static int fdt_offset(const void *fit) { int images, node, fdt_len, fdt_node, fdt_offset; const char *fdt_name; node = fit_find_config_node(fit); if (node < 0) return node; images = fdt_path_offset(fit, FIT_IMAGES_PATH); if (images < 0) { debug("%s: Cannot find /images node: %d\n", __func__, images); return -EINVAL; } fdt_name = fdt_getprop(fit, node, FIT_FDT_PROP, &fdt_len); if (!fdt_name) { debug("%s: Cannot find fdt name property: %d\n", __func__, fdt_len); return -EINVAL; } fdt_node = fdt_subnode_offset(fit, images, fdt_name); if (fdt_node < 0) { debug("%s: Cannot find fdt node '%s': %d\n", __func__, fdt_name, fdt_node); return -EINVAL; } fdt_offset = fdt_getprop_u32(fit, fdt_node, "data-offset"); if (fdt_offset == FDT_ERROR) return -ENOENT; fdt_len = fdt_getprop_u32(fit, fdt_node, "data-size"); if (fdt_len < 0) return fdt_len; return fdt_offset; }
int spl_load_simple_fit(struct spl_load_info *info, ulong sector, void *fit) { int sectors; ulong size, load; unsigned long count; int node, images; void *load_ptr; int fdt_offset, fdt_len; int data_offset, data_size; int base_offset; int src_sector; void *dst; /* * Figure out where the external images start. This is the base for the * data-offset properties in each image. */ size = fdt_totalsize(fit); size = (size + 3) & ~3; base_offset = (size + 3) & ~3; /* * So far we only have one block of data from the FIT. Read the entire * thing, including that first block, placing it so it finishes before * where we will load the image. * * Note that we will load the image such that its first byte will be * at the load address. Since that byte may be part-way through a * block, we may load the image up to one block before the load * address. So take account of that here by subtracting an addition * block length from the FIT start position. * * In fact the FIT has its own load address, but we assume it cannot * be before CONFIG_SYS_TEXT_BASE. */ fit = (void *)(CONFIG_SYS_TEXT_BASE - size - info->bl_len); sectors = (size + info->bl_len - 1) / info->bl_len; count = info->read(info, sector, sectors, fit); debug("fit read sector %lx, sectors=%d, dst=%p, count=%lu\n", sector, sectors, fit, count); if (count == 0) return -EIO; /* find the firmware image to load */ images = fdt_path_offset(fit, FIT_IMAGES_PATH); if (images < 0) { debug("%s: Cannot find /images node: %d\n", __func__, images); return -1; } node = fdt_first_subnode(fit, images); if (node < 0) { debug("%s: Cannot find first image node: %d\n", __func__, node); return -1; } /* Get its information and set up the spl_image structure */ data_offset = fdt_getprop_u32(fit, node, "data-offset"); data_size = fdt_getprop_u32(fit, node, "data-size"); load = fdt_getprop_u32(fit, node, "load"); debug("data_offset=%x, data_size=%x\n", data_offset, data_size); spl_image.load_addr = load; spl_image.entry_point = load; spl_image.os = IH_OS_U_BOOT; /* * Work out where to place the image. We read it so that the first * byte will be at 'load'. This may mean we need to load it starting * before then, since we can only read whole blocks. */ sectors = (data_size + info->bl_len - 1) / info->bl_len; data_offset += base_offset; load_ptr = (void *)load; debug("U-Boot size %x, data %p\n", data_size, load_ptr); dst = load_ptr - (data_offset % info->bl_len); /* Read the image */ src_sector = sector + data_offset / info->bl_len; debug("image: data_offset=%x, dst=%p, src_sector=%x, sectors=%x\n", data_offset, dst, src_sector, sectors); count = info->read(info, src_sector, sectors, dst); if (count != sectors) return -EIO; /* Figure out which device tree the board wants to use */ fdt_len = spl_fit_select_fdt(fit, images, &fdt_offset); if (fdt_len < 0) return fdt_len; /* * Read the device tree and place it after the image. There may be * some extra data before it since we can only read entire blocks. */ dst = load_ptr + data_size; fdt_offset += base_offset; count = info->read(info, sector + fdt_offset / info->bl_len, sectors, dst); debug("fit read %x sectors to %x, dst %p, data_offset %x\n", sectors, spl_image.load_addr, dst, fdt_offset); if (count != sectors) return -EIO; /* * Copy the device tree so that it starts immediately after the image. * After this we will have the U-Boot image and its device tree ready * for us to start. */ memcpy(dst, dst + fdt_offset % info->bl_len, fdt_len); return 0; }
