Пример #1
0
int
main(int argc, char **argv)
{
    pArgc = &argc;
    pArgv = argv;

    char *ref_file = NULL;

    printf("%s Starting...\n\n", sSDKsample);

    //start logs

    if (checkCmdLineFlag(argc, (const char **)argv, "help"))
    {
        printHelp();
        exit(EXIT_SUCCESS);
    }

    if (checkCmdLineFlag(argc, (const char **)argv, "file"))
    {
        fpsLimit = frameCheckNumber;
        getCmdLineArgumentString(argc, (const char **)argv, "file", &ref_file);
    }

    if (ref_file)
    {
        if (checkCmdLineFlag(argc, (const char **)argv, "device"))
        {
            int device = findCudaDevice(argc, (const char **)argv);

            if (device < 0)
            {
                printf("No CUDA Capable devices found, exiting...\n");
                exit(EXIT_SUCCESS);
            }

            checkDeviceMeetComputeSpec(argc, argv);
        }
        else
        {
            int dev = findCapableDevice(argc, argv);

            if (dev != -1)
            {
                cudaSetDevice(dev);
            }
            else
            {
                cudaDeviceReset();
                exit(EXIT_SUCCESS);
            }
        }
    }
    else
    {
        if (checkCmdLineFlag(argc, (const char **)argv, "device"))
        {
            printf("   This SDK does not explicitly support -device=n when running with OpenGL.\n");
            printf("   When specifying -device=n (n=0,1,2,....) the sample must not use OpenGL.\n");
            printf("   See details below to run without OpenGL:\n\n");
            printf(" > %s -device=n -file=output.bin\n\n", argv[0]);
            printf("exiting...\n");
            exit(EXIT_SUCCESS);
        }

        // First initialize OpenGL context, so we can properly set the GL for CUDA.
        // This is necessary in order to achieve optimal performance with OpenGL/CUDA interop.
        initGL(&argc, argv);

        int dev = findCapableDevice(argc, argv);

        if (dev != -1)
        {
            cudaGLSetGLDevice(dev);
        }
        else
        {
            exit(EXIT_SUCCESS);
        }
    }

    // load volume data
    initData(argc, argv);

    printf(
        "Press \n"
        "  'SPACE'     to toggle animation\n"
        "  'p'         to toggle pre-integrated transfer function\n"
        "  '+' and '-' to change density (0.01 increments)\n"
        "  ']' and '[' to change brightness\n"
        "  ';' and ''' to modify transfer function offset\n"
        "  '.' and ',' to modify transfer function scale\n\n");

    if (ref_file)
    {
        runSingleTest(ref_file, argv[0]);
    }
    else
    {
        // This is the normal rendering path for VolumeRender
        glutDisplayFunc(display);
        glutKeyboardFunc(keyboard);
        glutMouseFunc(mouse);
        glutMotionFunc(motion);
        glutReshapeFunc(reshape);
        glutIdleFunc(idle);

        initPixelBuffer();

        atexit(cleanup);

        glutMainLoop();
    }

    cudaDeviceReset();
}
int main(int argc, char** argv) 
{
    printf("[%s]\n", sSDKsample);
    if (argc > 1) {
        if (cutCheckCmdLineFlag(argc, (const char **)argv, "help")) {
            printHelp();
        }
		if (cutCheckCmdLineFlag(argc, (const char **)argv, "qatest") ||
		    cutCheckCmdLineFlag(argc, (const char **)argv, "noprompt"))
		{
            g_bQAReadback = true;
            fpsLimit = frameCheckNumber;
        }
        if (cutCheckCmdLineFlag(argc, (const char **)argv, "glverify"))
		{
            g_bOpenGLQA = true;
            fpsLimit = frameCheckNumber;
        }
        if (cutCheckCmdLineFlag(argc, (const char **)argv, "fbo")) {
            g_bFBODisplay = true;
            fpsLimit = frameCheckNumber;
        }
    }
	

    if (g_bQAReadback) 
    {
        runAutoTest(argc, argv);
    } 
    else 
    {
        // First initialize OpenGL context, so we can properly set the GL for CUDA.
        // This is necessary in order to achieve optimal performance with OpenGL/CUDA interop.
        initGL( &argc, argv );

