Пример #1
0
 int alloc(std::vector<int>& offsets){
     size_t size=offsets.size();
     register size_t base=-head;
     while(1){
         if(base==dat_size)extends();
         if(size)
             while(base+offsets[size-1]>=dat_size)
                 extends();
         register int flag=true;
         if(dat[base].check>=0){
             flag=false;
         }else{
             for(register int i=0;i<size;i++){
                 if(dat[base+offsets[i]].check>=0){//used
                     flag=false;
                     break;
                 }
             }
         }
         if(flag){
             use(base);
             for(int i=0;i<size;i++)use(base+offsets[i]);
             return base;//got it and return it
         }
         if(dat[base].check==-dat_size)extends();
         base=-dat[base].check;
     }
 }
Пример #2
0
void dgMatrix::TransformBBox (const dgVector& p0local, const dgVector& p1local, dgVector& p0, dgVector& p1) const
{
	const dgMatrix& matrix = *this;
	dgVector size ((p1local - p0local).Scale3 (dgFloat32 (0.5f)));
	dgVector center (TransformVector ((p1local + p0local).Scale3 (dgFloat32 (0.5f))));
	dgVector extends (size.m_x * dgAbsf(matrix[0][0]) + size.m_y * dgAbsf(matrix[1][0]) + size.m_z * dgAbsf(matrix[2][0]),  
					  size.m_x * dgAbsf(matrix[0][1]) + size.m_y * dgAbsf(matrix[1][1]) + size.m_z * dgAbsf(matrix[2][1]),  
	                  size.m_x * dgAbsf(matrix[0][2]) + size.m_y * dgAbsf(matrix[1][2]) + size.m_z * dgAbsf(matrix[2][2]), dgFloat32 (0.0f));  

	p0 = center - extends;
	p1 = center + extends;
}
Пример #3
0
 void Parser::interfaceDefinition(int /*flags*/, Qualifier* qual)
 {
     // FIXME: pick up the methods somehow, these are available from the binding ribs
     eat(T_Interface);
     Str* name = identifier();
     SeqBuilder<Str*> extends(allocator);
     if (match(T_Extends)) {
         do {
             extends.addAtEnd(identifier());
         } while (match(T_Comma));
     }
     eat(T_LeftBrace);
     pushBindingRib(RIB_Instance);
     directives(SFLAG_Interface);
     popBindingRib();
     eat(T_RightBrace);
     addInterface(ALLOC(InterfaceDefn, (qual, name, extends.get())));
 }
Пример #4
0
int QDeclarativeState::qt_metacall(QMetaObject::Call _c, int _id, void **_a)
{
    _id = QObject::qt_metacall(_c, _id, _a);
    if (_id < 0)
        return _id;
    if (_c == QMetaObject::InvokeMetaMethod) {
        if (_id < 1)
            qt_static_metacall(this, _c, _id, _a);
        _id -= 1;
    }
#ifndef QT_NO_PROPERTIES
      else if (_c == QMetaObject::ReadProperty) {
        void *_v = _a[0];
        switch (_id) {
        case 0: *reinterpret_cast< QString*>(_v) = name(); break;
        case 1: *reinterpret_cast< QDeclarativeBinding**>(_v) = when(); break;
        case 2: *reinterpret_cast< QString*>(_v) = extends(); break;
        case 3: *reinterpret_cast< QDeclarativeListProperty<QDeclarativeStateOperation>*>(_v) = changes(); break;
        }
        _id -= 4;
    } else if (_c == QMetaObject::WriteProperty) {
        void *_v = _a[0];
        switch (_id) {
        case 0: setName(*reinterpret_cast< QString*>(_v)); break;
        case 1: setWhen(*reinterpret_cast< QDeclarativeBinding**>(_v)); break;
        case 2: setExtends(*reinterpret_cast< QString*>(_v)); break;
        }
        _id -= 4;
    } else if (_c == QMetaObject::ResetProperty) {
        _id -= 4;
    } else if (_c == QMetaObject::QueryPropertyDesignable) {
        _id -= 4;
    } else if (_c == QMetaObject::QueryPropertyScriptable) {
        _id -= 4;
    } else if (_c == QMetaObject::QueryPropertyStored) {
        _id -= 4;
    } else if (_c == QMetaObject::QueryPropertyEditable) {
        _id -= 4;
    } else if (_c == QMetaObject::QueryPropertyUser) {
        _id -= 4;
    }
#endif // QT_NO_PROPERTIES
    return _id;
}
Пример #5
0
        /**/

