Пример #1
0
static void flatten_surface_closure_tree(ShaderData *sd,
                                         int path_flag,
                                         const OSL::ClosureColor *closure,
                                         float3 weight = make_float3(1.0f, 1.0f, 1.0f))
{
	/* OSL gives us a closure tree, we flatten it into arrays per
	 * closure type, for evaluation, sampling, etc later on. */

	switch(closure->id) {
		case OSL::ClosureColor::MUL: {
			OSL::ClosureMul *mul = (OSL::ClosureMul *)closure;
			flatten_surface_closure_tree(sd, path_flag, mul->closure, TO_FLOAT3(mul->weight) * weight);
			break;
		}
		case OSL::ClosureColor::ADD: {
			OSL::ClosureAdd *add = (OSL::ClosureAdd *)closure;
			flatten_surface_closure_tree(sd, path_flag, add->closureA, weight);
			flatten_surface_closure_tree(sd, path_flag, add->closureB, weight);
			break;
		}
		default: {
			OSL::ClosureComponent *comp = (OSL::ClosureComponent *)closure;
			CClosurePrimitive *prim = (CClosurePrimitive *)comp->data();

			if(prim) {
#ifdef OSL_SUPPORTS_WEIGHTED_CLOSURE_COMPONENTS
				weight = weight*TO_FLOAT3(comp->w);
#endif
				prim->setup(sd, path_flag, weight);
			}
			break;
		}
	}
}
Пример #2
0
void OSLShader::eval_surface(KernelGlobals *kg, ShaderData *sd, float randb, int path_flag)
{
	/* gather pointers */
	OSL::pvt::ShadingSystemImpl *ssi = (OSL::pvt::ShadingSystemImpl*)kg->osl.ss;
	OSLGlobals::ThreadData *tdata = tls_get(OSLGlobals::ThreadData, kg->osl.thread_data);
	OSL::ShaderGlobals *globals = &tdata->globals;
	OSL::pvt::ShadingContext *ctx = ssi->get_context(tdata->thread_info);

	/* setup shader globals from shader data */
	sd->osl_ctx = ctx;
	shaderdata_to_shaderglobals(kg, sd, path_flag, globals);

	/* execute shader for this point */
	int shader = sd->shader & SHADER_MASK;

	if(kg->osl.surface_state[shader])
		ctx->execute(OSL::pvt::ShadUseSurface, *(kg->osl.surface_state[shader]), *globals);

	/* flatten closure tree */
	sd->num_closure = 0;
	sd->randb_closure = randb;

	if(globals->Ci) {
		bool no_glossy = (path_flag & PATH_RAY_DIFFUSE) && kernel_data.integrator.no_caustics;
		flatten_surface_closure_tree(sd, no_glossy, globals->Ci);
	}
}
Пример #3
0
void OSLShader::eval_surface(KernelGlobals *kg, ShaderData *sd, int path_flag, ShaderContext ctx)
{
	/* setup shader globals from shader data */
	OSLThreadData *tdata = kg->osl_tdata;
	shaderdata_to_shaderglobals(kg, sd, path_flag, tdata);

	/* execute shader for this point */
	OSL::ShadingSystem *ss = (OSL::ShadingSystem*)kg->osl_ss;
	OSL::ShaderGlobals *globals = &tdata->globals;
	OSL::ShadingContext *octx = tdata->context[(int)ctx];
	int shader = sd->shader & SHADER_MASK;

	if (kg->osl->surface_state[shader])
		ss->execute(*octx, *(kg->osl->surface_state[shader]), *globals);

	/* flatten closure tree */
	if (globals->Ci)
		flatten_surface_closure_tree(sd, path_flag, globals->Ci);
}
Пример #4
0
void OSLShader::eval_surface(KernelGlobals *kg, ShaderData *sd, float randb, int path_flag, ShaderContext ctx)
{
	/* setup shader globals from shader data */
	OSLThreadData *tdata = kg->osl_tdata;
	shaderdata_to_shaderglobals(kg, sd, path_flag, tdata);

