void run_char_rnn(int argc, char **argv) { if (argc < 4) { fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } char *filename = find_char_arg(argc, argv, "-file", "data/shakespeare.txt"); char *seed = find_char_arg(argc, argv, "-seed", "\n\n"); int len = find_int_arg(argc, argv, "-len", 1000); real_t temp = find_real_t_arg(argc, argv, "-temp", .7); int rseed = find_int_arg(argc, argv, "-srand", time(0)); int clear = find_arg(argc, argv, "-clear"); int tokenized = find_arg(argc, argv, "-tokenized"); char *tokens = find_char_arg(argc, argv, "-tokens", 0); char *cfg = argv[3]; char *weights = (argc > 4) ? argv[4] : 0; if (0 == strcmp(argv[2], "train")) train_char_rnn(cfg, weights, filename, clear, tokenized); else if (0 == strcmp(argv[2], "valid")) valid_char_rnn(cfg, weights, seed); else if (0 == strcmp(argv[2], "validtactic")) valid_tactic_rnn(cfg, weights, seed); else if (0 == strcmp(argv[2], "vec")) vec_char_rnn(cfg, weights, seed); else if (0 == strcmp(argv[2], "generate")) test_char_rnn(cfg, weights, len, seed, temp, rseed, tokens); else if (0 == strcmp(argv[2], "generatetactic")) test_tactic_rnn(cfg, weights, len, temp, rseed, tokens); }
void run_yolo(int argc, char **argv) { int dont_show = find_arg(argc, argv, "-dont_show"); int http_stream_port = find_int_arg(argc, argv, "-http_port", -1); char *out_filename = find_char_arg(argc, argv, "-out_filename", 0); char *prefix = find_char_arg(argc, argv, "-prefix", 0); float thresh = find_float_arg(argc, argv, "-thresh", .2); float hier_thresh = find_float_arg(argc, argv, "-hier", .5); int cam_index = find_int_arg(argc, argv, "-c", 0); int frame_skip = find_int_arg(argc, argv, "-s", 0); int ext_output = find_arg(argc, argv, "-ext_output"); if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } char *cfg = argv[3]; char *weights = (argc > 4) ? argv[4] : 0; char *filename = (argc > 5) ? argv[5]: 0; if(0==strcmp(argv[2], "test")) test_yolo(cfg, weights, filename, thresh); else if(0==strcmp(argv[2], "train")) train_yolo(cfg, weights); else if(0==strcmp(argv[2], "valid")) validate_yolo(cfg, weights); else if(0==strcmp(argv[2], "recall")) validate_yolo_recall(cfg, weights); else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, hier_thresh, cam_index, filename, voc_names, 20, frame_skip, prefix, out_filename, http_stream_port, dont_show, ext_output); }
void run_detector(int argc, char **argv) { char *prefix = find_char_arg(argc, argv, "-prefix", 0); float thresh = find_float_arg(argc, argv, "-thresh", .24); int cam_index = find_int_arg(argc, argv, "-c", 0); int frame_skip = find_int_arg(argc, argv, "-s", 0); if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } char *gpu_list = find_char_arg(argc, argv, "-gpus", 0); int *gpus = 0; int gpu = 0; int ngpus = 0; if(gpu_list){ printf("%s\n", gpu_list); int len = strlen(gpu_list); ngpus = 1; int i; for(i = 0; i < len; ++i){ if (gpu_list[i] == ',') ++ngpus; } gpus = calloc(ngpus, sizeof(int)); for(i = 0; i < ngpus; ++i){ gpus[i] = atoi(gpu_list); gpu_list = strchr(gpu_list, ',')+1; } } else { gpu = gpu_index; gpus = &gpu; ngpus = 1; } int clear = find_arg(argc, argv, "-clear"); char *datacfg = argv[3]; char *cfg = argv[4]; char *weights = (argc > 5) ? argv[5] : 0; char *filename = (argc > 6) ? argv[6]: 0; if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh); else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear); else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights); else if(0==strcmp(argv[2], "recall")) validate_detector_recall(cfg, weights); else if(0==strcmp(argv[2], "demo")) { list *options = read_data_cfg(datacfg); int classes = option_find_int(options, "classes", 20); char *name_list = option_find_str(options, "names", "data/names.list"); char **names = get_labels(name_list); demo(cfg, weights, thresh, cam_index, filename, names, classes, frame_skip, prefix); } }
void run_coco(int argc, char **argv) { int i; for(i = 0; i < 80; ++i){ char buff[256]; sprintf(buff, "data/labels/%s.png", coco_classes[i]); coco_labels[i] = load_image_color(buff, 0, 0); } float thresh = find_float_arg(argc, argv, "-thresh", .2); int cam_index = find_int_arg(argc, argv, "-c", 0); char *file = find_char_arg(argc, argv, "-file", 0); if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } char *cfg = argv[3]; char *weights = (argc > 4) ? argv[4] : 0; char *filename = (argc > 5) ? argv[5]: 0; if(0==strcmp(argv[2], "test")) test_coco(cfg, weights, filename, thresh); else if(0==strcmp(argv[2], "train")) train_coco(cfg, weights); else if(0==strcmp(argv[2], "valid")) validate_coco(cfg, weights); else if(0==strcmp(argv[2], "recall")) validate_coco_recall(cfg, weights); else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, cam_index, file); }
void run_lsd(int argc, char **argv) { if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } int clear = find_arg(argc, argv, "-clear"); int display = find_arg(argc, argv, "-display"); int batches = find_int_arg(argc, argv, "-b", 0); char *file = find_char_arg(argc, argv, "-file", "/home/kunle12/data/imagenet/imagenet1k.train.list"); char *cfg = argv[3]; char *weights = (argc > 4) ? argv[4] : 0; char *filename = (argc > 5) ? argv[5] : 0; char *acfg = argv[5]; char *aweights = (argc > 6) ? argv[6] : 0; //if(0==strcmp(argv[2], "train")) train_lsd(cfg, weights, clear); //else if(0==strcmp(argv[2], "train2")) train_lsd2(cfg, weights, acfg, aweights, clear); //else if(0==strcmp(argv[2], "traincolor")) train_colorizer(cfg, weights, acfg, aweights, clear); //else if(0==strcmp(argv[2], "train3")) train_lsd3(argv[3], argv[4], argv[5], argv[6], argv[7], argv[8], clear); if(0==strcmp(argv[2], "traingan")) train_dcgan(cfg, weights, acfg, aweights, clear, display, file, batches); else if(0==strcmp(argv[2], "trainprog")) train_prog(cfg, weights, acfg, aweights, clear, display, file, batches); else if(0==strcmp(argv[2], "traincolor")) train_colorizer(cfg, weights, acfg, aweights, clear, display); else if(0==strcmp(argv[2], "gan")) test_dcgan(cfg, weights); else if(0==strcmp(argv[2], "inter")) inter_dcgan(cfg, weights); else if(0==strcmp(argv[2], "test")) test_lsd(cfg, weights, filename, 0); else if(0==strcmp(argv[2], "color")) test_lsd(cfg, weights, filename, 1); /* else if(0==strcmp(argv[2], "valid")) validate_lsd(cfg, weights); */ }