        // use command-line specified CUDA device if possible, otherwise search for capable device
        if( cutCheckCmdLineFlag(argc, (const char**)argv, "device") ) {
            cutilGLDeviceInit(argc, argv);
			int device;
			cudaGetDevice( &device );
			if( checkCUDAProfile( device ) == false ) {
				cudaThreadExit();
				cutilExit(argc, argv);
			}
        } else {
            //cudaGLSetGLDevice (cutGetMaxGflopsDeviceId() );
			int dev = findCapableDevice(argc, argv);
			if( dev != -1 ) 
				cudaGLSetGLDevice( dev );
			else {
				cudaThreadExit();
				cutilExit(argc, argv);
			}
        }

        cutilCheckError(cutCreateTimer(&timer));
        cutilCheckError(cutResetTimer(timer));  
     
        glutDisplayFunc(display);
        glutKeyboardFunc(keyboard);
        glutReshapeFunc(reshape);
        glutIdleFunc(idle);

        if (g_bOpenGLQA) {
            loadDefaultImage( argc, argv );
        }

        if (argc > 1) {
            char *filename;
            if (cutGetCmdLineArgumentstr(argc, (const char **)argv, "file", &filename)) {
                initializeData(filename, argc, argv);
            }
        } else {
            loadDefaultImage( argc, argv );
        }


        // If code is not printing the USage, then we execute this path.
        if (!bQuit) {
            if (g_bOpenGLQA) {
                g_CheckRender = new CheckBackBuffer(wWidth, wHeight, 4);
                g_CheckRender->setPixelFormat(GL_BGRA);
                g_CheckRender->setExecPath(argv[0]);
                g_CheckRender->EnableQAReadback(true);
            }

            printf("I: display image\n");
            printf("T: display Sobel edge detection (computed with tex)\n");
            printf("S: display Sobel edge detection (computed with tex+shared memory)\n");
            printf("Use the '-' and '=' keys to change the brightness.\n");
			printf("b: switch block filter operation (mean/Sobel)\n");
			printf("p: swtich point filter operation (threshold on/off)\n");
            fflush(stdout);
            atexit(cleanup); 
            glutMainLoop();
        }
    }

    cudaThreadExit();
    cutilExit(argc, argv);
}
Пример #3
0
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv)
{
    // start logs
    int devID;
    char *ref_file = NULL;
    printf("%s Starting...\n\n", argv[0]);

#if defined(__linux__)
    setenv ("DISPLAY", ":0", 0);
#endif

    // use command-line specified CUDA device, otherwise use device with highest Gflops/s
    if (argc > 1)
    {
        if (checkCmdLineFlag(argc, (const char **)argv, "radius"))
        {
            filter_radius = getCmdLineArgumentInt(argc, (const char **) argv, "radius");
        }

        if (checkCmdLineFlag(argc, (const char **)argv, "passes"))
        {
            iterations = getCmdLineArgumentInt(argc, (const char **)argv, "passes");
        }

        if (checkCmdLineFlag(argc, (const char **)argv, "file"))
        {
            getCmdLineArgumentString(argc, (const char **)argv, "file", (char **)&ref_file);
        }
    }

    // load image to process
    loadImageData(argc, argv);

    if (checkCmdLineFlag(argc, (const char **)argv, "benchmark"))
    {
        // This is a separate mode of the sample, where we are benchmark the kernels for performance
        devID = findCudaDevice(argc, (const char **)argv);

        // Running CUDA kernels (bilateralfilter) in Benchmarking mode
        g_TotalErrors += runBenchmark(argc, argv);

        // cudaDeviceReset causes the driver to clean up all state. While
        // not mandatory in normal operation, it is good practice.  It is also
        // needed to ensure correct operation when the application is being
        // profiled. Calling cudaDeviceReset causes all profile data to be
        // flushed before the application exits
        cudaDeviceReset();
        exit(g_TotalErrors == 0 ? EXIT_SUCCESS : EXIT_FAILURE);
    }
    else if (checkCmdLineFlag(argc, (const char **)argv, "radius") ||
             checkCmdLineFlag(argc, (const char **)argv, "passes"))
    {
        // This overrides the default mode.  Users can specify the radius used by the filter kernel
        devID = findCudaDevice(argc, (const char **)argv);
        g_TotalErrors += runSingleTest(ref_file, argv[0]);

        // cudaDeviceReset causes the driver to clean up all state. While
        // not mandatory in normal operation, it is good practice.  It is also
        // needed to ensure correct operation when the application is being
        // profiled. Calling cudaDeviceReset causes all profile data to be
        // flushed before the application exits
        cudaDeviceReset();
        exit(g_TotalErrors == 0 ? EXIT_SUCCESS : EXIT_FAILURE);
    }
    else
    {
        // Default mode running with OpenGL visualization and in automatic mode
        // the output automatically changes animation
        printf("\n");