	/* execute shader for this point */
	OSL::ShadingSystem *ss = (OSL::ShadingSystem*)kg->osl_ss;
	OSL::ShaderGlobals *globals = &tdata->globals;
	OSL::ShadingContext *octx = tdata->context[(int)ctx];
	int shader = sd->shader & SHADER_MASK;

	if (kg->osl->surface_state[shader])
		ss->execute(*octx, *(kg->osl->surface_state[shader]), *globals);

	/* flatten closure tree */
	sd->num_closure = 0;
	sd->randb_closure = randb;

	if (globals->Ci) {
		bool no_glossy = (path_flag & PATH_RAY_DIFFUSE) && kernel_data.integrator.no_caustics;
		flatten_surface_closure_tree(sd, no_glossy, globals->Ci);
	}
}
Пример #5
0
static void flatten_surface_closure_tree(ShaderData *sd, int path_flag,
                                         const OSL::ClosureColor *closure, float3 weight = make_float3(1.0f, 1.0f, 1.0f))
{
	/* OSL gives us a closure tree, we flatten it into arrays per
	 * closure type, for evaluation, sampling, etc later on. */

	if (closure->type == OSL::ClosureColor::COMPONENT) {
		OSL::ClosureComponent *comp = (OSL::ClosureComponent *)closure;
		CClosurePrimitive *prim = (CClosurePrimitive *)comp->data();

		if (prim) {
			ShaderClosure sc;

#ifdef OSL_SUPPORTS_WEIGHTED_CLOSURE_COMPONENTS
			weight = weight*TO_FLOAT3(comp->w);
#endif
			sc.weight = weight;

			prim->setup();

			switch (prim->category) {
				case CClosurePrimitive::BSDF: {
					CBSDFClosure *bsdf = (CBSDFClosure *)prim;
					int scattering = bsdf->scattering();

					/* no caustics option */
					if(scattering == LABEL_GLOSSY && (path_flag & PATH_RAY_DIFFUSE)) {
						KernelGlobals *kg = sd->osl_globals;
						if(kernel_data.integrator.no_caustics)
							return;
					}

					/* sample weight */
					float sample_weight = fabsf(average(weight));

					sc.sample_weight = sample_weight;

					sc.type = bsdf->sc.type;
					sc.N = bsdf->sc.N;
					sc.T = bsdf->sc.T;
					sc.data0 = bsdf->sc.data0;
					sc.data1 = bsdf->sc.data1;
					sc.prim = bsdf->sc.prim;

#ifdef __HAIR__
					sc.offset = bsdf->sc.offset;
#endif

					/* add */
					if(sc.sample_weight > 1e-5f && sd->num_closure < MAX_CLOSURE) {
						sd->closure[sd->num_closure++] = sc;
						sd->flag |= bsdf->shaderdata_flag();
					}
					break;
				}
				case CClosurePrimitive::Emissive: {
					/* sample weight */
					float sample_weight = fabsf(average(weight));

					sc.sample_weight = sample_weight;
					sc.type = CLOSURE_EMISSION_ID;
					sc.data0 = 0.0f;
					sc.data1 = 0.0f;
					sc.prim = NULL;

					/* flag */
					if(sd->num_closure < MAX_CLOSURE) {
						sd->closure[sd->num_closure++] = sc;
						sd->flag |= SD_EMISSION;
					}
					break;
				}
				case CClosurePrimitive::AmbientOcclusion: {
					/* sample weight */
					float sample_weight = fabsf(average(weight));

					sc.sample_weight = sample_weight;
					sc.type = CLOSURE_AMBIENT_OCCLUSION_ID;
					sc.data0 = 0.0f;
					sc.data1 = 0.0f;
					sc.prim = NULL;

					if(sd->num_closure < MAX_CLOSURE) {
						sd->closure[sd->num_closure++] = sc;
						sd->flag |= SD_AO;
					}
					break;
				}
				case CClosurePrimitive::Holdout: {
					sc.sample_weight = 0.0f;
					sc.type = CLOSURE_HOLDOUT_ID;
					sc.data0 = 0.0f;
					sc.data1 = 0.0f;
					sc.prim = NULL;

