/** * efi_partition(struct parsed_partitions *state, struct block_device *bdev) * @state * @bdev * * Description: called from check.c, if the disk contains GPT * partitions, sets up partition entries in the kernel. * * If the first block on the disk is a legacy MBR, * it will get handled by msdos_partition(). * If it's a Protective MBR, we'll handle it here. * * We do not create a Linux partition for GPT, but * only for the actual data partitions. * Returns: * -1 if unable to read the partition table * 0 if this isn't our partition table * 1 if successful * */ int efi_partition(struct parsed_partitions *state, struct block_device *bdev) { gpt_header *gpt = NULL; gpt_entry *ptes = NULL; u32 i; if (!find_valid_gpt(bdev, &gpt, &ptes) || !gpt || !ptes) { kfree(gpt); kfree(ptes); return 0; } Dprintk("GUID Partition Table is valid! Yea!\n"); for (i = 0; i < le32_to_cpu(gpt->num_partition_entries) && i < state->limit-1; i++) { if (!is_pte_valid(&ptes[i], last_lba(bdev))) continue; put_partition(state, i+1, le64_to_cpu(ptes[i].starting_lba), (le64_to_cpu(ptes[i].ending_lba) - le64_to_cpu(ptes[i].starting_lba) + 1ULL)); /* If this is a RAID volume, tell md */ if (!efi_guidcmp(ptes[i].partition_type_guid, PARTITION_LINUX_RAID_GUID)) state->parts[i+1].flags = 1; } kfree(ptes); kfree(gpt); printk("\n"); return 1; }
/** * efi_partition(struct parsed_partitions *state) * @state * * Description: called from check.c, if the disk contains GPT * partitions, sets up partition entries in the kernel. * * If the first block on the disk is a legacy MBR, * it will get handled by msdos_partition(). * If it's a Protective MBR, we'll handle it here. * * We do not create a Linux partition for GPT, but * only for the actual data partitions. * Returns: * -1 if unable to read the partition table * 0 if this isn't our partition table * 1 if successful * */ int efi_partition(struct parsed_partitions *state) { gpt_header *gpt = NULL; gpt_entry *ptes = NULL; u32 i; unsigned ssz = bdev_logical_block_size(state->bdev) / 512; if (!find_valid_gpt(state, &gpt, &ptes) || !gpt || !ptes) { kfree(gpt); kfree(ptes); return 0; } pr_debug("GUID Partition Table is valid! Yea!\n"); for (i = 0; i < le32_to_cpu(gpt->num_partition_entries) && i < state->limit-1; i++) { u64 start = le64_to_cpu(ptes[i].starting_lba); u64 size = le64_to_cpu(ptes[i].ending_lba) - le64_to_cpu(ptes[i].starting_lba) + 1ULL; if (!is_pte_valid(&ptes[i], last_lba(state->bdev))) continue; put_partition(state, i+1, start * ssz, size * ssz); /* If this is a RAID volume, tell md */ if (!efi_guidcmp(ptes[i].partition_type_guid, PARTITION_LINUX_RAID_GUID)) state->parts[i + 1].flags = ADDPART_FLAG_RAID; } kfree(ptes); kfree(gpt); printk("\n"); return 1; }
/** * read_gpt_pt() * @fd * @all - slice with start/size of whole disk * * 0 if this isn't our partition table * number of partitions if successful * */ int read_gpt_pt (int fd, struct slice all, struct slice *sp, int ns) { gpt_header *gpt = NULL; gpt_entry *ptes = NULL; uint32_t i; int n = 0; int last_used_index=-1; if (!find_valid_gpt (fd, &gpt, &ptes) || !gpt || !ptes) { if (gpt) free (gpt); if (ptes) free (ptes); return 0; } for (i = 0; i < __le32_to_cpu(gpt->num_partition_entries) && i < ns; i++) { if (!efi_guidcmp (NULL_GUID, ptes[i].partition_type_guid)) { sp[n].start = 0; sp[n].size = 0; n++; } else { sp[n].start = __le64_to_cpu(ptes[i].starting_lba); sp[n].size = __le64_to_cpu(ptes[i].ending_lba) - __le64_to_cpu(ptes[i].starting_lba) + 1; last_used_index=n; n++; } } free (ptes); free (gpt); return last_used_index+1; }