void run_classifier(int argc, char **argv) { if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } char *gpu_list = find_char_arg(argc, argv, "-gpus", 0); int ngpus; int *gpus = read_intlist(gpu_list, &ngpus, gpu_index); int cam_index = find_int_arg(argc, argv, "-c", 0); int top = find_int_arg(argc, argv, "-t", 0); int clear = find_arg(argc, argv, "-clear"); char *data = argv[3]; char *cfg = argv[4]; char *weights = (argc > 5) ? argv[5] : 0; char *filename = (argc > 6) ? argv[6]: 0; char *layer_s = (argc > 7) ? argv[7]: 0; int layer = layer_s ? atoi(layer_s) : -1; if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename, top); else if(0==strcmp(argv[2], "try")) try_classifier(data, cfg, weights, filename, atoi(layer_s)); else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights, gpus, ngpus, clear); else if(0==strcmp(argv[2], "demo")) demo_classifier(data, cfg, weights, cam_index, filename); else if(0==strcmp(argv[2], "gun")) gun_classifier(data, cfg, weights, cam_index, filename); else if(0==strcmp(argv[2], "threat")) threat_classifier(data, cfg, weights, cam_index, filename); else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights, layer); else if(0==strcmp(argv[2], "label")) label_classifier(data, cfg, weights); else if(0==strcmp(argv[2], "valid")) validate_classifier_single(data, cfg, weights); else if(0==strcmp(argv[2], "validmulti")) validate_classifier_multi(data, cfg, weights); else if(0==strcmp(argv[2], "valid10")) validate_classifier_10(data, cfg, weights); else if(0==strcmp(argv[2], "validcrop")) validate_classifier_crop(data, cfg, weights); else if(0==strcmp(argv[2], "validfull")) validate_classifier_full(data, cfg, weights); }
void run_char_rnn(int argc, char **argv) { if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } char *filename = find_char_arg(argc, argv, "-file", "data/shakespeare.txt"); char *seed = find_char_arg(argc, argv, "-seed", "\n"); int len = find_int_arg(argc, argv, "-len", 100); float temp = find_float_arg(argc, argv, "-temp", 1); int rseed = find_int_arg(argc, argv, "-srand", time(0)); char *cfg = argv[3]; char *weights = (argc > 4) ? argv[4] : 0; if(0==strcmp(argv[2], "train")) train_char_rnn(cfg, weights, filename); else if(0==strcmp(argv[2], "test")) test_char_rnn(cfg, weights, len, seed, temp, rseed); }
void run_regressor(int argc, char **argv) { if (argc < 4) { fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } char *gpu_list = find_char_arg(argc, argv, "-gpus", 0); int *gpus = 0; int gpu = 0; int ngpus = 0; if (gpu_list) { printf("%s\n", gpu_list); int len = strlen(gpu_list); ngpus = 1; int i; for (i = 0; i < len; ++i) { if (gpu_list[i] == ',') ++ngpus; } gpus = calloc(ngpus, sizeof(int)); for (i = 0; i < ngpus; ++i) { gpus[i] = atoi(gpu_list); gpu_list = strchr(gpu_list, ',') + 1; } } else { gpu = gpu_index; gpus = &gpu; ngpus = 1; } int cam_index = find_int_arg(argc, argv, "-c", 0); int clear = find_arg(argc, argv, "-clear"); char *data = argv[3]; char *cfg = argv[4]; char *weights = (argc > 5) ? argv[5] : 0; char *filename = (argc > 6) ? argv[6] : 0; if (0 == strcmp(argv[2], "test")) predict_regressor(data, cfg, weights); else if (0 == strcmp(argv[2], "train")) train_regressor(data, cfg, weights, gpus, ngpus, clear); else if (0 == strcmp(argv[2], "demo")) demo_regressor(data, cfg, weights, cam_index, filename); }