					if(sd->num_closure < MAX_CLOSURE) {
						sd->closure[sd->num_closure++] = sc;
						sd->flag |= SD_HOLDOUT;
					}
					break;
				}
				case CClosurePrimitive::BSSRDF: {
					CBSSRDFClosure *bssrdf = (CBSSRDFClosure *)prim;
					float sample_weight = fabsf(average(weight));

					if(sample_weight > 1e-5f && sd->num_closure+2 < MAX_CLOSURE) {
						sc.sample_weight = sample_weight;

						sc.type = bssrdf->sc.type;
						sc.N = bssrdf->sc.N;
						sc.data1 = bssrdf->sc.data1;
						sc.T.x = bssrdf->sc.T.x;
						sc.prim = NULL;

						/* disable in case of diffuse ancestor, can't see it well then and
						 * adds considerably noise due to probabilities of continuing path
						 * getting lower and lower */
						if(path_flag & PATH_RAY_DIFFUSE_ANCESTOR)
							bssrdf->radius = make_float3(0.0f, 0.0f, 0.0f);

						/* create one closure for each color channel */
						if(fabsf(weight.x) > 0.0f) {
							sc.weight = make_float3(weight.x, 0.0f, 0.0f);
							sc.data0 = bssrdf->radius.x;
							sd->flag |= bssrdf_setup(&sc, sc.type);
							sd->closure[sd->num_closure++] = sc;
						}

						if(fabsf(weight.y) > 0.0f) {
							sc.weight = make_float3(0.0f, weight.y, 0.0f);
							sc.data0 = bssrdf->radius.y;
							sd->flag |= bssrdf_setup(&sc, sc.type);
							sd->closure[sd->num_closure++] = sc;
						}

						if(fabsf(weight.z) > 0.0f) {
							sc.weight = make_float3(0.0f, 0.0f, weight.z);
							sc.data0 = bssrdf->radius.z;
							sd->flag |= bssrdf_setup(&sc, sc.type);
							sd->closure[sd->num_closure++] = sc;
						}
					}
					break;
				}
				case CClosurePrimitive::Background:
				case CClosurePrimitive::Volume:
					break; /* not relevant */
			}
		}
	}
	else if (closure->type == OSL::ClosureColor::MUL) {
		OSL::ClosureMul *mul = (OSL::ClosureMul *)closure;
		flatten_surface_closure_tree(sd, path_flag, mul->closure, TO_FLOAT3(mul->weight) * weight);
	}
	else if (closure->type == OSL::ClosureColor::ADD) {
		OSL::ClosureAdd *add = (OSL::ClosureAdd *)closure;
		flatten_surface_closure_tree(sd, path_flag, add->closureA, weight);
		flatten_surface_closure_tree(sd, path_flag, add->closureB, weight);
	}
}
Пример #6
0
static void flatten_surface_closure_tree(ShaderData *sd, bool no_glossy,
                                         const OSL::ClosureColor *closure, float3 weight = make_float3(1.0f, 1.0f, 1.0f))
{
	/* OSL gives us a closure tree, we flatten it into arrays per
	 * closure type, for evaluation, sampling, etc later on. */

	if (closure->type == OSL::ClosureColor::COMPONENT) {
		OSL::ClosureComponent *comp = (OSL::ClosureComponent *)closure;
		OSL::ClosurePrimitive *prim = (OSL::ClosurePrimitive *)comp->data();

		if (prim) {
			ShaderClosure sc;
			sc.weight = weight;

			switch (prim->category()) {
				case OSL::ClosurePrimitive::BSDF: {
					CBSDFClosure *bsdf = (CBSDFClosure *)prim;
					int scattering = bsdf->scattering();

					/* no caustics option */
					if (no_glossy && scattering == LABEL_GLOSSY)
						return;

					/* sample weight */
					float sample_weight = fabsf(average(weight));

					sc.sample_weight = sample_weight;

					sc.type = bsdf->sc.type;
					sc.N = bsdf->sc.N;
					sc.T = bsdf->sc.T;
					sc.data0 = bsdf->sc.data0;
					sc.data1 = bsdf->sc.data1;
					sc.prim = bsdf->sc.prim;