        // First initialize OpenGL context, so we can properly set the GL for CUDA.
        // This is necessary in order to achieve optimal performance with OpenGL/CUDA interop.
        initGL(argc, (char **)argv);
        int dev = findCapableDevice(argc, argv);

        if (dev != -1)
        {
            dev = gpuGLDeviceInit(argc, (const char **)argv);

            if (dev == -1)
            {
                exit(EXIT_FAILURE);
            }
        }
        else
        {
            // cudaDeviceReset causes the driver to clean up all state. While
            // not mandatory in normal operation, it is good practice.  It is also
            // needed to ensure correct operation when the application is being
            // profiled. Calling cudaDeviceReset causes all profile data to be
            // flushed before the application exits
            cudaDeviceReset();
            exit(EXIT_SUCCESS);
        }

        // Now we can create a CUDA context and bind it to the OpenGL context
        initCuda();
        initGLResources();

        // sets the callback function so it will call cleanup upon exit
#if defined (__APPLE__) || defined(MACOSX)
        atexit(cleanup);
#else
        glutCloseFunc(cleanup);
#endif

        printf("Running Standard Demonstration with GLUT loop...\n\n");
        printf("Press '+' and '-' to change filter width\n"
               "Press ']' and '[' to change number of iterations\n"
               "Press 'e' and 'E' to change Euclidean delta\n"
               "Press 'g' and 'G' to changle Gaussian delta\n"
               "Press 'a' or  'A' to change Animation mode ON/OFF\n\n");

        // Main OpenGL loop that will run visualization for every vsync
        glutMainLoop();
    }
}
void runAutoTest(int argc, char **argv)
{
    printf("[%s] (automated testing w/ readback)\n", sSDKsample);

	if( cutCheckCmdLineFlag(argc, (const char**)argv, "device") ) {
		cutilDeviceInit(argc, argv);
		int device;
		cudaGetDevice( &device );
		if( checkCUDAProfile( device ) == false ) {
			cudaThreadExit();
		    cutilExit(argc, argv);
		}
	} else {
		int dev = findCapableDevice(argc, argv);
		if( dev != -1 ) 
			cudaSetDevice( dev );
		else {
			cudaThreadExit();
		    cutilExit(argc, argv);
		}
	}

    loadDefaultImage( argc, argv );

    if (argc > 1) {
        char *filename;
        if (cutGetCmdLineArgumentstr(argc, (const char **)argv, "file", &filename)) {
            initializeData(filename, argc, argv);
        }
    } else {
        loadDefaultImage( argc, argv );
    }

    g_CheckRender       = new CheckBackBuffer(imWidth, imHeight, sizeof(Pixel), false);
    g_CheckRender->setExecPath(argv[0]);

    Pixel *d_result;
    cutilSafeCall( cudaMalloc( (void **)&d_result, imWidth*imHeight*sizeof(Pixel)) );

    while (g_SobelDisplayMode <= 2) 
    {
        printf("AutoTest: %s <%s>\n", sSDKsample, filterMode[g_SobelDisplayMode]);

        sobelFilter(d_result, imWidth, imHeight, g_SobelDisplayMode, imageScale, blockOp, pointOp );

        cutilSafeCall( cudaThreadSynchronize() );

        cudaMemcpy(g_CheckRender->imageData(), d_result, imWidth*imHeight*sizeof(Pixel), cudaMemcpyDeviceToHost);

        g_CheckRender->savePGM(sOriginal[g_Index], false, NULL);

        if (!g_CheckRender->PGMvsPGM(sOriginal[g_Index], sReference[g_Index], MAX_EPSILON_ERROR, 0.15f)) {
            g_TotalErrors++;
        }
        g_Index++;
        g_SobelDisplayMode = (SobelDisplayMode)g_Index;
    }

    cutilSafeCall( cudaFree( d_result ) );
    delete g_CheckRender;

    if (!g_TotalErrors) 
        printf("PASSED\n");
    else 
        printf("FAILED\n");
}
Пример #5
0
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int
main( int argc, char** argv)
{
    pArgc = &argc;
    pArgv = argv;

    shrQAStart(argc, argv);
    // start logs
    shrSetLogFileName ("boxFilter.txt");
    shrLog("%s Starting...\n\n", argv[0]);