static int spl_fit_select_fdt(const void *fdt, int images, int *fdt_offsetp) { const char *name, *fdt_name; int conf, node, fdt_node; int len; *fdt_offsetp = 0; conf = fdt_path_offset(fdt, FIT_CONFS_PATH); if (conf < 0) { debug("%s: Cannot find /configurations node: %d\n", __func__, conf); return -EINVAL; } for (node = fdt_first_subnode(fdt, conf); node >= 0; node = fdt_next_subnode(fdt, node)) { name = fdt_getprop(fdt, node, "description", &len); if (!name) { #ifdef CONFIG_SPL_LIBCOMMON_SUPPORT printf("%s: Missing FDT description in DTB\n", __func__); #endif return -EINVAL; } if (board_fit_config_name_match(name)) continue; debug("Selecting config '%s'", name); fdt_name = fdt_getprop(fdt, node, FIT_FDT_PROP, &len); if (!fdt_name) { debug("%s: Cannot find fdt name property: %d\n", __func__, len); return -EINVAL; } debug(", fdt '%s'\n", fdt_name); fdt_node = fdt_subnode_offset(fdt, images, fdt_name); if (fdt_node < 0) { debug("%s: Cannot find fdt node '%s': %d\n", __func__, fdt_name, fdt_node); return -EINVAL; } *fdt_offsetp = fdt_getprop_u32(fdt, fdt_node, "data-offset"); len = fdt_getprop_u32(fdt, fdt_node, "data-size"); #ifdef CONFIG_SPL_LIBCOMMON_SUPPORT printf("FIT: Selected '%s'\n", name); #endif return len; } #ifdef CONFIG_SPL_LIBCOMMON_SUPPORT printf("No matching DT out of these options:\n"); for (node = fdt_first_subnode(fdt, conf); node >= 0; node = fdt_next_subnode(fdt, node)) { name = fdt_getprop(fdt, node, "name", &len); printf(" %s\n", name); } #endif return -ENOENT; }
/* ************************************************************************************************************ * * function * * name : * * parmeters : * * return : * * note : * * ************************************************************************************************************ */ int sunxi_sprite_erase_flash(void *img_mbr_buffer) { uint32_t need_erase_flag = 0; char buf[SUNXI_MBR_SIZE * SUNXI_MBR_COPY_NUM]; //int ret; int nodeoffset; if(sunxi_sprite_erase(0, img_mbr_buffer) > 0) { printf("flash already erased\n"); return 0; } //获取擦除信息,查看是否需要擦除flash //ret = script_parser_fetch("platform", "eraseflag", &need_erase_flag, 1); nodeoffset = fdt_path_offset(working_fdt,FDT_PATH_PLATFORM); if(nodeoffset > 0) { fdt_getprop_u32(working_fdt,nodeoffset,"eraseflag",&need_erase_flag); } if(need_erase_flag) { printf("do need erase flash\n"); } else { printf("not need erase flash\n"); } //当要求强制擦除,不处理私有数据 if(need_erase_flag == 0x11) { printf("force erase flash\n"); sunxi_sprite_erase(1, img_mbr_buffer); return 0; } //检测不到private分区,即不用保护用户数据 if(!sunxi_sprite_probe_prvt(img_mbr_buffer)) { printf("no part need to protect user data\n"); sunxi_sprite_erase(need_erase_flag, img_mbr_buffer); return 0; } //当初始化失败的时候,直接擦除,不处理私有数据 if(sunxi_sprite_init(1)) { debug("sunxi sprite pre init fail, we have to erase it\n"); sunxi_sprite_exit(1); sunxi_sprite_erase(need_erase_flag, img_mbr_buffer); return 0; } debug("nand pre init ok\n"); //读出量产介质上的MBR if(!sunxi_sprite_read(0, (SUNXI_MBR_SIZE * SUNXI_MBR_COPY_NUM)/512, buf)) { printf("read local mbr on flash failed\n"); sunxi_sprite_exit(1); sunxi_sprite_erase(need_erase_flag, img_mbr_buffer); return 0; } //校验MBR if(sunxi_sprite_verify_mbr(buf)) { printf("the mbr on flash is bad\n"); sunxi_sprite_exit(1); sunxi_sprite_erase(need_erase_flag, img_mbr_buffer); return 0; } printf("begin to store data\n"); if(sunxi_sprite_store_part_data(buf) < 0) { sunxi_sprite_exit(1); return -1; } sunxi_sprite_exit(1); printf("need_erase_flag = %d\n", need_erase_flag); //开始擦除 printf("begin to erase\n"); sunxi_sprite_erase(need_erase_flag, img_mbr_buffer); //开始回写private printf("finish erase\n"); sunxi_sprite_init(0); printf("rewrite\n"); if(sunxi_sprite_restore_part_data(img_mbr_buffer)) { sunxi_sprite_exit(0); return -1; } printf("flash exit\n"); sunxi_sprite_exit(0); return 0; }