					/* add */
					if(sc.sample_weight > 1e-5f && sd->num_closure < MAX_CLOSURE) {
						sd->closure[sd->num_closure++] = sc;
						sd->flag |= bsdf->shaderdata_flag();
					}
					break;
				}
				case OSL::ClosurePrimitive::Emissive: {
					/* sample weight */
					float sample_weight = fabsf(average(weight));

					sc.sample_weight = sample_weight;
					sc.type = CLOSURE_EMISSION_ID;
					sc.prim = NULL;

					/* flag */
					if(sd->num_closure < MAX_CLOSURE) {
						sd->closure[sd->num_closure++] = sc;
						sd->flag |= SD_EMISSION;
					}
					break;
				}
				case AmbientOcclusion: {
					/* sample weight */
					float sample_weight = fabsf(average(weight));

					sc.sample_weight = sample_weight;
					sc.type = CLOSURE_AMBIENT_OCCLUSION_ID;
					sc.prim = NULL;

					if(sd->num_closure < MAX_CLOSURE) {
						sd->closure[sd->num_closure++] = sc;
						sd->flag |= SD_AO;
					}
					break;
				}
				case OSL::ClosurePrimitive::Holdout: {
					sc.sample_weight = 0.0f;
					sc.type = CLOSURE_HOLDOUT_ID;
					sc.prim = NULL;

					if(sd->num_closure < MAX_CLOSURE) {
						sd->closure[sd->num_closure++] = sc;
						sd->flag |= SD_HOLDOUT;
					}
					break;
				}
				case OSL::ClosurePrimitive::BSSRDF: {
					CBSSRDFClosure *bssrdf = (CBSSRDFClosure *)prim;
					float sample_weight = fabsf(average(weight));

					if(sample_weight > 1e-5f && sd->num_closure+2 < MAX_CLOSURE) {
						sc.sample_weight = sample_weight;

						sc.type = bssrdf->sc.type;
						sc.N = bssrdf->sc.N;
						sc.data1 = bssrdf->sc.data1;
						sc.prim = NULL;

						/* create one closure for each color channel */
						if(fabsf(weight.x) > 0.0f) {
							sc.weight = make_float3(weight.x, 0.0f, 0.0f);
							sc.data0 = bssrdf->radius.x;
							sd->closure[sd->num_closure++] = sc;
							sd->flag |= bssrdf->shaderdata_flag();
						}

						if(fabsf(weight.y) > 0.0f) {
							sc.weight = make_float3(0.0f, weight.y, 0.0f);
							sc.data0 = bssrdf->radius.y;
							sd->closure[sd->num_closure++] = sc;
							sd->flag |= bssrdf->shaderdata_flag();
						}

						if(fabsf(weight.z) > 0.0f) {
							sc.weight = make_float3(0.0f, 0.0f, weight.z);
							sc.data0 = bssrdf->radius.z;
							sd->closure[sd->num_closure++] = sc;
							sd->flag |= bssrdf->shaderdata_flag();
						}
					}
					break;
				}
				case OSL::ClosurePrimitive::Debug:
					break; /* not implemented */
				case OSL::ClosurePrimitive::Background:
				case OSL::ClosurePrimitive::Volume:
					break; /* not relevant */
			}
		}
	}
	else if (closure->type == OSL::ClosureColor::MUL) {
		OSL::ClosureMul *mul = (OSL::ClosureMul *)closure;
		flatten_surface_closure_tree(sd, no_glossy, mul->closure, TO_FLOAT3(mul->weight) * weight);
	}
	else if (closure->type == OSL::ClosureColor::ADD) {
		OSL::ClosureAdd *add = (OSL::ClosureAdd *)closure;
		flatten_surface_closure_tree(sd, no_glossy, add->closureA, weight);
		flatten_surface_closure_tree(sd, no_glossy, add->closureB, weight);
	}
}
Пример #7
0
static void flatten_surface_closure_tree(ShaderData *sd, bool no_glossy,
	const OSL::ClosureColor *closure, float3 weight = make_float3(1.0f, 1.0f, 1.0f))
{
	/* OSL gives use a closure tree, we flatten it into arrays per
	 * closure type, for evaluation, sampling, etc later on. */

	if(closure->type == OSL::ClosureColor::COMPONENT) {
		OSL::ClosureComponent *comp = (OSL::ClosureComponent*)closure;
		OSL::ClosurePrimitive *prim = (OSL::ClosurePrimitive*)comp->data();

		if(prim) {
			ShaderClosure sc;
			sc.prim = prim;
			sc.weight = weight;

			switch(prim->category()) {
				case ClosurePrimitive::BSDF: {
					if(sd->num_closure == MAX_CLOSURE)
						return;

