Пример #1
0
// Gradient computations
double DenseCRF::gradient( int n_iterations, const ObjectiveFunction & objective, VectorXf * unary_grad, VectorXf * lbl_cmp_grad, VectorXf * kernel_grad) const {
	// Run inference
	std::vector< MatrixXf > Q(n_iterations+1);
	MatrixXf tmp1, unary( M_, N_ ), tmp2;
	unary.fill(0);
	if( unary_ )
		unary = unary_->get();
	expAndNormalize( Q[0], -unary );
	for( int it=0; it<n_iterations; it++ ) {
		tmp1 = -unary;
		for( unsigned int k=0; k<pairwise_.size(); k++ ) {
			pairwise_[k]->apply( tmp2, Q[it] );
			tmp1 -= tmp2;
		}
		expAndNormalize( Q[it+1], tmp1 );
	}
	
	// Compute the objective value
	MatrixXf b( M_, N_ );
	double r = objective.evaluate( b, Q[n_iterations] );
	sumAndNormalize( b, b, Q[n_iterations] );

	// Compute the gradient
	if(unary_grad && unary_)
		*unary_grad = unary_->gradient( b );
	if( lbl_cmp_grad )
		*lbl_cmp_grad = 0*labelCompatibilityParameters();
	if( kernel_grad )
		*kernel_grad = 0*kernelParameters();
	
	for( int it=n_iterations-1; it>=0; it-- ) {
		// Do the inverse message passing
		tmp1.fill(0);
		int ip = 0, ik = 0;
		// Add up all pairwise potentials
		for( unsigned int k=0; k<pairwise_.size(); k++ ) {
			// Compute the pairwise gradient expression
			if( lbl_cmp_grad ) {
				VectorXf pg = pairwise_[k]->gradient( b, Q[it] );
				lbl_cmp_grad->segment( ip, pg.rows() ) += pg;
				ip += pg.rows();
			}
			// Compute the kernel gradient expression
			if( kernel_grad ) {
				VectorXf pg = pairwise_[k]->kernelGradient( b, Q[it] );
				kernel_grad->segment( ik, pg.rows() ) += pg;
				ik += pg.rows();
			}
			// Compute the new b
			pairwise_[k]->applyTranspose( tmp2, b );
			tmp1 += tmp2;
		}
		sumAndNormalize( b, tmp1.array()*Q[it].array(), Q[it] );
		
		// Add the gradient
		if(unary_grad && unary_)
			*unary_grad += unary_->gradient( b );
	}
	return r;
}
Пример #2
0
MatrixXf DenseCRF::inference ( int n_iterations ) const {
	MatrixXf Q( M_, N_ ), tmp1, unary( M_, N_ ), tmp2;
	unary.fill(0);
	if( unary_ )
		unary = unary_->get();
	expAndNormalize( Q, -unary );
	
	for( int it=0; it<n_iterations; it++ ) {
		tmp1 = -unary;
		for( unsigned int k=0; k<pairwise_.size(); k++ ) {
			pairwise_[k]->apply( tmp2, Q );
			tmp1 -= tmp2;
		}
		expAndNormalize( Q, tmp1 );
	}
	return Q;
}
Пример #3
0
MatrixXf DenseCRF::startInference() const{
	MatrixXf Q( M_, N_ );
	Q.fill(0);
	
	// Initialize using the unary energies
	if( unary_ )
		expAndNormalize( Q, -unary_->get() );
	return Q;
}
Пример #4
0
void
pcl::DenseCrf::runInference (float relax)
{
  // set the unary potentials
  for (size_t i = 0; i < unary_.size (); i++)
    next_[i] = -unary_[i];

  // Add up all pairwise potentials
	for( unsigned int i = 0; i < pairwise_potential_.size(); i++ )
    pairwise_potential_[i]->compute( next_, current_, tmp_, M_ );

	// Exponentiate and normalize
	expAndNormalize( current_, next_, 1.0, relax );
}
Пример #5
0
void
pcl::DenseCrf::mapInference (int n_iterations, std::vector<int> &result, float relax)
{
  // Start inference
  // Initialize using the unary energies
  expAndNormalize (current_, unary_, -1);

  for (int i = 0; i < n_iterations; i++)
  {
    runInference (relax);
    std::cout << "iteration: " << i+1 << " - DONE" << std::endl;
  }

  // Find the map
  for (int i = 0; i < N_; i++)
  {
    const int prob_idx = i * M_;
    // Find the max
    float p_label = current_[prob_idx];
    int idx = 0;
    for (int j = 1; j < M_; j++) 
    { 
      if (p_label < current_[prob_idx + j])
      {
        p_label = current_[prob_idx + j];
        idx = j;
      }
    }
    result[i] = idx;
  }
  


/*
	for( int i = 0; i < N_; i++ ){
		const float * p = prob + i*M_;
		// Find the max and subtract it so that the exp doesn't explode
		float mx = p[0];
		int imx = 0;
		for( int j=1; j<M_; j++ )
			if( mx < p[j] ){
				mx = p[j];
				imx = j;
			}
    result[i] = imx
  }
*/

}
Пример #6
0
void DenseCRF::stepInference( MatrixXf & Q, MatrixXf & tmp1, MatrixXf & tmp2 ) const{
	tmp1.resize( Q.rows(), Q.cols() );
	tmp1.fill(0);
	if( unary_ )
		tmp1 -= unary_->get();
	
	// Add up all pairwise potentials
	for( unsigned int k=0; k<pairwise_.size(); k++ ) {
		pairwise_[k]->apply( tmp2, Q );
		tmp1 -= tmp2;
	}
	
	// Exponentiate and normalize
	expAndNormalize( Q, tmp1 );
}
Пример #7
0
void
pcl::DenseCrf::inference (int n_iterations, std::vector<float> &result, float relax)
{
  // Start inference
  // Initialize using the unary energies
  expAndNormalize (current_, unary_, -1);

  for (int i = 0; i < n_iterations; i++)
  {
    runInference (relax);
    std::cout << "iteration: " << i+1 << " - DONE" << std::endl;
  }
  
  // Copy the data into the result vector
  result = current_;
}
void DenseCRF::stepInference( float relax ){
#ifdef SSE_DENSE_CRF
	__m128 * sse_next_ = (__m128*)next_;
	__m128 * sse_unary_ = (__m128*)unary_;
	__m128 * sse_additional_unary_ = (__m128*)additional_unary_;
#endif
	// Set the unary potential
#ifdef SSE_DENSE_CRF
	for( int i=0; i<(N_*M_-1)/4+1; i++ )
		sse_next_[i] = - sse_unary_[i] - sse_additional_unary_[i];
#else
	for( int i=0; i<N_*M_; i++ )
		next_[i] = - unary_[i] - additional_unary_[i];
#endif
	
	// Add up all pairwise potentials
	for( unsigned int i=0; i<pairwise_.size(); i++ )
		pairwise_[i]->apply( next_, current_, tmp_, M_ ); 

	// Exponentiate and normalize
	expAndNormalize( current_, next_, 1.0, relax ); 
}
void DenseCRF::startInference(){
	// Initialize using the unary energies
	expAndNormalize( current_, unary_, -1 );
}