// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void AbaqusSurfaceMeshWriter::execute()
{
  int err = 0;
  std::stringstream ss;

  SurfaceMeshDataContainer* sm = getSurfaceMeshDataContainer();
  dataCheck(false, 1, 1, 1);
  if(getErrorCondition() < 0)
  {
    return;
  }

  // Make sure any directory path is also available as the user may have just typed
  // in a path without actually creating the full path
  std::string parentPath = MXAFileInfo::parentPath(getOutputFile());
  if(!MXADir::mkdir(parentPath, true))
  {
    std::stringstream ss;
    ss << "Error creating parent path '" << parentPath << "'";
    notifyErrorMessage(ss.str(), -1);
    setErrorCondition(-1);
    return;
  }

  DREAM3D::SurfaceMesh::VertListPointer_t nodesPtr = sm->getVertices();
  DREAM3D::SurfaceMesh::FaceListPointer_t trianglePtr = sm->getFaces();

  // Get the Labels(GrainIds or Region Ids) for the triangles
  Int32ArrayType::Pointer faceLabelsPtr = boost::dynamic_pointer_cast<Int32ArrayType>(sm->getFaceData(DREAM3D::FaceData::SurfaceMeshFaceLabels));
  int32_t* faceLabels = faceLabelsPtr->GetPointer(0);

  // Store all the unique Spins
  std::set<int> uniqueSpins;
  for (int i = 0; i < trianglePtr->GetNumberOfTuples(); i++)
  {
    uniqueSpins.insert(faceLabels[i*2]);
    uniqueSpins.insert(faceLabels[i*2+1]);
  }

  FILE* f = fopen(m_OutputFile.c_str(), "wb");
  ScopedFileMonitor fileMonitor(f);

  err = writeHeader(f, nodesPtr->GetNumberOfTuples(), trianglePtr->GetNumberOfTuples(), uniqueSpins.size()-1);
  err = writeNodes(f);
  err = writeTriangles(f);
  err = writeGrains(f);

  setErrorCondition(0);
  notifyStatusMessage("Complete");

  return;
}
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void GoldfeatherReader::execute()
{
  int err = 0;
  std::stringstream ss;
  setErrorCondition(err);
  SurfaceMeshDataContainer* m = getSurfaceMeshDataContainer();
  if(NULL == m)
  {
    setErrorCondition(-999);
    notifyErrorMessage("The Voxel DataContainer Object was NULL", -999);
    return;
  }
  setErrorCondition(0);



  FILE* f = fopen(m_InputFile.c_str(), "r");
  if (NULL == f)
  {
    setErrorCondition(-999);
    notifyErrorMessage("Error opening Input file", getErrorCondition());
    return;
  }
  ScopedFileMonitor fileMonitor(f);

  int nNodes = 0;
  fscanf(f, "%d\n", &nNodes);

  dataCheck(false, nNodes, 1, 1);

  // Allocate the Nodes, Normals, curvatures and principal direction vectors
  DREAM3D::SurfaceMesh::VertListPointer_t nodesPtr = DREAM3D::SurfaceMesh::VertList_t::CreateArray(nNodes, DREAM3D::VertexData::SurfaceMeshNodes);
  nodesPtr->initializeWithZeros();
  DREAM3D::SurfaceMesh::Vert_t* nodes = nodesPtr->GetPointer(0);


  DoubleArrayType::Pointer normalsPtr = DoubleArrayType::CreateArray(nNodes, 3, DREAM3D::VertexData::SurfaceMeshNodeNormals);
  double* normals = normalsPtr->GetPointer(0);

  DoubleArrayType::Pointer pcurv1Ptr = DoubleArrayType::CreateArray(nNodes, 1, "Principal_Curvature_1");
  double* pcurv1 = pcurv1Ptr->GetPointer(0);

  DoubleArrayType::Pointer pcurv2Ptr = DoubleArrayType::CreateArray(nNodes, 1, "Principal_Curvature_2");
  double* pcurv2 = pcurv2Ptr->GetPointer(0);