/** * spl_load_fit_image(): load the image described in a certain FIT node * @info: points to information about the device to load data from * @sector: the start sector of the FIT image on the device * @fit: points to the flattened device tree blob describing the FIT * image * @base_offset: the beginning of the data area containing the actual * image data, relative to the beginning of the FIT * @node: offset of the DT node describing the image to load (relative * to @fit) * @image_info: will be filled with information about the loaded image * If the FIT node does not contain a "load" (address) property, * the image gets loaded to the address pointed to by the * load_addr member in this struct. * * Return: 0 on success or a negative error number. */ static int spl_load_fit_image(struct spl_load_info *info, ulong sector, void *fit, ulong base_offset, int node, struct spl_image_info *image_info) { int offset; size_t length; int len; ulong size; ulong load_addr, load_ptr; void *src; ulong overhead; int nr_sectors; int align_len = ARCH_DMA_MINALIGN - 1; uint8_t image_comp = -1, type = -1; const void *data; if (IS_ENABLED(CONFIG_SPL_OS_BOOT) && IS_ENABLED(CONFIG_SPL_GZIP)) { if (fit_image_get_comp(fit, node, &image_comp)) puts("Cannot get image compression format.\n"); else debug("%s ", genimg_get_comp_name(image_comp)); if (fit_image_get_type(fit, node, &type)) puts("Cannot get image type.\n"); else debug("%s ", genimg_get_type_name(type)); } if (fit_image_get_load(fit, node, &load_addr)) load_addr = image_info->load_addr; if (!fit_image_get_data_offset(fit, node, &offset)) { /* External data */ offset += base_offset; if (fit_image_get_data_size(fit, node, &len)) return -ENOENT; load_ptr = (load_addr + align_len) & ~align_len; length = len; overhead = get_aligned_image_overhead(info, offset); nr_sectors = get_aligned_image_size(info, length, offset); if (info->read(info, sector + get_aligned_image_offset(info, offset), nr_sectors, (void *)load_ptr) != nr_sectors) return -EIO; debug("External data: dst=%lx, offset=%x, size=%lx\n", load_ptr, offset, (unsigned long)length); src = (void *)load_ptr + overhead; } else { /* Embedded data */ if (fit_image_get_data(fit, node, &data, &length)) { puts("Cannot get image data/size\n"); return -ENOENT; } debug("Embedded data: dst=%lx, size=%lx\n", load_addr, (unsigned long)length); src = (void *)data; } #ifdef CONFIG_SPL_FIT_IMAGE_POST_PROCESS board_fit_image_post_process(&src, &length); #endif if (IS_ENABLED(CONFIG_SPL_OS_BOOT) && IS_ENABLED(CONFIG_SPL_GZIP) && image_comp == IH_COMP_GZIP && type == IH_TYPE_KERNEL) { size = length; if (gunzip((void *)load_addr, CONFIG_SYS_BOOTM_LEN, src, &size)) { puts("Uncompressing error\n"); return -EIO; } length = size; } else { memcpy((void *)load_addr, src, length); } if (image_info) { image_info->load_addr = load_addr; image_info->size = length; image_info->entry_point = fdt_getprop_u32(fit, node, "entry"); } return 0; }
/* ********************************************************************************************************************** * i2c_init * * Description: * * Arguments : * * Returns : none * * Notes : none * ********************************************************************************************************************** */ void i2c_init(int speed, int slaveaddr) { int i, clk_n, clk_m; int i2c_nodeoffset; /*set gpio and clock*/ #ifndef CONFIG_CPUS_I2C i2c_nodeoffset = fdt_path_offset(working_fdt,"/soc/twi_para"); if(i2c_nodeoffset < 0) { printf("axp: get node[%s] error\n",PMU_SCRIPT_NAME); return ; } //if(script_parser_fetch(PMU_SCRIPT_NAME, "pmu_pwron_vol", &vol_value, 1)) if(fdt_getprop_u32(working_fdt,i2c_nodeoffset,"twi_port", (uint32_t*)&bus_num)<0) { printf("can not get i2c bus num \n"); } if(bus_num > SUNXI_I2C_CONTROLLER) { printf("can not support i2c bus num %d \n",bus_num); return ; } set_i2c_clock(); if(0 != fdt_set_all_pin_by_offset(i2c_nodeoffset,"pinctrl-0")) { printf("set pin for i2c bus num %d error\n",bus_num); return ; } i2c = (struct sunxi_twi_reg *)(SUNXI_TWI0_BASE + (bus_num * TWI_CONTROL_OFFSET)); #else set_cpus_i2c_clock(); fdt_set_all_pin("/soc/s_twi0","pinctrl-0"); #endif /* reset i2c control */ i = 0xffff; i2c->srst = 1; while((i2c->srst) && (i)) { i --; } if((i2c->lcr & 0x30) != 0x30 ) { /* toggle I2CSCL until bus idle */ i2c->lcr = 0x05; __usdelay(500); i = 10; while ((i > 0) && ((i2c->lcr & 0x02) != 2)) { i2c->lcr |= 0x08; __usdelay(1000); i2c->lcr &= ~0x08; __usdelay(1000); i--; } i2c->lcr = 0x0; __usdelay(500); } if(speed < 100) { speed = 100; } else if(speed > 400) { speed = 400; } clk_n = 1; clk_m = (24000/10)/((2^clk_n) * speed) - 1; i2c->clk = (clk_m<<3) | clk_n; i2c->ctl = 0x40; i2c->eft = 0; return ; }