/** * efi_partition(struct parsed_partitions *state) * @state * * Description: called from check.c, if the disk contains GPT * partitions, sets up partition entries in the kernel. * * If the first block on the disk is a legacy MBR, * it will get handled by msdos_partition(). * If it's a Protective MBR, we'll handle it here. * * We do not create a Linux partition for GPT, but * only for the actual data partitions. * Returns: * -1 if unable to read the partition table * 0 if this isn't our partition table * 1 if successful * */ int efi_partition(struct parsed_partitions *state) { gpt_header *gpt = NULL; gpt_entry *ptes = NULL; u32 i; unsigned ssz = bdev_logical_block_size(state->bdev) / 512; u8 unparsed_guid[37]; if (!find_valid_gpt(state, &gpt, &ptes) || !gpt || !ptes) { kfree(gpt); kfree(ptes); return 0; } pr_debug("GUID Partition Table is valid! Yea!\n"); for (i = 0; i < le32_to_cpu(gpt->num_partition_entries) && i < state->limit-1; i++) { struct partition_meta_info *info; unsigned label_count = 0; unsigned label_max; u64 start = le64_to_cpu(ptes[i].starting_lba); u64 size = le64_to_cpu(ptes[i].ending_lba) - le64_to_cpu(ptes[i].starting_lba) + 1ULL; if (!is_pte_valid(&ptes[i], last_lba(state->bdev))) continue; put_partition(state, i+1, start * ssz, size * ssz); /* If this is a RAID volume, tell md */ if (!efi_guidcmp(ptes[i].partition_type_guid, PARTITION_LINUX_RAID_GUID)) state->parts[i + 1].flags = ADDPART_FLAG_RAID; info = &state->parts[i + 1].info; /* Instead of doing a manual swap to big endian, reuse the * common ASCII hex format as the interim. */ efi_guid_unparse(&ptes[i].unique_partition_guid, unparsed_guid); part_pack_uuid(unparsed_guid, info->uuid); /* Naively convert UTF16-LE to 7 bits. */ label_max = min(sizeof(info->volname) - 1, sizeof(ptes[i].partition_name)); info->volname[label_max] = 0; while (label_count < label_max) { u8 c = ptes[i].partition_name[label_count] & 0xff; if (c && !isprint(c)) c = '!'; info->volname[label_count] = c; label_count++; } state->parts[i + 1].has_info = true; } kfree(ptes); kfree(gpt); strlcat(state->pp_buf, "\n", PAGE_SIZE); return 1; }
/** * efi_partition(struct parsed_partitions *state) * @state * * Description: called from check.c, if the disk contains GPT * partitions, sets up partition entries in the kernel. * * If the first block on the disk is a legacy MBR, * it will get handled by msdos_partition(). * If it's a Protective MBR, we'll handle it here. * * We do not create a Linux partition for GPT, but * only for the actual data partitions. * Returns: * -1 if unable to read the partition table * 0 if this isn't our partition table * 1 if successful * */ int efi_partition(struct parsed_partitions *state) { gpt_header *gpt = NULL; gpt_entry *ptes = NULL; u32 i; unsigned ssz = bdev_logical_block_size(state->bdev) / 512; if (!find_valid_gpt(state, &gpt, &ptes) || !gpt || !ptes) { kfree(gpt); kfree(ptes); return 0; } pr_debug("GUID Partition Table is valid! Yea!