  DoubleArrayType::Pointer pDirection1Ptr = DoubleArrayType::CreateArray(nNodes, 3, "Principal_Direction_1");
  double* pDirection1 = pDirection1Ptr->GetPointer(0);

  DoubleArrayType::Pointer pDirection2Ptr = DoubleArrayType::CreateArray(nNodes, 3, "Principal_Direction_2");
  double* pDirection2 = pDirection2Ptr->GetPointer(0);

  float x, y, z, n0, n1, n2, p1, p2;
  for(int n = 0; n < nNodes; ++n)
  {
    fscanf(f, "%f %f %f %f %f %f %f %f\n", &x, &y, &z, &n0, &n1, &n2, &p1, &p2);
    nodes[n].pos[0] = x;
    nodes[n].pos[1] = y;
    nodes[n].pos[2] = z;
    normals[n*3+0] = n0;
    normals[n*3+1] = n1;
    normals[n*3+2] = n2;
    pcurv1[n] = p1;
    pcurv2[n] = p2;

    // Read the next line of the data which is the principal direction vectors
    fscanf(f, "%f %f %f %f %f %f\n", &x, &y, &z, &n0, &n1, &n2);
    pDirection1[n*3+0] = x;
    pDirection1[n*3+1] = y;
    pDirection1[n*3+2] = z;

    pDirection2[n*3+0] = n0;
    pDirection2[n*3+1] = n1;
    pDirection2[n*3+2] = n2;

  }

  m->setVertices(nodesPtr);
  m->addVertexData(normalsPtr->GetName(), normalsPtr);
  m->addVertexData(pcurv1Ptr->GetName(), pcurv1Ptr);
  m->addVertexData(pcurv2Ptr->GetName(), pcurv2Ptr);
  m->addVertexData(pDirection1Ptr->GetName(), pDirection1Ptr);
  m->addVertexData(pDirection2Ptr->GetName(), pDirection2Ptr);

  int nTriangles = 0;
  err = fscanf(f, "%d\n", &nTriangles);
  if (err < 0)
  {
    off_t fpos;
    fpos = ftell(f);
    setErrorCondition(-876);
    notifyErrorMessage("Error Reading the number of Triangles from the file", getErrorCondition());
    return;
  }

  DREAM3D::SurfaceMesh::FaceListPointer_t trianglesPtr = DREAM3D::SurfaceMesh::FaceList_t::CreateArray(nTriangles, DREAM3D::FaceData::SurfaceMeshFaces);
  trianglesPtr->initializeWithZeros();
  DREAM3D::SurfaceMesh::Face_t* triangles = trianglesPtr->GetPointer(0);

  DataArray<int32_t>::Pointer faceLabelPtr = DataArray<int32_t>::CreateArray(nTriangles, 2, DREAM3D::FaceData::SurfaceMeshFaceLabels);
  faceLabelPtr->initializeWithZeros();
  int32_t* faceLabels = faceLabelPtr->GetPointer(0);

  DoubleArrayType::Pointer triNormalsPtr = DoubleArrayType::CreateArray(nTriangles, 3, DREAM3D::FaceData::SurfaceMeshFaceNormals);
  double* triNormals = triNormalsPtr->GetPointer(0);

  for(int t = 0; t < nTriangles; ++t)
  {
    fscanf(f, "%f %f %f %f %f %f", &x, &y, &z, &n0, &n1, &n2);
    triangles[t].verts[0] = x;
    triangles[t].verts[1] = y;
    triangles[t].verts[2] = z;
  //  triangles[t].tIndex = t;
    faceLabels[t*2] = 0;
    faceLabels[t*2+1] = 1;
    triNormals[t*3+0] = n0;
    triNormals[t*3+1] = n1;
    triNormals[t*3+2] = n2;
  }

  m->setFaces(trianglesPtr);
  m->addFaceData(faceLabelPtr->GetName(), faceLabelPtr);
  m->addFaceData(triNormalsPtr->GetName(), triNormalsPtr);

  /* Let the GUI know we are done with this filter */
  notifyStatusMessage("Complete");
}
Пример #3
0
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void AbaqusSurfaceMeshWriter::execute()
{
  int32_t err = 0;
  setErrorCondition(err);
  dataCheck();
  if(getErrorCondition() < 0) { return; }