    /// INTERNAL ONLY
    ///
#define BOOST_PP_LOCAL_LIMITS (0, BOOST_PP_DEC(BOOST_PROTO_MAX_FUNCTION_CALL_ARITY))
#include BOOST_PP_LOCAL_ITERATE()

#endif
};

/// \brief extends\<\> class template for adding behaviors to a Proto expression template
///
template<typename Expr, typename Derived, typename Domain>
struct extends<Expr, Derived, Domain, 0>
{
    extends()
        : proto_expr_()
    {}

    extends(extends const &that)
        : proto_expr_(that.proto_expr_)
    {}

    extends(Expr const &expr_)
        : proto_expr_(expr_)
    {}

    BOOST_PROTO_BASIC_EXTENDS_(Expr, Derived, Domain)
    BOOST_PROTO_EXTENDS_ASSIGN()
    BOOST_PROTO_EXTENDS_SUBSCRIPT()
Пример #6
0
int main(int argc, char **argv)
{
	IO rasters[] = { /* rasters stores output buffers */
		{"dem",YES,"Input dem","input",UNKNOWN,-1,NULL}, /* WARNING: this one map is input */
		{"forms",NO,"Most common geomorphic forms","patterns",CELL_TYPE,-1,NULL},
		{"ternary",NO,"code of ternary patterns","patterns",CELL_TYPE,-1,NULL},
		{"positive",NO,"code of binary positive patterns","patterns",CELL_TYPE,-1,NULL},
		{"negative",NO,"code of binary negative patterns","patterns",CELL_TYPE,-1,NULL},
		{"intensity",NO,"rasters containing mean relative elevation of the form","geometry",FCELL_TYPE,-1,NULL},
		{"exposition",NO,"rasters containing maximum difference between extend and central cell","geometry",FCELL_TYPE,-1,NULL},
		{"range",NO,"rasters containing difference between max and min elevation of the form extend","geometry",FCELL_TYPE,-1,NULL},
		{"variance",NO,"rasters containing variance of form boundary","geometry",FCELL_TYPE,-1,NULL},
		{"elongation",NO,"rasters containing local elongation","geometry",FCELL_TYPE,-1,NULL},
		{"azimuth",NO,"rasters containing local azimuth of the elongation","geometry",FCELL_TYPE,-1,NULL},
		{"extend",NO,"rasters containing local extend (area) of the form","geometry",FCELL_TYPE,-1,NULL},
		{"width",NO,"rasters containing local width of the form","geometry",FCELL_TYPE,-1,NULL}
	}; /* adding more maps change IOSIZE macro */
	
	CATCOLORS ccolors[CNT]={ /* colors and cats for forms */
		{ZERO, 0, 0, 0, "forms"},
		{FL, 220, 220, 220, "flat"},
		{PK, 56, 0, 0, "summit"},
		{RI, 200, 0, 0, "ridge"},
		{SH, 255, 80, 20, "shoulder"},
		{CV, 250, 210, 60, "spur"},
		{SL, 255, 255, 60, "slope"},
		{CN, 180, 230, 20, "hollow"},
		{FS, 60, 250, 150, "footslope"},
		{VL, 0, 0, 255, "valley"},
		{PT, 0, 0, 56, "depression"},
		{__, 255, 0, 255, "ERROR"}};

struct GModule *module;
	struct Option
					*opt_input,
					*opt_output[io_size],
					*par_search_radius,
					*par_skip_radius,
					*par_flat_treshold,
					*par_flat_distance;
	struct Flag *flag_units,
							*flag_extended;

	struct History history;

	int i,j, n;
	int meters=0, multires=0, extended=0; /* flags */
	int row,cur_row,col,radius;
	int pattern_size;
	double max_resolution;
	char prefix[20];