void run_yolo(int argc, char **argv) { char *prefix = find_char_arg(argc, argv, "-prefix", 0); float thresh = find_float_arg(argc, argv, "-thresh", .2); int cam_index = find_int_arg(argc, argv, "-c", 0); int frame_skip = find_int_arg(argc, argv, "-s", 0); if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } char *cfg = argv[3]; char *weights = (argc > 4) ? argv[4] : 0; char *filename = (argc > 5) ? argv[5]: 0; if(0==strcmp(argv[2], "test")) test_yolo(cfg, weights, filename, thresh); else if(0==strcmp(argv[2], "train")) train_yolo(cfg, weights); else if(0==strcmp(argv[2], "valid")) validate_yolo(cfg, weights); else if(0==strcmp(argv[2], "recall")) validate_yolo_recall(cfg, weights); else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, cam_index, filename, voc_names, 20, frame_skip, prefix, .5); }
void run_nightmare(int argc, char **argv) { srand(0); if(argc < 4){ fprintf(stderr, "usage: %s %s [cfg] [weights] [image] [layer] [options! (optional)]\n", argv[0], argv[1]); return; } char *cfg = argv[2]; char *weights = argv[3]; char *input = argv[4]; int max_layer = atoi(argv[5]); int range = find_int_arg(argc, argv, "-range", 1); int norm = find_int_arg(argc, argv, "-norm", 1); int rounds = find_int_arg(argc, argv, "-rounds", 1); int iters = find_int_arg(argc, argv, "-iters", 10); int octaves = find_int_arg(argc, argv, "-octaves", 4); float zoom = find_float_arg(argc, argv, "-zoom", 1.); float rate = find_float_arg(argc, argv, "-rate", .04); float thresh = find_float_arg(argc, argv, "-thresh", 1.); float rotate = find_float_arg(argc, argv, "-rotate", 0); float momentum = find_float_arg(argc, argv, "-momentum", .9); float lambda = find_float_arg(argc, argv, "-lambda", .01); char *prefix = find_char_arg(argc, argv, "-prefix", 0); int reconstruct = find_arg(argc, argv, "-reconstruct"); int smooth_size = find_int_arg(argc, argv, "-smooth", 1); network net = parse_network_cfg(cfg); load_weights(&net, weights); char *cfgbase = basecfg(cfg); char *imbase = basecfg(input); set_batch_network(&net, 1); image im = load_image_color(input, 0, 0); if(0){ float scale = 1; if(im.w > 512 || im.h > 512){ if(im.w > im.h) scale = 512.0/im.w; else scale = 512.0/im.h; } image resized = resize_image(im, scale*im.w, scale*im.h); free_image(im); im = resized; } float *features = 0; image update; if (reconstruct){ resize_network(&net, im.w, im.h); int zz = 0; network_predict(net, im.data); image out_im = get_network_image(net); image crop = crop_image(out_im, zz, zz, out_im.w-2*zz, out_im.h-2*zz); //flip_image(crop); image f_im = resize_image(crop, out_im.w, out_im.h); free_image(crop); printf("%d features\n", out_im.w*out_im.h*out_im.c); im = resize_image(im, im.w, im.h); f_im = resize_image(f_im, f_im.w, f_im.h); features = f_im.data; int i; for(i = 0; i < 14*14*512; ++i){ features[i] += rand_uniform(-.19, .19); } free_image(im); im = make_random_image(im.w, im.h, im.c); update = make_image(im.w, im.h, im.c); } int e; int n; for(e = 0; e < rounds; ++e){ fprintf(stderr, "Iteration: "); fflush(stderr); for(n = 0; n < iters; ++n){ fprintf(stderr, "%d, ", n); fflush(stderr); if(reconstruct){ reconstruct_picture(net, features, im, update, rate, momentum, lambda, smooth_size, 1); //if ((n+1)%30 == 0) rate *= .5; show_image(im, "reconstruction"); #ifdef OPENCV cvWaitKey(10); #endif }else{ int