  DataContainer::Pointer sm = getDataContainerArray()->getDataContainer(getSurfaceMeshFaceLabelsArrayPath().getDataContainerName());

  // Make sure any directory path is also available as the user may have just typed
  // in a path without actually creating the full path
  QFileInfo fi(getOutputFile());
  QDir parentPath = fi.path();
  if(!parentPath.mkpath("."))
  {
    QString ss = QObject::tr("Error creating parent path '%1'").arg(parentPath.absolutePath());
    setErrorCondition(-8005);
    notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
    return;
  }

  TriangleGeom::Pointer triangleGeom = sm->getGeometryAs<TriangleGeom>();

  // Store all the unique Spins
  std::set<int32_t> uniqueSpins;
  for (int64_t i = 0; i < triangleGeom->getNumberOfTris(); i++)
  {
    uniqueSpins.insert(m_SurfaceMeshFaceLabels[i * 2]);
    uniqueSpins.insert(m_SurfaceMeshFaceLabels[i * 2 + 1]);
  }

  FILE* f = fopen(m_OutputFile.toLatin1().data(), "wb");
  ScopedFileMonitor fileMonitor(f);

  err = writeHeader(f, triangleGeom->getNumberOfVertices(), triangleGeom->getNumberOfTris(), uniqueSpins.size() - 1);
  if(err < 0)
  {
    QString ss = QObject::tr("Error writing header for file '%1'").arg(m_OutputFile);
    setErrorCondition(-8001);
    notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
    return;
  }
  err = writeNodes(f);
  if(err < 0)
  {
    QString ss = QObject::tr("Error writing nodes for file '%1'").arg(m_OutputFile);
    setErrorCondition(-8002);
    notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
    return;
  }
  err = writeTriangles(f);
  if(err < 0)
  {
    QString ss = QObject::tr("Error writing triangles for file '%1'").arg(m_OutputFile);
    setErrorCondition(-8003);
    notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
    return;
  }
  err = writeFeatures(f);
  if(err < 0)
  {
    QString ss = QObject::tr("Error writing Features for file '%1'").arg(m_OutputFile);
    setErrorCondition(-8004);
    notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
    return;
  }

  notifyStatusMessage(getHumanLabel(), "Complete");
}
Пример #4
0
int main(int argc, char *argv[]) {

	if (argc <= 3) {
		fprintf( stderr, "Usage: %s time word file1 file2 ...\n", argv[0]);
		exit(1);
	}

	noFiles = 0;

	int TIME = atoi(argv[1]);
	char* word = argv[2];
	numFiles = argc-3;


	//files
	pid_t temp[numFiles];
	pidsFile = temp;

	unsigned i;
	for(i = 0; i < numFiles; i++) {
		
		pidsFile[i] = fork();

		if(pidsFile[i] < 0) {
			fprintf(stderr, "Error while forking\n");
			exit(1);
		}
		else if (pidsFile[i] > 0) {
			//PARENT
		}
		else {
			//SON
			searchWord(argv[i+3], word);
		}
	}

	pidFileMonitor = fork();

	if(pidFileMonitor < 0) {
		fprintf(stderr, "Error while forking\n");
		exit(1);
	}
	//child process
	else if(pidFileMonitor > 0) {
		//parent process
	}

	else {
		//child process
		char* files[numFiles];


		for(i = 0;i<numFiles;i++)
			files[i] = argv[i+3];

		fileMonitor(files);
	}


	struct sigaction action;

	// prepare the 'sigaction struct'
	action.sa_handler = handler;
	sigemptyset(&action.sa_mask);
	action.sa_flags = 0;
	