	G_gisinit(argv[0]);

{  /* interface  parameters */
	module = G_define_module();
	module->description =
	_("Calculate geomorphons (terrain forms)and associated geometry using machine vision approach");
	G_add_keyword("Geomorphons");
	G_add_keyword("Terrain patterns");
	G_add_keyword("Machine vision geomorphometry");

	opt_input = G_define_standard_option(G_OPT_R_INPUT);
	opt_input->key = rasters[0].name;
	opt_input->required = rasters[0].required;
	opt_input->description = _(rasters[0].description);

		for (i=1;i<io_size;++i) { /* WARNING: loop starts from one, zero is for input */
	opt_output[i] = G_define_standard_option(G_OPT_R_OUTPUT);
	opt_output[i]->key = rasters[i].name;
	opt_output[i]->required = NO;
	opt_output[i]->description = _(rasters[i].description);
	opt_output[i]->guisection = _(rasters[i].gui);
		}

	par_search_radius = G_define_option();
	par_search_radius->key = "search";
	par_search_radius->type = TYPE_INTEGER;
	par_search_radius->answer = "3";
	par_search_radius->required = YES;
	par_search_radius->description = _("Outer search radius");

	par_skip_radius = G_define_option();
	par_skip_radius->key = "skip";
	par_skip_radius->type = TYPE_INTEGER;
	par_skip_radius->answer = "0";
	par_skip_radius->required = YES;
	par_skip_radius->description = _("Inner search radius");

	par_flat_treshold = G_define_option();
	par_flat_treshold->key = "flat";
	par_flat_treshold->type = TYPE_DOUBLE;
	par_flat_treshold->answer = "1";
	par_flat_treshold->required = YES;
	par_flat_treshold->description = _("Flatenss treshold (degrees)");

	par_flat_distance = G_define_option();
	par_flat_distance->key = "dist";
	par_flat_distance->type = TYPE_DOUBLE;
	par_flat_distance->answer = "0";
	par_flat_distance->required = YES;
	par_flat_distance->description = _("Flatenss distance, zero for none");

	flag_units = G_define_flag();
	flag_units->key = 'm';
	flag_units->description = _("Use meters to define search units (default is cells)");

	flag_extended = G_define_flag();
	flag_extended->key = 'e';
	flag_extended->description = _("Use extended form correction");

		if (G_parser(argc, argv))
	exit(EXIT_FAILURE);
}

{	/* calculate parameters */
	int num_outputs=0;
	double search_radius, skip_radius, start_radius, step_radius;
	double ns_resolution;

			for (i=1;i<io_size;++i) /* check for outputs */
	if(opt_output[i]->answer) {
			if (G_legal_filename(opt_output[i]->answer) < 0)
		G_fatal_error(_("<%s> is an illegal file name"), opt_output[i]->answer);
		num_outputs++;
	}
		if(!num_outputs && !multires)
	G_fatal_error(_("At least one output is required"));

	meters=(flag_units->answer != 0);
	extended=(flag_extended->answer != 0);
	nrows = Rast_window_rows();
	ncols = Rast_window_cols();
	Rast_get_window(&window);
	G_begin_distance_calculations();

	if(G_projection()==PROJECTION_LL)	{ /* for LL max_res should be NS */
		ns_resolution=G_distance(0,Rast_row_to_northing(0, &window),0,Rast_row_to_northing(1, &window));
		max_resolution=ns_resolution;
	} else {
		max_resolution=MAX(window.ns_res,window.ew_res); /* max_resolution MORE meters per cell */
	}
	G_message("NSRES, %f", ns_resolution);
	cell_res=max_resolution; /* this parameter is global */
	/* search distance */
	search_radius=atof(par_search_radius->answer);
	search_cells=meters?(int)(search_radius/max_resolution):search_radius;
		if(search_cells<1)
	G_fatal_error(_("Search radius size must cover at least 1 cell"));
	row_radius_size=meters?ceil(search_radius/max_resolution):search_radius;
	row_buffer_size=row_radius_size*2+1;
	search_distance=(meters)?search_radius:max_resolution*search_cells;
	/* skip distance */
	skip_radius=atof(par_skip_radius->answer);
	skip_cells=meters?(int)(skip_radius/max_resolution):skip_radius;
		if(skip_cells>=search_cells)
	G_fatal_error(_("Skip radius size must be at least 1 cell lower than radius"));
	skip_distance=(meters)?skip_radius:ns_resolution*skip_cells;