\n"); for (i = 0; i < le32_to_cpu(gpt->num_partition_entries) && i < state->limit-1; i++) { u64 start = le64_to_cpu(ptes[i].starting_lba); u64 size = le64_to_cpu(ptes[i].ending_lba) - le64_to_cpu(ptes[i].starting_lba) + 1ULL; u8 name[sizeof(ptes->partition_name) / sizeof(efi_char16_t)]; int len; if (!is_pte_valid(&ptes[i], last_lba(state->bdev))) continue; len = utf16s_to_utf8s(ptes[i].partition_name, sizeof(ptes[i].partition_name) / sizeof(efi_char16_t), UTF16_LITTLE_ENDIAN, name, sizeof(name)); put_named_partition(state, i+1, start * ssz, size * ssz, name, len); /* If this is a RAID volume, tell md */ if (!efi_guidcmp(ptes[i].partition_type_guid, PARTITION_LINUX_RAID_GUID)) state->parts[i + 1].flags = ADDPART_FLAG_RAID; } kfree(ptes); kfree(gpt); strlcat(state->pp_buf, "\n", PAGE_SIZE); return 1; }
/** * efi_partition(struct parsed_partitions *state, struct block_device *bdev) * @state * @bdev * * Description: called from check.c, if the disk contains GPT * partitions, sets up partition entries in the kernel. * * If the first block on the disk is a legacy MBR, * it will get handled by msdos_partition(). * If it's a Protective MBR, we'll handle it here. * * We do not create a Linux partition for GPT, but * only for the actual data partitions. * Returns: * -1 if unable to read the partition table * 0 if this isn't our partition table * 1 if successful * */ int efi_partition(struct parsed_partitions *state, struct block_device *bdev) { gpt_header *gpt = NULL; gpt_entry *ptes = NULL; u32 i; unsigned ssz = bdev_hardsect_size(bdev) / 512; if (!find_valid_gpt(bdev, &gpt, &ptes) || !gpt || !ptes) { kfree(gpt); kfree(ptes); return 0; } Dprintk("GUID Partition Table is valid! Yea!\n"); for (i = 0; i < le32_to_cpu(gpt->num_partition_entries) && i < state->limit-1; i++) { u64 start = le64_to_cpu(ptes[i].starting_lba); u64 size = le64_to_cpu(ptes[i].ending_lba) - le64_to_cpu(ptes[i].starting_lba) + 1ULL; if (!is_pte_valid(&ptes[i], last_lba(bdev))) continue; put_partition(state, i+1, start * ssz, size * ssz); /* If this is a RAID volume, tell md */ if (!efi_guidcmp(ptes[i].partition_type_guid, PARTITION_LINUX_RAID_GUID)) state->parts[i+1].flags = 1; /* If this is a EFI System partition, tell hotplug */ if (!efi_guidcmp(ptes[i].partition_type_guid, PARTITION_SYSTEM_GUID)) state->parts[i+1].is_efi_system_partition = 1; } kfree(ptes); kfree(gpt); printk("\n"); return 1; }
gpt_disk_get_partition_info(int fd, uint32_t num, uint64_t * start, uint64_t * size, uint8_t *signature, uint8_t * mbr_type, uint8_t * signature_type, int ignore_pmbr_error) { gpt_header *gpt = NULL; gpt_entry *ptes = NULL, *p; int rc = 0; char *report=getenv("LIBEFIBOOT_REPORT_GPT_ERRORS"); if (report) report_errors = 1; rc = find_valid_gpt(fd, &gpt, &ptes, ignore_pmbr_error); if (rc < 0) return rc; *mbr_type = 0x02; *signature_type = 0x02; if (num > 0 && num <= __le32_to_cpu(gpt->num_partition_entries)) { p = &ptes[num - 1]; *start = __le64_to_cpu(p->starting_lba); *size = __le64_to_cpu(p->ending_lba) - __le64_to_cpu(p->starting_lba) + 1; memcpy(signature, &p->unique_partition_guid, sizeof (p->unique_partition_guid)); } else { if (report_errors) fprintf(stderr, "partition %d is not valid\n", num); errno = EINVAL; return -1; } if (ptes) free(ptes); if (gpt) free(gpt); return rc; }