	// install the handler
	if (sigaction(SIGUSR1,&action,NULL)<0 || sigaction(SIGUSR2,&action,NULL)<0 || sigaction(SIGCHLD,&action,NULL) < 0) {
		fprintf(stderr, "Error while instaling handlers...");
		exit(1);
	}

	while(TIME > 0 && noFiles == 0)
		TIME = sleep(TIME);

	noFiles = 1;

	if(noFiles == 1)
		processHandler();

	return 0;
}
Пример #5
0
int main (int argc, char* argv[]){

//Primero se debe definir un parser que lee desde la linea de comandos o un archivo
    eoParser parser(argc, argv);
//Se definen los parametros, se leen desde el parser y le asigna el valor
    //Datos necesarios del escenario de prueba
    double _min = parser.createParam((double)(0.0), "ValorMinimo", "Delimitacion area de trabajo",'M',"Parametros Escenario").value();
    double _max = parser.createParam((double)(20.0), "ValorMaximo", "Delimitacion area de trabajo",'S',"Parametros Escenario").value();
    unsigned int NoAnclas = parser.createParam((unsigned int)(10), "Anclas", "Numero de nodos anclas",'A',"Parametros Escenario").value();
    unsigned int nodos = parser.createParam((unsigned int)(100), "Nodos", "Total de nodos",'N',"Parametros Escenario").value();
    double radio = parser.createParam((double)(5), "Radio", "Radio de comunicacion",'R',"Parametros Escenario").value();

    double DisReal[200][200];
    double vecAnclas[NoAnclas*2];

//Configuracion parametros algoritmo
    unsigned int POP_SIZE = parser.createParam((unsigned int)(100), "PopSize", "Tamano de la poblacion",'P',"Parametros Algoritmo").value();
    unsigned int numberGeneration = parser.createParam((unsigned int)(1000), "MaxGen", "Criterio de parada, Numero maximo de generaciones",'G',"Parametros Algoritmo").value();
    unsigned int Nc = parser.createParam((unsigned int)(2), "Nc", "Constante del operador SBX",'C',"Parametros Algoritmo").value();
    double Pcruza = parser.createParam((double)(0.87), "Pcruza", "Probabilidad de cruzamiento SBX",'X',"Parametros Algoritmo").value();
    double Pmutation = parser.createParam((double)(0.85), "Pmutacion", "Probabilidad de mutacion de la encapsulacion de SVN y Swap",'Y',"Parametros Algoritmo").value();
    double Pmutation1 = parser.createParam((double)(0.85), "Pmutacion1", "Probabilidad de mutacion de SVN",'Z',"Parametros Algoritmo").value();
    double Pmutation2 = parser.createParam((double)(0.5), "Pmutacion2", "Probabilidad de mutacion de Swap",'W',"Parametros Algoritmo").value();
    double sizeTorneo = parser.createParam((double)(8), "SizeTorneo", "Tamano del torneo para seleccion de individuos",'L',"Parametros Algoritmo").value();
    double sizeElist = parser.createParam((double)(2), "SizeElist", "Cantidad de individuos que se conservan",'B',"Parametros Algoritmo").value();
    double sizeTorneo1 = parser.createParam((double)(2), "SizeTorneo1", "Tamano del torneo para seleccion de individuos del elitismo",'Q',"Parametros Algoritmo").value();

//Parametros de guardado
    unsigned int setGeneracion = parser.createParam((unsigned int)(100), "setGeneracion", "Cada cuantas generaciones se guarda la poblacion",'T',"Guardar Datos").value();
    unsigned int setTime = parser.createParam((unsigned int)(0), "setTime", "Cada cuantos segundos se guarda la configuracion",'I',"Guardar Datos").value();

//Grafica
    std::string InPut = parser.createParam(std::string("Estadistica.txt"), "Input", "Archivo que contiene el Fitness, Media, DevStand",'o',"Salida - Grafica").value();
    bool graficaGnuplot = parser.createParam((bool)(0), "Gnuplot", "Grafica el Fitness y Media, 0 desactivado y 1 activado",'g',"Salida - Grafica").value();

//Termina la ejecucion al consultar la ayuda
    if (parser.userNeedsHelp())
         {
             parser.printHelp(std::cout);
             exit(1);
         }
//Verifica el ingreso de las probabilidades
    if ( (Pcruza < 0) || (Pcruza > 1) ) throw std::runtime_error("Pcruza Invalido");
    if ( (Pmutation < 0) || (Pmutation > 1) ) throw std::runtime_error("Pmutation encapsulación Invalido");
    if ( (Pmutation1 < 0) || (Pmutation1 > 1) ) throw std::runtime_error("Pmutation de SVN Invalido");
    if ( (Pmutation2 < 0) || (Pmutation2 > 1) ) throw std::runtime_error("Pmutation de Swap Invalido");