layer = max_layer + rand()%range - range/2; int octave = rand()%octaves; optimize_picture(&net, im, layer, 1/pow(1.33333333, octave), rate, thresh, norm); } } fprintf(stderr, "done\n"); if(0){ image g = grayscale_image(im); free_image(im); im = g; } char buff[256]; if (prefix){ sprintf(buff, "%s/%s_%s_%d_%06d",prefix, imbase, cfgbase, max_layer, e); }else{ sprintf(buff, "%s_%s_%d_%06d",imbase, cfgbase, max_layer, e); } printf("%d %s\n", e, buff); save_image(im, buff); //show_image(im, buff); //cvWaitKey(0); if(rotate){ image rot = rotate_image(im, rotate); free_image(im); im = rot; } image crop = crop_image(im, im.w * (1. - zoom)/2., im.h * (1.-zoom)/2., im.w*zoom, im.h*zoom); image resized = resize_image(crop, im.w, im.h); free_image(im); free_image(crop); im = resized; } }
int main(int argc, char **argv) { //test_resize("data/bad.jpg"); //test_box(); //test_convolutional_layer(); if(argc < 2){ fprintf(stderr, "usage: %s <function>\n", argv[0]); return 0; } gpu_index = find_int_arg(argc, argv, "-i", 0); if(find_arg(argc, argv, "-nogpu")) { gpu_index = -1; } #ifndef GPU gpu_index = -1; #else if(gpu_index >= 0){ cuda_set_device(gpu_index); } #endif if (0 == strcmp(argv[1], "average")){ average(argc, argv); } else if (0 == strcmp(argv[1], "yolo")){ run_yolo(argc, argv); } else if (0 == strcmp(argv[1], "super")){ run_super(argc, argv); } else if (0 == strcmp(argv[1], "lsd")){ run_lsd(argc, argv); } else if (0 == strcmp(argv[1], "detector")){ run_detector(argc, argv); } else if (0 == strcmp(argv[1], "detect")){ float thresh = find_float_arg(argc, argv, "-thresh", .5); char *filename = (argc > 4) ? argv[4]: 0; char *outfile = find_char_arg(argc, argv, "-out", 0); int fullscreen = find_arg(argc, argv, "-fullscreen"); test_detector("cfg/coco.data", argv[2], argv[3], filename, thresh, .5, outfile, fullscreen); } else if (0 == strcmp(argv[1], "cifar")){ run_cifar(argc, argv); } else if (0 == strcmp(argv[1], "go")){ run_go(argc, argv); } else if (0 == strcmp(argv[1], "rnn")){ run_char_rnn(argc, argv); } else if (0 == strcmp(argv[1], "coco")){ run_coco(argc, argv); } else if (0 == strcmp(argv[1], "classify")){ predict_classifier("cfg/imagenet1k.data", argv[2], argv[3], argv[4], 5); } else if (0 == strcmp(argv[1], "classifier")){ run_classifier(argc, argv); } else if (0 == strcmp(argv[1], "regressor")){ run_regressor(argc, argv); } else if (0 == strcmp(argv[1], "isegmenter")){ run_isegmenter(argc, argv); } else if (0 == strcmp(argv[1], "segmenter")){ run_segmenter(argc, argv); } else if (0 == strcmp(argv[1], "art")){ run_art(argc, argv); } else if (0 == strcmp(argv[1], "tag")){ run_tag(argc, argv); } else if (0 == strcmp(argv[1], "3d")){ composite_3d(argv[2], argv[3], argv[4], (argc > 5) ? atof(argv[5]) : 0); } else if (0 == strcmp(argv[1], "test")){ test_resize(argv[2]); } else if (0 == strcmp(argv[1], "nightmare")){ run_nightmare(argc, argv); } else if (0 == strcmp(argv[1], "rgbgr")){ rgbgr_net(argv[2], argv[3], argv[4]); } else if (0 == strcmp(argv[1], "reset")){ reset_normalize_net(argv[2], argv[3], argv[4]); } else if (0 == strcmp(argv[1], "denormalize")){ denormalize_net(argv[2], argv[3], argv[4]); } else if (0 == strcmp(argv[1], "statistics")){ statistics_net(argv[2], argv[3]); } else