/** * find_valid_gpt() - Search disk for valid GPT headers and PTEs * @state * @gpt is a GPT header ptr, filled on return. * @ptes is a PTEs ptr, filled on return. * Description: Returns 1 if valid, 0 on error. * If valid, returns pointers to newly allocated GPT header and PTEs. * Validity depends on PMBR being valid (or being overridden by the * 'gpt' kernel command line option) and finding either the Primary * GPT header and PTEs valid, or the Alternate GPT header and PTEs * valid. If the Primary GPT header is not valid, the Alternate GPT header * is not checked unless the 'gpt' kernel command line option is passed. * This protects against devices which misreport their size, and forces * the user to decide to use the Alternate GPT. */ static int find_valid_gpt(struct parsed_partitions *state, gpt_header **gpt, gpt_entry **ptes) { int good_pgpt = 0, good_agpt = 0, good_pmbr = 0; gpt_header *pgpt = NULL, *agpt = NULL; gpt_entry *pptes = NULL, *aptes = NULL; legacy_mbr *legacymbr; u64 lastlba; if (!ptes) return 0; lastlba = last_lba(state->bdev); #if 0 // merged from msm8960-gb by ZTE_BOOT_JIA_20120105 jia.jia if (!force_gpt) { #else if (force_gpt) { #endif /* This will be added to the EFI Spec. per Intel after v1.02. */ legacymbr = kzalloc(sizeof (*legacymbr), GFP_KERNEL); if (legacymbr) { read_lba(state, 0, (u8 *) legacymbr, sizeof (*legacymbr)); good_pmbr = is_pmbr_valid(legacymbr); kfree(legacymbr); } if (!good_pmbr) goto fail; } good_pgpt = is_gpt_valid(state, GPT_PRIMARY_PARTITION_TABLE_LBA, &pgpt, &pptes); if (good_pgpt) good_agpt = is_gpt_valid(state, le64_to_cpu(pgpt->alternate_lba), &agpt, &aptes); if (!good_agpt && force_gpt) good_agpt = is_gpt_valid(state, lastlba, &agpt, &aptes); /* The obviously unsuccessful case */ if (!good_pgpt && !good_agpt) goto fail; compare_gpts(pgpt, agpt, lastlba); /* The good cases */ if (good_pgpt) { *gpt = pgpt; *ptes = pptes; kfree(agpt); kfree(aptes); if (!good_agpt) { printk(KERN_WARNING "Alternate GPT is invalid, " "using primary GPT.\n"); } return 1; } else if (good_agpt) { *gpt = agpt; *ptes = aptes; kfree(pgpt); kfree(pptes); printk(KERN_WARNING "Primary GPT is invalid, using alternate GPT.\n"); return 1; } fail: kfree(pgpt); kfree(agpt); kfree(pptes); kfree(aptes); *gpt = NULL; *ptes = NULL; return 0; } /** * efi_partition(struct parsed_partitions *state) * @state * * Description: called from check.c, if the disk contains GPT * partitions, sets up partition entries in the kernel. * * If the first block on the disk is a legacy MBR, * it will get handled by msdos_partition(). * If it's a Protective MBR, we'll handle it here. * * We do not create a Linux partition for GPT, but * only for the actual data partitions. * Returns: * -1 if unable to read the partition table * 0 if this isn't our partition table * 1 if successful * */ int efi_partition(struct parsed_partitions *state) { gpt_header *gpt = NULL; gpt_entry *ptes = NULL; u32 i; unsigned ssz = bdev_logical_block_size(state->bdev) / 512; u8 unparsed_guid[37]; if (!find_valid_gpt(state, &gpt, &ptes) || !gpt || !ptes) { kfree(gpt); kfree(ptes); return 0; } pr_debug("GUID Partition Table is valid! Yea!