//Parametro de tiempo
    struct timeval ti, tf;
    double tiempo;

/**CARGAR EL ESCENARIO**/
//Escenario
    //Lee desde archivo
    escenario *pEscenario = new escenario(nodos, NoAnclas);
    //Matriz de distancia
    for (int i=0; i<nodos ; i++)
        {for (int j=0; j<nodos; j++)DisReal[i][j] = pEscenario->obtenerDisRSSI(i,j);}
    //Posicion Nodos anclas
    for (int i=0 ; i<NoAnclas*2 ; i++)vecAnclas[i] = pEscenario->obtenerAnclas(i);

/**--------------------------------------------------------------**/

//Define la representación (Individuo)
    Individuo cromosoma;

//Para la inicialización del cromosoma, primero se debe definir como se generaran los genes
//Se utilizara un generador uniforme, (valor min, valor max)
    eoUniformGenerator<double> uGen(_min, _max);

//Crear el inicializador para los cromosomas, llamado random
    IndiInit random(nodos*2,uGen);

//Generar una subclase de la clase de la función de evaluación
    localizacionEvalPenal Fitness;

//Criterio de parada
    eoGenContinue<Individuo> parada(numberGeneration);

//Es otro criterio de parada en el cual se define el minimo de generaciones y cuantas generaciones sin mejoras
    //eoSteadyFitContinue<Individuo> parada(10,2);

/** CRUZA **/

    // Generar los limites para cada gen
    std::vector<double> min_b;
    std::vector<double> max_b;
    for(int i=0; i<nodos*2; i++) {
            min_b.push_back(_min);
            max_b.push_back(_max);
        }
    eoRealVectorBounds bounds(min_b, max_b);

    //Inicializar operador de cruce SBX
    individuoCruza crossover(bounds, Nc);

    //Cargar cantidad nodos anclas al operador
    crossover.setNoAnclas(NoAnclas);

/** MUTACION **/
    //Subclase de mutacion paper IEEE
    individuoMutacion mutationA(NoAnclas,numberGeneration,nodos,_min,_max);

    //Mutacion incluida en EO, permite llegar mas rapido a un fitness de 600
    individuoMutacion0 mutationB;

    //Combina operadores de mutacion con su respectivo peso
    eoPropCombinedMonOp<Individuo> mutation(mutationA,Pmutation1);
    mutation.add(mutationB, Pmutation2);

//Define un objeto de encapsulación (it contains, the crossover, the crossover rate, the mutation and the mutation rate) -> 1 line
    eoSGATransform<Individuo> encapsulacion(crossover, Pcruza, mutation, Pmutation); //0.87

//Define el método de selección, selecciona un individuo por cada torneo (en el parentesis se define el tamaño del torneo)
    eoDetTournamentSelect<Individuo> torneo(sizeTorneo);

//Define un "eoSelectPerc" con el torneo como parametro por defecto (permite seleccionar el mejor individuo)
    eoSelectPerc<Individuo> seleccion(torneo);

//Define una estrategia de reemplazo por cada generación
    //eoGenerationalReplacement<Individuo> reemplazo;

////Otra estrategia de reemplazo con elitismo
    eoElitism<Individuo> reemplazo(sizeElist,false); //antes 0.6

   //Para utilizar eoElitism se define un eoDetTournamentTruncate para seleccionar los individuos para el elitismo
        eoDetTournamentTruncate<Individuo> Trunca(sizeTorneo1);// antes 2

//Define una poblacion de Individuos
    eoPop<Individuo> poblacion;

//Cargar la matriz de distancias, cantidad nodos anclas y total de nodos
    Fitness.guardarDisReal(DisReal, NoAnclas, nodos, radio);

//Cargar posiciones nodos anclas
    Fitness.guardarAnclas(vecAnclas);

