags.add(sound->device().tag(), 1, FALSE) == TMERR_DUPLICATE) continue; // count how many identical sound chips we have int count = 1; sound_interface_iterator sndinneriter(*dev); for (device_sound_interface *scan = sndinneriter.first(); scan != NULL; scan = sndinneriter.next()) { if (sound->device().type() == scan->device().type() && sound->device().clock() == scan->device().clock()) if (soundtags.add(scan->device().tag(), 1, FALSE) != TMERR_DUPLICATE) count++; } // if more than one, prepend a #x in front of the CPU name if (count > 1) string.catprintf(" %d" UTF8_MULTIPLY, count); else string.cat(" "); string.cat(sound->device().name()); // display clock in kHz or MHz int clock = sound->device().clock(); if (clock >= 1000000) string.catprintf(" %d.%06d" UTF8_NBSP "MHz\n", clock / 1000000, clock % 1000000); else if (clock != 0) string.catprintf(" %d.%03d" UTF8_NBSP "kHz\n", clock / 1000, clock % 1000); else string.cat("\n"); } } // scan for BIOS settings int bios = 0; if (dev->rom_region()) { astring bios_str; // first loop through roms in search of default bios (shortname) for (const rom_entry *rom = dev->rom_region(); !ROMENTRY_ISEND(rom); rom++) if (ROMENTRY_ISDEFAULT_BIOS(rom)) bios_str.cpy(ROM_GETNAME(rom)); // then loop again to count bios options and to get the default bios complete name for (const rom_entry *rom = dev->rom_region(); !ROMENTRY_ISEND(rom); rom++) { if (ROMENTRY_ISSYSTEM_BIOS(rom)) { bios++; if (bios_str == ROM_GETNAME(rom)) bios_str.cpy(ROM_GETHASHDATA(rom)); } } if (bios) string.catprintf("* BIOS settings:\n %d options [default: %s]\n", bios, bios_str.cstr()); } int input = 0, input_mj = 0, input_hana = 0, input_gamble = 0, input_analog = 0, input_adjust = 0; int input_keypad = 0, input_keyboard = 0, dips = 0, confs = 0; astring errors, dips_opt, confs_opt; ioport_list portlist; device_iterator iptiter(*dev); for (device_t *iptdev = iptiter.first(); iptdev != NULL; iptdev = iptiter.next()) portlist.append(*iptdev, errors); // check if the device adds inputs to the system for (ioport_port *port = portlist.first(); port != NULL; port = port->next()) for (ioport_field *field = port->first_field(); field != NULL; field = field->next()) { if (field->type() >= IPT_MAHJONG_FIRST && field->type() < IPT_MAHJONG_LAST) input_mj++; else if (field->type() >= IPT_HANAFUDA_FIRST && field->type() < IPT_HANAFUDA_LAST) input_hana++; else if (field->type() >= IPT_GAMBLING_FIRST && field->type() < IPT_GAMBLING_LAST) input_gamble++; else if (field->type() >= IPT_ANALOG_FIRST && field->type() < IPT_ANALOG_LAST) input_analog++; else if (field->type() == IPT_ADJUSTER) input_adjust++; else if (field->type() == IPT_KEYPAD) input_keypad++; else if (field->type() == IPT_KEYBOARD) input_keyboard++; else if (field->type() >= IPT_START1 && field->type() < IPT_UI_FIRST) input++; else if (field->type() == IPT_DIPSWITCH) { dips++; dips_opt.cat(" ").cat(field->name()); for (ioport_setting *setting = field->first_setting(); setting != NULL; setting = setting->next()) { if (setting->value() == field->defvalue()) { dips_opt.catprintf(" [default: %s]\n", setting->name()); break; } } } else if (field->type() == IPT_CONFIG) { confs++; confs_opt.cat(" ").cat(field->name()); for (ioport_setting *setting = field->first_setting(); setting != NULL; setting = setting->next()) { if (setting->value() == field->defvalue()) { confs_opt.catprintf(" [default: %s]\n", setting->name()); break; } } } } if (dips) string.cat("* Dispwitch settings:\n").cat(dips_opt); if (confs) string.cat("* Configuration settings:\n").cat(confs_opt); if (input + input_mj + input_hana + input_gamble + input_analog + input_adjust + input_keypad + input_keyboard) string.cat("* Input device(s):\n"); if (input) string.catprintf(" User inputs [%d inputs]\n", input); if (input_mj) string.catprintf(" Mahjong inputs [%d inputs]\n", input_mj); if (input_hana) string.catprintf(" Hanafuda inputs [%d inputs]\n", input_hana); if (input_gamble) string.catprintf(" Gambling inputs [%d inputs]\n", input_gamble); if (input_analog) string.catprintf(" Analog inputs [%d inputs]\n", input_analog); if (input_adjust) string.catprintf(" Adjuster inputs [%d inputs]\n", input_adjust); if (input_keypad) string.catprintf(" Keypad inputs [%d inputs]\n", input_keypad); if (input_keyboard) string.catprintf(" Keyboard inputs [%d inputs]\n", input_keyboard); image_interface_iterator imgiter(*dev); if (imgiter.count() > 0) { string.cat("* Media Options:\n"); for (const device_image_interface *imagedev = imgiter.first(); imagedev != NULL; imagedev = imgiter.next()) string.catprintf(" %s [tag: %s]\n", imagedev->image_type_name(), imagedev->device().tag()); } slot_interface_iterator slotiter(*dev); if (slotiter.count() > 0) { string.cat("* Slot Options:\n"); for (const device_slot_interface *slot = slotiter.first(); slot != NULL; slot = slotiter.next()) string.catprintf(" %s [default: %s]\n", slot->device().tag(), slot->default_option() ? slot->default_option() : "----"); } if ((execiter.count() + scriter.count() + snditer.count() + imgiter.count() + slotiter.count() + bios + dips + confs + input + input_mj + input_hana + input_gamble + input_analog + input_adjust + input_keypad + input_keyboard) == 0) string.cat("[None]\n"); const_cast<machine_config &>(machine().config()).device_remove(&machine().config().root_device(), m_option->name()); item_append(string, NULL, MENU_FLAG_MULTILINE, NULL); }