    // use command-line specified CUDA device, otherwise use device with highest Gflops/s
    if (argc > 1) {
        cutGetCmdLineArgumenti( argc, (const char**) argv, "threads", &nthreads );
        cutGetCmdLineArgumenti( argc, (const char**) argv, "radius", &filter_radius);

        if (cutCheckCmdLineFlag(argc, (const char **)argv, "glverify"))
        {
            g_bOpenGLQA = true;
            fpsLimit = frameCheckNumber;
        }
        if (cutCheckCmdLineFlag(argc, (const char **)argv, "fbo")) {
            g_bFBODisplay = true;
        }
    }

    // load image to process
    loadImageData(argc, argv);

    if (cutCheckCmdLineFlag(argc, (const char **)argv, "qatest") ||
            cutCheckCmdLineFlag(argc, (const char **)argv, "noprompt"))
    {
        // Running CUDA kernel (boxFilter) without visualization (QA Testing/Verification)
        runAutoTest(argc, argv);
        shrQAFinishExit(argc, (const char **)argv, (g_TotalErrors == 0 ? QA_PASSED : QA_FAILED));
    }
    else if (cutCheckCmdLineFlag(argc, (const char **)argv, "benchmark"))
    {
        // Running CUDA kernels (boxfilter) in Benchmarking mode
        runBenchmark(argc, argv);
        shrQAFinishExit(argc, (const char **)argv, (g_TotalErrors == 0 ? QA_PASSED : QA_FAILED));
    }
    else
    {
        // Running CUDA kernels (boxFilter) with OpenGL visualization
        if (g_bFBODisplay) shrLog("[FBO Display] ");
        if (g_bOpenGLQA)   shrLog("[OpenGL Readback Comparisons] ");
        shrLog("\n");

        if ( cutCheckCmdLineFlag(argc, (const char **)argv, "device")) {
            printf("   This SDK does not explicitly support -device=n when running with OpenGL.\n");
            printf("   When specifying -device=n (n=0,1,2,....) the sample must not use OpenGL.\n");
            printf("   See details below to run without OpenGL:\n\n");
            printf(" > %s -device=n -qatest\n\n", argv[0]);
            printf("exiting...\n");
            shrQAFinishExit(argc, (const char **)argv, QA_WAIVED);
        }

        // First initialize OpenGL context, so we can properly set the GL for CUDA.
        // This is necessary in order to achieve optimal performance with OpenGL/CUDA interop.
        initGL( &argc, argv );
        int dev = findCapableDevice(argc, argv);
        if( dev != -1 ) {
            cudaGLSetGLDevice( dev );
        } else {
            cutilDeviceReset();
            shrQAFinishExit(argc, (const char **)argv, QA_WAIVED);
        }

        // Now we can create a CUDA context and bind it to the OpenGL context
        initCuda();
        initGLResources();

        if (g_bOpenGLQA) {
            if (g_bFBODisplay) {
                g_CheckRender = new CheckFBO(width, height, 4, g_FrameBufferObject);
            } else {
                g_CheckRender = new CheckBackBuffer(width, height, 4);
            }
            g_CheckRender->setPixelFormat(GL_RGBA);
            g_CheckRender->setExecPath(argv[0]);
            g_CheckRender->EnableQAReadback(true);
        }
    }

    // sets the callback function so it will call cleanup upon exit
    atexit(cleanup);

    shrLog("Running Standard Demonstration with GLUT loop...\n\n");
    shrLog("Press '+' and '-' to change filter width\n"
           "Press ']' and '[' to change number of iterations\n\n");

    // Main OpenGL loop that will run visualization for every vsync
    glutMainLoop();

    cutilDeviceReset();
    shrQAFinishExit(argc, (const char **)argv, (g_TotalErrors == 0 ? QA_PASSED : QA_FAILED));
}
int main(int argc, char** argv) 
{
	pArgc = &argc;
	pArgv = argv;

	shrQAStart(argc, argv);

    if (argc > 1) {
        if (cutCheckCmdLineFlag(argc, (const char **)argv, "help")) {
            printHelp();
        }
        if (cutCheckCmdLineFlag(argc, (const char **)argv, "qatest") ||
            cutCheckCmdLineFlag(argc, (const char **)argv, "noprompt"))
        {
            g_bQAReadback = true;
            fpsLimit = frameCheckNumber;
        }
        if (cutCheckCmdLineFlag(argc, (const char **)argv, "glverify"))
		{
            g_bOpenGLQA = true;
            fpsLimit = frameCheckNumber;
        }
        if (cutCheckCmdLineFlag(argc, (const char **)argv, "fbo")) {
            g_bFBODisplay = true;
            fpsLimit = frameCheckNumber;
        }
    }
	

    if (g_bQAReadback) 
    {
        runAutoTest(argc, argv);
    } 
    else 
    {
        if ( cutCheckCmdLineFlag(argc, (const char **)argv, "device")) {
             printf("   This SDK does not explicitly support -device=n when running with OpenGL.\n");
             printf("   When specifying -device=n (n=0,1,2,....) the sample must not use OpenGL.\n");
             printf("   See details below to run without OpenGL:\n\n");
             printf(" > %s -device=n -qatest\n\n", argv[0]);
             printf("exiting...\n");
             shrQAFinishExit(argc, (const char **)argv, QA_PASSED);
        }