if (0 == strcmp(argv[1], "normalize")){ normalize_net(argv[2], argv[3], argv[4]); } else if (0 == strcmp(argv[1], "rescale")){ rescale_net(argv[2], argv[3], argv[4]); } else if (0 == strcmp(argv[1], "ops")){ operations(argv[2]); } else if (0 == strcmp(argv[1], "speed")){ speed(argv[2], (argc > 3 && argv[3]) ? atoi(argv[3]) : 0); } else if (0 == strcmp(argv[1], "oneoff")){ oneoff(argv[2], argv[3], argv[4]); } else if (0 == strcmp(argv[1], "oneoff2")){ oneoff2(argv[2], argv[3], argv[4], atoi(argv[5])); } else if (0 == strcmp(argv[1], "print")){ print_weights(argv[2], argv[3], atoi(argv[4])); } else if (0 == strcmp(argv[1], "partial")){ partial(argv[2], argv[3], argv[4], atoi(argv[5])); } else if (0 == strcmp(argv[1], "average")){ average(argc, argv); } else if (0 == strcmp(argv[1], "visualize")){ visualize(argv[2], (argc > 3) ? argv[3] : 0); } else if (0 == strcmp(argv[1], "mkimg")){ mkimg(argv[2], argv[3], atoi(argv[4]), atoi(argv[5]), atoi(argv[6]), argv[7]); } else if (0 == strcmp(argv[1], "imtest")){ test_resize(argv[2]); } else { fprintf(stderr, "Not an option: %s\n", argv[1]); } return 0; }
void run_nightmare(int argc, char **argv) { srand(0); if(argc < 4){ fprintf(stderr, "usage: %s %s [cfg] [weights] [image] [layer] [options! (optional)]\n", argv[0], argv[1]); return; } char *cfg = argv[2]; char *weights = argv[3]; char *input = argv[4]; int max_layer = atoi(argv[5]); int range = find_int_arg(argc, argv, "-range", 1); int rounds = find_int_arg(argc, argv, "-rounds", 1); int iters = find_int_arg(argc, argv, "-iters", 10); int octaves = find_int_arg(argc, argv, "-octaves", 4); float zoom = find_float_arg(argc, argv, "-zoom", 1.); float rate = find_float_arg(argc, argv, "-rate", .04); float thresh = find_float_arg(argc, argv, "-thresh", 1.); float rotate = find_float_arg(argc, argv, "-rotate", 0); char *prefix = find_char_arg(argc, argv, "-prefix", 0); network net = parse_network_cfg(cfg); load_weights(&net, weights); char *cfgbase = basecfg(cfg); char *imbase = basecfg(input); set_batch_network(&net, 1); image im = load_image_color(input, 0, 0); if(0){ float scale = 1; if(im.w > 512 || im.h > 512){ if(im.w > im.h) scale = 512.0/im.w; else scale = 512.0/im.h; } image resized = resize_image(im, scale*im.w, scale*im.h); free_image(im); im = resized; } int e; int n; for(e = 0; e < rounds; ++e){ fprintf(stderr, "Iteration: "); fflush(stderr); for(n = 0; n < iters; ++n){ fprintf(stderr, "%d, ", n); fflush(stderr); int layer = max_layer + rand()%range - range/2; int octave = rand()%octaves; optimize_picture(&net, im, layer, 1/pow(1.33333333, octave), rate, thresh); } fprintf(stderr, "done\n"); if(0){ image g = grayscale_image(im); free_image(im); im = g; } char buff[256]; if (prefix){ sprintf(buff, "%s/%s_%s_%d_%06d",prefix, imbase, cfgbase, max_layer, e); }else{ sprintf(buff, "%s_%s_%d_%06d",imbase, cfgbase, max_layer, e); } printf("%d %s\n", e, buff); save_image(im, buff); //show_image(im, buff); //cvWaitKey(0); if(rotate){ image rot = rotate_image(im, rotate); free_image(im); im = rot; } image crop = crop_image(im, im.w * (1. - zoom)/2., im.h * (1.-zoom)/2., im.w*zoom, im.h*zoom); image resized = resize_image(crop, im.w, im.h); free_image(im); free_image(crop); im = resized; } }