Пример #1
0
void readerCallback (const sensor_msgs::PointCloud2ConstPtr& input)
{
  const pcl::PointCloud<PointT>::Ptr cloud(new pcl::PointCloud<PointT>);
  const pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>);

  pcl::fromROSMsg(*input, *cloud);
  std::cerr << "PointCloud has: " << cloud->points.size () << " data points." << std::endl;

  pcl::RegionGrowingRGB<PointT> reg_seg;

  pcl::SACSegmentationFromNormals<PointT, pcl::Normal> sac_seg; 
  sac_seg.setOptimizeCoefficients (true);
  sac_seg.setModelType (pcl::SACMODEL_NORMAL_PLANE);
  sac_seg.setNormalDistanceWeight (0.1);
  sac_seg.setMethodType (pcl::SAC_RANSAC);
  sac_seg.setMaxIterations (200);
  sac_seg.setDistanceThreshold (0.03);

  filterCloud(cloud, cloud, normals);
  removeModel(cloud, normals, sac_seg, true);
  sac_seg.setDistanceThreshold (0.01);
  removeModel(cloud, normals, sac_seg, true);

  //sac_seg.setModelType (pcl::SACMODEL_LINE);
  //sac_seg.setDistanceThreshold (0.15);
  //removeModel(cloud, normals, sac_seg, false); 
  
  std::cerr << "PointCloud representing the extracted component: " << cloud->points.size () << " data points." << std::endl;

  sensor_msgs::PointCloud2 output;
  pcl::toROSMsg(*cloud, output);
  pc_pub.publish(output);
}
void ObjectDetector::cloud_cb(const sensor_msgs::PointCloud2ConstPtr& input)
{
    pcl::PointCloud<pcl::PointXYZ>::Ptr input_cloud (new pcl::PointCloud<pcl::PointXYZ>);

    // Convert the sensor_msgs/PointCloud2 data to pcl/PointCloud
    pcl::fromROSMsg (*input, *input_cloud);

    // if theta and y_translation are not yet set, then run segmentation
    if(theta == 0.0 && y_translation == 0.0){
        performSegmentation(input_cloud);
    }
    else{
        // downsample the point cloud
        pcl::PointCloud<pcl::PointXYZ>::Ptr downsampled_cloud = downsampleCloud(input_cloud);

        // perform transformation
        pcl::PointCloud<pcl::PointXYZ>::Ptr transformed_cloud = transformCloud(downsampled_cloud);

        // filter floor, walls and noise so only objects remain
        pcl::PointCloud<pcl::PointXYZ>::Ptr object_cloud = filterCloud(transformed_cloud);

        // cluster objects & publish cluster
        clusterCloud(object_cloud);
    }
}
Пример #3
0
Object_Recognition::Object_Recognition(ros::NodeHandle& nh,boost::property_tree::ptree& propertyTree)
            // Initialization
:
        modelCloud(new PointCloudColored), siExtractor(propertyTree) , filterCloud(propertyTree)
{
    // Correlation point cloud blob size parameters
    maxBlobSize = propertyTree.get<std::size_t>("CorrelationParam.maxBlobSize");
    maxModelBlobSize = propertyTree.get<std::size_t>("CorrelationParam.maxModelBlobSize");

    // Correlation accuracy requirement parameters
    minAccuracy = propertyTree.get<float>("CorrelationParam.minAccuracy");
    minCount = propertyTree.get<std::size_t>("CorrelationParam.minCount");

    // Visualization parameters
    camera_frame_name = propertyTree.get<std::string>("Visualization.camera_frame_name");

    // Initialize the library to load from
    Load_From_PCD loadedModel(propertyTree);

    // Initialize the publisher for the recognized object and its bounding box
    filteredCloudPub = nh.advertise<PointCloudColored>("filteredCloud",1,true);
    clusterPub = nh.advertise<PointCloudColored>("clusterCloud",1,true);

    // Load library of references
    cloudLibrary = loadedModel.getCloudLibrary();

    // Reserve space for the library's spin images
    librarySpinImages.reserve(cloudLibrary.size());
    for (size_t cloud = 0; cloud < cloudLibrary.size() ; cloud++)
    {
        // Initialize a histogram object for the library of histograms and push the allocation to the vector of the library
        pcl::PointCloud<pcl::Histogram<histLength>>::Ptr hist (new pcl::PointCloud<pcl::Histogram<histLength>>);
        librarySpinImages.push_back(hist);

        // Get the corresponding spin image point cloud of histograms
        siExtractor.getSpinImage(cloudLibrary[cloud].myCloud, librarySpinImages[cloud]);

        // Free pointer space
        hist.reset();


    }

    // Initialize the bounding box publisher
    boxPub = nh.advertise<visualization_msgs::Marker>(propertyTree.get<std::string>("Namespace.boundingBoxTopicName"),1);
    // A point cloud filterer object
    Cloud_Filter filterCloud(propertyTree);

    // Marker types to indicate the type of the output
    marker.type = visualization_msgs::Marker::CUBE;
}
Пример #4
0
  void CloudAssimilator::processClouds()
  {
    pcl::PointCloud<pcl::PointXYZ> combined_cloud = m_left_cloud;

    if(m_left_cloud.points.size() == 0 || m_right_cloud.points.size() == 0)
    {
      ROS_WARN("Clouds empty!");
      m_have_new_left_cloud = false;
      m_have_new_right_cloud = false;
      return;
    }

    if(m_sync_clouds)
    {
      pcl::PointCloud<pcl::PointXYZ> synced_right_cloud;
      if(!timeSyncCloud(pcl_conversions::fromPCL(m_left_cloud.header), m_right_cloud, synced_right_cloud))
      {
        m_have_new_left_cloud = false;
        m_have_new_right_cloud = false;
        return;
      }
      combined_cloud += synced_right_cloud;
    }
    else
    {
      combined_cloud += m_right_cloud;
    }

    if(combined_cloud.points.size() == 0)
    {
      ROS_WARN("Input clouds had no points!");
      return;
    }

    pcl::PointCloud<pcl::PointXYZ> filtered_cloud;
    filterCloud(combined_cloud, filtered_cloud);
//    if(m_double_filter && filtered_cloud.points.size() != 0)
//    {
//      pcl::PointCloud<pcl::PointXYZ> double_filtered_cloud;
//      filterCloud(filtered_cloud, double_filtered_cloud);
//      filtered_cloud = double_filtered_cloud;
//    }

    if((((double) filtered_cloud.size()) / ((double) combined_cloud.size())) < 0.5)
    {
      ROS_WARN_THROTTLE(1.0, "%d/%d (%g%%) cloud points remaining after filtering", (int) filtered_cloud.size(), (int) combined_cloud.size(), 100.0 * filtered_cloud.size() / combined_cloud.size());
    }

    sensor_msgs::PointCloud2 filtered_cloud_msg2;
    pcl::toROSMsg(filtered_cloud, filtered_cloud_msg2);
    filtered_cloud_msg2.header = pcl_conversions::fromPCL(m_left_cloud.header);
    sensor_msgs::PointCloud filtered_cloud_msg;
    convertPointCloud2ToPointCloud(filtered_cloud_msg2, filtered_cloud_msg);
    filtered_cloud_msg.header = filtered_cloud_msg2.header;
    m_cloud_pub.publish(filtered_cloud_msg);

    if(m_output_laser_scan)
    {
      sensor_msgs::LaserScan scan;
      pointCloudToLaserScan(filtered_cloud_msg, scan);
      m_scan_pub.publish(scan);
    }

    m_have_new_left_cloud = false;
    m_have_new_right_cloud = false;
  }