\n"); for (i = 0; i < le32_to_cpu(gpt->num_partition_entries) && i < state->limit-1; i++) { struct partition_meta_info *info; unsigned label_count = 0; unsigned label_max; u64 start = le64_to_cpu(ptes[i].starting_lba); u64 size = le64_to_cpu(ptes[i].ending_lba) - le64_to_cpu(ptes[i].starting_lba) + 1ULL; if (!is_pte_valid(&ptes[i], last_lba(state->bdev))) continue; put_partition(state, i+1, start * ssz, size * ssz); /* If this is a RAID volume, tell md */ if (!efi_guidcmp(ptes[i].partition_type_guid, PARTITION_LINUX_RAID_GUID)) state->parts[i + 1].flags = ADDPART_FLAG_RAID; info = &state->parts[i + 1].info; /* Instead of doing a manual swap to big endian, reuse the * common ASCII hex format as the interim. */ efi_guid_unparse(&ptes[i].unique_partition_guid, unparsed_guid); part_pack_uuid(unparsed_guid, info->uuid); /* Naively convert UTF16-LE to 7 bits. */ label_max = min(sizeof(info->volname) - 1, sizeof(ptes[i].partition_name)); info->volname[label_max] = 0; while (label_count < label_max) { u8 c = ptes[i].partition_name[label_count] & 0xff; if (c && !isprint(c)) c = '!'; info->volname[label_count] = c; label_count++; } state->parts[i + 1].has_info = true; } kfree(ptes); kfree(gpt); strlcat(state->pp_buf, "\n", PAGE_SIZE); return 1; }
/** * efi_partition(struct parsed_partitions *state) * @state * * Description: called from check.c, if the disk contains GPT * partitions, sets up partition entries in the kernel. * * If the first block on the disk is a legacy MBR, * it will get handled by msdos_partition(). * If it's a Protective MBR, we'll handle it here. * * We do not create a Linux partition for GPT, but * only for the actual data partitions. * Returns: * -1 if unable to read the partition table * 0 if this isn't our partition table * 1 if successful * */ int efi_partition(struct parsed_partitions *state) { char* partition_name = NULL; gpt_header *gpt = NULL; gpt_entry *ptes = NULL; u32 i; unsigned ssz = bdev_logical_block_size(state->bdev) / 512; partition_name = kzalloc(sizeof(ptes->partition_name), GFP_KERNEL); if (!partition_name) return 0; if (!find_valid_gpt(state, &gpt, &ptes) || !gpt || !ptes) { kfree(gpt); kfree(ptes); kfree(partition_name); return 0; } pr_debug("GUID Partition Table is valid! Yea!\n"); proc_create("emmc", 0666, NULL, &emmc_partition_fops); gpt_info.num_of_partitions = le32_to_cpu(gpt->num_partition_entries); gpt_info.erase_size = bdev_erase_size(state->bdev) * ssz; /* * Not certain if there is a chance this function is called again with * a different GPT. In case there is, free previously allocated memory */ kfree(gpt_info.partitions); gpt_info.partitions = kzalloc(gpt_info.num_of_partitions * sizeof(*gpt_info.partitions), GFP_KERNEL); for (i = 0; i < le32_to_cpu(gpt->num_partition_entries) && i < state->limit-1; i++) { int partition_name_len; struct partition_meta_info *info; unsigned label_count = 0; unsigned label_max; u64 start = le64_to_cpu(ptes[i].starting_lba); u64 size = le64_to_cpu(ptes[i].ending_lba) - le64_to_cpu(ptes[i].starting_lba) + 1ULL; gpt_info.partitions[i].size = size * ssz; if (!is_pte_valid(&ptes[i], last_lba(state->bdev))) continue; partition_name_len = utf16s_to_utf8s(ptes[i].partition_name, sizeof(ptes[i].partition_name), UTF16_LITTLE_ENDIAN, partition_name, sizeof(ptes[i].partition_name)); #ifdef CONFIG_APANIC_ON_MMC if(strncmp(partition_name,CONFIG_APANIC_PLABEL,partition_name_len) == 0) { apanic_partition_start = start * ssz; apanic_partition_size = size * ssz; pr_debug("apanic partition found starts at %lu \r\n", apanic_partition_start); pr_debug("apanic partition size = %lu\n", apanic_partition_size); } #endif put_partition(state, i+1, start * ssz, size * ssz); /* If this is a RAID volume, tell md */ if (!efi_guidcmp(ptes[i].partition_type_guid, PARTITION_LINUX_RAID_GUID)) state->parts[i + 1].flags = ADDPART_FLAG_RAID; info = &state->parts[i + 1].info; efi_guid_unparse(&ptes[i].unique_partition_guid, info->uuid); /* Naively convert UTF16-LE to 7 bits. */ label_max = min(sizeof(info->volname) - 1, sizeof(ptes[i].partition_name)); info->volname[label_max] = 0; while (label_count < label_max) { u8 c = ptes[i].partition_name[label_count] & 0xff; if (c && !isprint(c)) c = '!'; info->volname[label_count] = c; if (label_count <= partition_name_len) gpt_info.partitions[i].volname[label_count] = c; label_count++; } state->parts[i + 1].has_info = true; #ifdef CONFIG_APANIC_ON_MMC if(strncmp(info->volname,CONFIG_APANIC_PLABEL,label_count) == 0) { apanic_partition_start = start * ssz; pr_debug("apanic partition found starts at %lu \r\n", apanic_partition_start); } #endif } kfree(ptes); kfree(gpt); kfree(partition_name); strlcat(state->pp_buf, "\n", PAGE_SIZE); return 1; }
/** * efi_partition(struct parsed_partitions *state, struct block_device *bdev) * @state * @bdev * * Description: called from check.c, if the disk contains GPT * partitions, sets up partition entries in the kernel. * * If the first block on the disk is a legacy MBR, * it will get handled by msdos_partition(). * If it's a Protective MBR, we'll handle it here. * * We do not create a Linux partition for GPT, but * only for the actual data partitions. * Returns: * -1 if unable to read the partition table * 0 if this isn't our partition table * 1 if successful * */ int efi_partition(struct parsed_partitions *state, struct block_device *bdev) { gpt_header *gpt = NULL; gpt_entry *ptes = NULL; u32 i; unsigned ssz = bdev_logical_block_size(bdev) / 512; u8 unparsed_guid[37]; if (!find_valid_gpt(bdev, &gpt, &ptes) || !gpt || !ptes) { kfree(gpt); kfree(ptes); return 0; } pr_debug("GUID Partition Table is valid! Yea!\n"); for (i = 0; i < le32_to_cpu(gpt->num_partition_entries) && i < state->limit-1; i++) { struct partition_meta_info *info; unsigned label_count = 0; unsigned label_max; u64 start = le64_to_cpu(ptes[i].starting_lba); u64 size = le64_to_cpu(ptes[i].ending_lba) - le64_to_cpu(ptes[i].starting_lba) + 1ULL; if (!is_pte_valid(&ptes[i], last_lba(bdev))) continue; put_partition(state, i+1, start * ssz, size * ssz); /* If this is a RAID volume, tell md */ if (!efi_guidcmp(ptes[i].partition_type_guid, PARTITION_LINUX_RAID_GUID)) state->parts[i+1].flags = 1; info = &state->parts[i + 1].info; /* The EFI specification diverges from RFC 4122 with respect to * the packed storage of its UUIDs. efi_guid_unparse unpacks to * a common ASCII representation, which allows part_pack_uuid to * pack it in the standard big endian layout for use by the rest * of the kernel. */ efi_guid_unparse(&ptes[i].unique_partition_guid, unparsed_guid); part_pack_uuid(unparsed_guid, info->uuid); /* Naively convert UTF16-LE to 7 bits. */ label_max = min(sizeof(info->volname) - 1, sizeof(ptes[i].partition_name)); info->volname[label_max] = 0; while (label_count < label_max) { u8 c = ptes[i].partition_name[label_count] & 0xff; if (c && !isprint(c)) c = '!'; info->volname[label_count] = c; label_count++; } state->parts[i + 1].has_info = true; } kfree(ptes); kfree(gpt); printk("\n"); return 1; }