	/* flatness parameters */
	flat_threshold=atof(par_flat_treshold->answer);
		if(flat_threshold<=0.)
	G_fatal_error(_("Flatenss treshold must be grater than 0"));
	flat_threshold=DEGREE2RAD(flat_threshold);
	
	flat_distance=atof(par_flat_distance->answer);
	flat_distance=(meters)?flat_distance:ns_resolution*flat_distance;
	flat_threshold_height=tan(flat_threshold)*flat_distance;
	if((flat_distance>0&&flat_distance<=skip_distance)||flat_distance>=search_distance) {
		G_warning(_("Flatenss distance should be between skip and search radius. Otherwise ignored"));
		flat_distance=0;
	}
		if (search_distance<10*cell_res)
	extended=0;
	
	/* print information about distances */
	G_message("Search distance m: %f, cells: %d", search_distance, search_cells);
	G_message("Skip distance m: %f, cells: %d", skip_distance, skip_cells);
	G_message("Flat threshold distance m: %f, height: %f",flat_distance, flat_threshold_height);
	G_message("%s version",(extended)?"extended":"basic");
}

	/* generate global ternary codes */
		for(i=0;i<6561;++i)
	global_ternary_codes[i]=ternary_rotate(i);

	/* open DEM */
	strcpy(elevation.elevname,opt_input->answer);
	open_map(&elevation);

	PATTERN* pattern;
	PATTERN patterns[4];
	void* pointer_buf;
	int formA, formB, formC;
	double search_dist=search_distance;
	double skip_dist=skip_distance;
	double flat_dist=flat_distance;
	double area_of_octagon=4*(search_distance*search_distance)*sin(DEGREE2RAD(45.));

	cell_step=1;
	/* prepare outputs */
		for (i=1;i<io_size;++i) 
	if(opt_output[i]->answer) {
		rasters[i].fd=Rast_open_new(opt_output[i]->answer,rasters[i].out_data_type);
		rasters[i].buffer=Rast_allocate_buf(rasters[i].out_data_type);
	}
	
	/* main loop */
	for(row=0;row<nrows;++row) {
		G_percent(row, nrows, 2);
		cur_row = (row < row_radius_size)?row:
			((row >= nrows-row_radius_size-1) ? row_buffer_size - (nrows-row-1) : row_radius_size);
			
			if(row>(row_radius_size) && row<nrows-(row_radius_size+1))
		shift_buffers(row);
		for (col=0;col<ncols;++col) {
		/* on borders forms ussualy are innatural. */
			if(row<(skip_cells+1) || row>nrows-(skip_cells+2) ||
				col<(skip_cells+1) || col>ncols-(skip_cells+2) ||
				Rast_is_f_null_value(&elevation.elev[cur_row][col])) {
/* set outputs to NULL and do nothing if source value is null	or border*/
				for (i=1;i<io_size;++i)
					if(opt_output[i]->answer) {
						pointer_buf=rasters[i].buffer;
						switch (rasters[i].out_data_type) {
						case CELL_TYPE:
							Rast_set_c_null_value(&((CELL*)pointer_buf)[col],1);
							break;
						case FCELL_TYPE:
							Rast_set_f_null_value(&((FCELL*)pointer_buf)[col],1);
							break;
						case DCELL_TYPE:
							Rast_set_d_null_value(&((DCELL*)pointer_buf)[col],1);
							break;
						default:
							G_fatal_error(_("Unknown output data type"));
						}
					}
					continue; 
			} /* end null value */
{
	int cur_form, small_form;
	search_distance=search_dist;
	skip_distance=skip_dist;
	flat_distance=flat_dist;

	pattern_size=calc_pattern(&patterns[0],row,cur_row,col);
	pattern=&patterns[0];
	cur_form=determine_form(pattern->num_negatives,pattern->num_positives);