//Llena la población y evalua cada cromosoma
    for(int i=0 ; i<POP_SIZE ; i++)
    {
        random(cromosoma);
        Fitness(cromosoma);
        poblacion.push_back(cromosoma);
    }

//Imprime la población
    //poblacion.printOn(std::cout);

//Imprime un salto de linea
    std::cout<< std::endl;

//Contenedor de clases
    eoCheckPoint<Individuo> PuntoChequeo(parada);

//Cargar el valor de la generacion actual al operador de mutación
    //Se inicializa el contador de generaciones
    eoIncrementorParam<unsigned> generationCounter("Gen.");
    //Se carga el contador de generaciones al operador de mutación
    mutationA.setGen(& generationCounter);
    //Se carga el contador de generaciones al objeto eoCheckpoint para contar el número de generaciones
    PuntoChequeo.add(generationCounter);


/** Guardar datos de la población en archivos **/
    //Genera un archivo para guardar parametros
    eoState estado;
    //Guardar todo lo que necesites a la clase hija estado
    estado.registerObject(poblacion);
    //estado.registerObject(parser);
    //Guarda el tiempo de ejecucion desde la primera generacion
    eoTimeCounter time;
    PuntoChequeo.add(time);
    //Define cada cuantas generaciones se guarda la poblacion
    eoCountedStateSaver GuardarEstado(setGeneracion,estado,"generacion");
    //Siempre se debe agregar a la clase hija de eoCheckPoint para que se ejecute en cada generacion
    PuntoChequeo.add(GuardarEstado);

//Guardar algunas estadisticas de la poblacion
    //Muestra el mejor fitness de cada generación
    eoBestFitnessStat<Individuo> Elmejor("Mejor Fitness");
    //La media y stdev
    eoSecondMomentStats<Individuo> SegundoStat;
    //Se agrega al eoCheckPoint
    PuntoChequeo.add(Elmejor);
    PuntoChequeo.add(SegundoStat);
    // Guarda los parametros a un archivo
    eoFileMonitor fileMonitor("stats.xg", " ");
    PuntoChequeo.add(fileMonitor);
    fileMonitor.add(generationCounter); //Numero de generaciones
    fileMonitor.add(time);              //Tiempo total de ejecucion desde la primera generacion
    fileMonitor.add(Elmejor);           //Mejor fitness
    fileMonitor.add(SegundoStat);       //Media y desviacion estandar

///** Grafica **/
//    eoFileMonitor fileMonitor1(InPut, " ");
//    fileMonitor1.add(Elmejor);           //Mejor fitness
//    fileMonitor1.add(SegundoStat);       //Media y desviacion estandar
//    PuntoChequeo.add(fileMonitor1);      //Agrega al checkpoint
//    GnuplotMonitor grafica(InPut,graficaGnuplot);       //Grafica el fitness y la media
//    grafica.setGen(& generationCounter); //Carga la generacion
//    PuntoChequeo.add(grafica);
///**------------------------------------------**/

// Incializa el algoritmo genetico secuencial
    eoEasyEA<Individuo> algoritmo(PuntoChequeo, Fitness, seleccion, encapsulacion, reemplazo, Trunca);

//Tiempo inicial
    gettimeofday(&ti, NULL);

//Corre el algoritmo en la poblacion inicializada
    algoritmo(poblacion);

//Tiempo Final
    gettimeofday(&tf, NULL);

    std::cout << std::endl;

//Imprime el mejor cromosoma
    poblacion.best_element().printOn(std::cout);

    std::cout << std::endl;
    std::cout << std::endl;

//Imprime el tiempo de ejecución del algoritmo
    tiempo = (tf.tv_sec - ti.tv_sec)*1000 + (tf.tv_usec - ti.tv_usec)/1000.0;

    std::cout <<"Tiempo de ejecucion en milisegundos: " << tiempo << std::endl;

    std::cout << std::endl;
//Se grafica el error y todos los nodos
    std::string filename="generacion";
    graphError error(filename, setGeneracion, numberGeneration, nodos, NoAnclas, _max);

  std::cout << std::endl;
  return EXIT_SUCCESS;


}