					OSL::BSDFClosure *bsdf = (OSL::BSDFClosure*)prim;
					ustring scattering = bsdf->scattering();

					/* no caustics option */
					if(no_glossy && scattering == OSL::Labels::GLOSSY)
						return;

					/* sample weight */
					float albedo = bsdf->albedo(TO_VEC3(sd->I));
					float sample_weight = fabsf(average(weight))*albedo;
					float sample_sum = sd->osl_closure.bsdf_sample_sum + sample_weight;

					sc.sample_weight = sample_weight;
					sc.type = CLOSURE_BSDF_ID;
					sd->osl_closure.bsdf_sample_sum = sample_sum;

					/* scattering flags */
					if(scattering == OSL::Labels::DIFFUSE)
						sd->flag |= SD_BSDF|SD_BSDF_HAS_EVAL;
					else if(scattering == OSL::Labels::GLOSSY)
						sd->flag |= SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_GLOSSY;
					else
						sd->flag |= SD_BSDF;

					/* add */
					sd->closure[sd->num_closure++] = sc;
					break;
				}
				case ClosurePrimitive::Emissive: {
					if(sd->num_closure == MAX_CLOSURE)
						return;

					/* sample weight */
					float sample_weight = fabsf(average(weight));
					float sample_sum = sd->osl_closure.emissive_sample_sum + sample_weight;

					sc.sample_weight = sample_weight;
					sc.type = CLOSURE_EMISSION_ID;
					sd->osl_closure.emissive_sample_sum = sample_sum;

					/* flag */
					sd->flag |= SD_EMISSION;

					sd->closure[sd->num_closure++] = sc;
					break;
				}
				case ClosurePrimitive::Holdout:
					if(sd->num_closure == MAX_CLOSURE)
						return;

					sc.sample_weight = 0.0f;
					sc.type = CLOSURE_HOLDOUT_ID;
					sd->flag |= SD_HOLDOUT;
					sd->closure[sd->num_closure++] = sc;
					break;
				case ClosurePrimitive::BSSRDF:
				case ClosurePrimitive::Debug:
					break; /* not implemented */
				case ClosurePrimitive::Background:
				case ClosurePrimitive::Volume:
					break; /* not relevant */
			}
		}
	}
	else if(closure->type == OSL::ClosureColor::MUL) {
		OSL::ClosureMul *mul = (OSL::ClosureMul*)closure;
		flatten_surface_closure_tree(sd, no_glossy, mul->closure, TO_FLOAT3(mul->weight) * weight);
	}
	else if(closure->type == OSL::ClosureColor::ADD) {
		OSL::ClosureAdd *add = (OSL::ClosureAdd*)closure;
		flatten_surface_closure_tree(sd, no_glossy, add->closureA, weight);
		flatten_surface_closure_tree(sd, no_glossy, add->closureB, weight);
	}
}
Пример #8
0
static void flatten_surface_closure_tree(ShaderData *sd, int path_flag,
                                         const OSL::ClosureColor *closure, float3 weight = make_float3(1.0f, 1.0f, 1.0f))
{
	/* OSL gives us a closure tree, we flatten it into arrays per
	 * closure type, for evaluation, sampling, etc later on. */