        // First initialize OpenGL context, so we can properly set the GL for CUDA.
        // This is necessary in order to achieve optimal performance with OpenGL/CUDA interop.
        initGL( &argc, argv );

        //cudaGLSetGLDevice (cutGetMaxGflopsDeviceId() );
        int dev = findCapableDevice(argc, argv);
        if( dev != -1 ) {
            cudaGLSetGLDevice( dev );
        } else {
            shrQAFinishExit2(g_bQAReadback, *pArgc, (const char **)pArgv, QA_PASSED);
        }

        cutilCheckError(cutCreateTimer(&timer));
        cutilCheckError(cutResetTimer(timer));  
     
        glutDisplayFunc(display);
        glutKeyboardFunc(keyboard);
        glutReshapeFunc(reshape);

        if (g_bOpenGLQA) {
            loadDefaultImage( argc, argv );
        }

        if (argc > 1) {
            char *filename;
            if (cutGetCmdLineArgumentstr(argc, (const char **)argv, "file", &filename)) {
                initializeData(filename, argc, argv);
            }
        } else {
            loadDefaultImage( argc, argv );
        }


        // If code is not printing the USage, then we execute this path.
        if (!bQuit) {
            if (g_bOpenGLQA) {
                g_CheckRender = new CheckBackBuffer(wWidth, wHeight, 4);
                g_CheckRender->setPixelFormat(GL_BGRA);
                g_CheckRender->setExecPath(argv[0]);
                g_CheckRender->EnableQAReadback(true);
            }

            printf("I: display Image (no filtering)\n");
            printf("T: display Sobel Edge Detection (Using Texture)\n");
            printf("S: display Sobel Edge Detection (Using SMEM+Texture)\n");
            printf("Use the '-' and '=' keys to change the brightness.\n");
			printf("b: switch block filter operation (mean/Sobel)\n");
			printf("p: switch point filter operation (threshold on/off)\n");
            fflush(stdout);
            atexit(cleanup); 
            glutTimerFunc(REFRESH_DELAY, timerEvent,0);
            glutMainLoop();
        }
    }

    cutilDeviceReset();
    shrQAFinishExit(argc, (const char **)argv, QA_PASSED);
}
Пример #7
0
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int
main(int argc, char **argv)
{
    int devID = 0;
    char *ref_file = NULL;

    pArgc = &argc;
    pArgv = argv;

    // start logs
    printf("%s Starting...\n\n", argv[0]);

    if (checkCmdLineFlag(argc, (const char **)argv, "help"))
    {
        printHelp();
        exit(EXIT_SUCCESS);
    }

    // use command-line specified CUDA device, otherwise use device with highest Gflops/s
    if (argc > 1)
    {
        if (checkCmdLineFlag(argc, (const char **)argv, "threads"))
        {
            nthreads      = getCmdLineArgumentInt(argc, (const char **) argv, "threads");
        }

        if (checkCmdLineFlag(argc, (const char **)argv, "radius"))
        {
            filter_radius = getCmdLineArgumentInt(argc, (const char **) argv, "radius");
        }

        if (checkCmdLineFlag(argc, (const char **)argv, "passes"))
        {
            iterations = getCmdLineArgumentInt(argc, (const char **) argv, "passes");
        }

        if (checkCmdLineFlag(argc, (const char **)argv, "file"))
        {
            getCmdLineArgumentString(argc, (const char **)argv, "file", (char **)&ref_file);
        }
    }

    // load image to process
    loadImageData(argc, argv);

    if (checkCmdLineFlag(argc, (const char **)argv, "benchmark"))
    {
        // This is a separate mode of the sample, where we are benchmark the kernels for performance
        devID = findCudaDevice(argc, (const char **)argv);