	/* correction of forms */
	if(extended) {
		/* 1) remove extensive innatural forms: ridges, peaks, shoulders and footslopes */
		if((cur_form==4||cur_form==8||cur_form==2||cur_form==3)) {
			search_distance=(search_dist/4.<4*max_resolution)? 4*max_resolution : search_dist/4.;
			skip_distance=0;
			flat_distance=0;
			pattern_size=calc_pattern(&patterns[1],row,cur_row,col);
			pattern=&patterns[1];
			small_form=determine_form(pattern->num_negatives,pattern->num_positives);
				if(cur_form==4||cur_form==8)
			cur_form=(small_form==1)? 1 : cur_form;
				if(cur_form==2||cur_form==3)
			cur_form=small_form;
		}
		
 } /* end of correction */
	pattern=&patterns[0];
		if(opt_output[o_forms]->answer) 
	((CELL*)rasters[o_forms].buffer)[col]=cur_form;
}

				if(opt_output[o_ternary]->answer)
			((CELL*)rasters[o_ternary].buffer)[col]=determine_ternary(pattern->pattern);
				if(opt_output[o_positive]->answer)
			((CELL*)rasters[o_positive].buffer)[col]=pattern->num_positives;//rotate(pattern->positives);
				if(opt_output[o_negative]->answer)
			((CELL*)rasters[o_negative].buffer)[col]=pattern->num_negatives;//rotate(pattern->negatives);
				if(opt_output[o_intensity]->answer)
			((FCELL*)rasters[o_intensity].buffer)[col]=intensity(pattern->elevation,pattern_size);
				if(opt_output[o_exposition]->answer)
			((FCELL*)rasters[o_exposition].buffer)[col]=exposition(pattern->elevation);
				if(opt_output[o_range]->answer)
			((FCELL*)rasters[o_range].buffer)[col]=range(pattern->elevation);
				if(opt_output[o_variance]->answer)
			((FCELL*)rasters[o_variance].buffer)[col]=variance(pattern->elevation, pattern_size);

//			 used only for next four shape functions 
			if(opt_output[o_elongation]->answer ||opt_output[o_azimuth]->answer||
				opt_output[o_extend]->answer || opt_output[o_width]->answer) {
				float azimuth,elongation,width;
				radial2cartesian(pattern);
				shape(pattern, pattern_size,&azimuth,&elongation,&width);
					if(opt_output[o_azimuth]->answer)
				((FCELL*)rasters[o_azimuth].buffer)[col]=azimuth;
					if(opt_output[o_elongation]->answer)
				((FCELL*)rasters[o_elongation].buffer)[col]=elongation;
					if(opt_output[o_width]->answer)
				((FCELL*)rasters[o_width].buffer)[col]=width;
			}
				if(opt_output[o_extend]->answer)
			((FCELL*)rasters[o_extend].buffer)[col]=extends(pattern, pattern_size)/area_of_octagon;

		} /* end for col */

		/* write existing outputs */
				for (i=1;i<io_size;++i)
			if(opt_output[i]->answer)
		Rast_put_row(rasters[i].fd, rasters[i].buffer, rasters[i].out_data_type);
	}
	G_percent(row, nrows, 2); /* end main loop */

	/* finish and close */
	free_map(elevation.elev, row_buffer_size+1);
		for (i=1;i<io_size;++i)
	if(opt_output[i]->answer) {
		G_free(rasters[i].buffer);
		Rast_close(rasters[i].fd);
		Rast_short_history(opt_output[i]->answer, "raster", &history);
		Rast_command_history(&history);
		Rast_write_history(opt_output[i]->answer, &history);
	}

		if(opt_output[o_forms]->answer)
	write_form_cat_colors(opt_output[o_forms]->answer,ccolors);
		if(opt_output[o_intensity]->answer)
	write_contrast_colors(opt_output[o_intensity]->answer);
		if(opt_output[o_exposition]->answer)
	write_contrast_colors(opt_output[o_exposition]->answer);
		if(opt_output[o_range]->answer)
	write_contrast_colors(opt_output[o_range]->answer);

G_message("Done!");
exit(EXIT_SUCCESS);
}