        // Running CUDA kernels (boxfilter) in Benchmarking mode
        g_TotalErrors += runBenchmark();
        exit(g_TotalErrors == 0 ? EXIT_SUCCESS : EXIT_FAILURE);
    }
    else if (checkCmdLineFlag(argc, (const char **)argv, "radius") ||
             checkCmdLineFlag(argc, (const char **)argv, "passes"))
    {
        // This overrides the default mode.  Users can specify the radius used by the filter kernel
        devID = findCudaDevice(argc, (const char **)argv);
        g_TotalErrors += runSingleTest(ref_file, argv[0]);
        exit(g_TotalErrors == 0 ? EXIT_SUCCESS : EXIT_FAILURE);
    }
    else
    {
        // Default mode running with OpenGL visualization and in automatic mode
        // the output automatically changes animation
        printf("\n");

        // First initialize OpenGL context, so we can properly set the GL for CUDA.
        // This is necessary in order to achieve optimal performance with OpenGL/CUDA interop.
        initGL(&argc, argv);
        int dev = findCapableDevice(argc, argv);

        if (dev != -1)
        {
            cudaGLSetGLDevice(dev);
        }
        else
        {
            cudaDeviceReset();
            exit(EXIT_SUCCESS);
        }

        // Now we can create a CUDA context and bind it to the OpenGL context
        initCuda();
        initGLResources();

        // sets the callback function so it will call cleanup upon exit
        atexit(cleanup);

        printf("Running Standard Demonstration with GLUT loop...\n\n");
        printf("Press '+' and '-' to change filter width\n"
               "Press ']' and '[' to change number of iterations\n"
               "Press 'a' or  'A' to change animation ON/OFF\n\n");

        // Main OpenGL loop that will run visualization for every vsync
        glutMainLoop();

        cudaDeviceReset();
        exit(g_TotalErrors == 0 ? EXIT_SUCCESS : EXIT_FAILURE);
    }
}
Пример #8
0
int main(int argc, char **argv)
{
    pArgc = &argc;
    pArgv = argv;

    printf("%s Starting...\n\n", argv[0]);

    if (checkCmdLineFlag(argc, (const char **)argv, "help"))
    {
        printf("\nUsage: FunctionPointers (SobelFilter) <options>\n");
        printf("\t\t-mode=n (0=original, 1=texture, 2=smem + texture)\n");
        printf("\t\t-file=ref_orig.pgm (ref_tex.pgm, ref_shared.pgm)\n\n");

        exit(EXIT_WAIVED);
    }

    if (checkCmdLineFlag(argc, (const char **)argv, "file"))
    {
        g_bQAReadback = true;
        runAutoTest(argc, argv);
    }

    // use command-line specified CUDA device, otherwise use device with highest Gflops/s
    if (checkCmdLineFlag(argc, (const char **)argv, "device"))
    {
        printf("   This SDK does not explicitly support -device=n when running with OpenGL.\n");
        printf("   When specifying -device=n (n=0,1,2,....) the sample must not use OpenGL.\n");
        printf("   See details below to run without OpenGL:\n\n");
        printf(" > %s -device=n\n\n", argv[0]);
        printf("exiting...\n");
        exit(EXIT_WAIVED);
    }

    if (!g_bQAReadback)
    {
        // First initialize OpenGL context, so we can properly set the GL for CUDA.
        // This is necessary in order to achieve optimal performance with OpenGL/CUDA interop.
        initGL(&argc, argv);

        int dev = findCapableDevice(argc, argv);

		checkDeviceMeetComputeSpec(argc, argv);
	
		if (dev != -1)
        {
            cudaGLSetGLDevice(dev);
        }
        else
        {
            exit(EXIT_WAIVED);
        }

        sdkCreateTimer(&timer);
        sdkResetTimer(&timer);

        glutDisplayFunc(display);
        glutKeyboardFunc(keyboard);
        glutReshapeFunc(reshape);

        loadDefaultImage(argv[0]);

        // If code is not printing the USage, then we execute this path.
        printf("I: display Image (no filtering)\n");
        printf("T: display Sobel Edge Detection (Using Texture)\n");
        printf("S: display Sobel Edge Detection (Using SMEM+Texture)\n");
        printf("Use the '-' and '=' keys to change the brightness.\n");
        printf("b: switch block filter operation (Mean/Sobel)\n");
        printf("p: switch point filter operation (Threshold ON/OFF)\n");
        fflush(stdout);
        atexit(cleanup);
        glutTimerFunc(REFRESH_DELAY, timerEvent,0);
        glutMainLoop();
    }

    cudaDeviceReset();
    exit(EXIT_SUCCESS);
}