#if OSL_LIBRARY_VERSION_CODE < 10700
	switch(closure->type) {
#else
	switch(closure->id) {
#endif
		case OSL::ClosureColor::MUL: {
			OSL::ClosureMul *mul = (OSL::ClosureMul *)closure;
			flatten_surface_closure_tree(sd, path_flag, mul->closure, TO_FLOAT3(mul->weight) * weight);
			break;
		}
		case OSL::ClosureColor::ADD: {
			OSL::ClosureAdd *add = (OSL::ClosureAdd *)closure;
			flatten_surface_closure_tree(sd, path_flag, add->closureA, weight);
			flatten_surface_closure_tree(sd, path_flag, add->closureB, weight);
			break;
		}
		default: {
			OSL::ClosureComponent *comp = (OSL::ClosureComponent *)closure;
			CClosurePrimitive *prim = (CClosurePrimitive *)comp->data();

			if(prim) {
				ShaderClosure sc;

#ifdef OSL_SUPPORTS_WEIGHTED_CLOSURE_COMPONENTS
				weight = weight*TO_FLOAT3(comp->w);
#endif
				sc.weight = weight;

				prim->setup();

				switch(prim->category) {
					case CClosurePrimitive::BSDF: {
						CBSDFClosure *bsdf = (CBSDFClosure *)prim;
						int scattering = bsdf->scattering();

						/* caustic options */
						if((scattering & LABEL_GLOSSY) && (path_flag & PATH_RAY_DIFFUSE)) {
							KernelGlobals *kg = sd->osl_globals;

							if((!kernel_data.integrator.caustics_reflective && (scattering & LABEL_REFLECT)) ||
							   (!kernel_data.integrator.caustics_refractive && (scattering & LABEL_TRANSMIT)))
							{
								return;
							}
						}

						/* sample weight */
						float sample_weight = fabsf(average(weight));

						sc.sample_weight = sample_weight;

						sc.type = bsdf->sc.type;
						sc.N = bsdf->sc.N;
						sc.T = bsdf->sc.T;
						sc.data0 = bsdf->sc.data0;
						sc.data1 = bsdf->sc.data1;
						sc.data2 = bsdf->sc.data2;
						sc.prim = bsdf->sc.prim;

						/* add */
						if(sc.sample_weight > CLOSURE_WEIGHT_CUTOFF && sd->num_closure < MAX_CLOSURE) {
							sd->closure[sd->num_closure++] = sc;
							sd->flag |= bsdf->shaderdata_flag();
						}
						break;
					}
					case CClosurePrimitive::Emissive: {
						/* sample weight */
						float sample_weight = fabsf(average(weight));

						sc.sample_weight = sample_weight;
						sc.type = CLOSURE_EMISSION_ID;
						sc.data0 = 0.0f;
						sc.data1 = 0.0f;
						sc.data2 = 0.0f;
						sc.prim = NULL;

						/* flag */
						if(sd->num_closure < MAX_CLOSURE) {
							sd->closure[sd->num_closure++] = sc;
							sd->flag |= SD_EMISSION;
						}
						break;
					}
					case CClosurePrimitive::AmbientOcclusion: {
						/* sample weight */
						float sample_weight = fabsf(average(weight));

						sc.sample_weight = sample_weight;
						sc.type = CLOSURE_AMBIENT_OCCLUSION_ID;
						sc.data0 = 0.0f;
						sc.data1 = 0.0f;
						sc.data2 = 0.0f;
						sc.prim = NULL;

						if(sd->num_closure < MAX_CLOSURE) {
							sd->closure[sd->num_closure++] = sc;
							sd->flag |= SD_AO;
						}
						break;
					}
					case CClosurePrimitive::Holdout: {
						sc.sample_weight = 0.0f;
						sc.type = CLOSURE_HOLDOUT_ID;
						sc.data0 = 0.0f;
						sc.data1 = 0.0f;
						sc.data2 = 0.0f;
						sc.prim = NULL;

						if(sd->num_closure < MAX_CLOSURE) {
							sd->closure[sd->num_closure++] = sc;
							sd->flag |= SD_HOLDOUT;
						}
						break;
					}
					case CClosurePrimitive::BSSRDF: {
						CBSSRDFClosure *bssrdf = (CBSSRDFClosure *)prim;
						float sample_weight = fabsf(average(weight));

						if(sample_weight > CLOSURE_WEIGHT_CUTOFF && sd->num_closure+2 < MAX_CLOSURE) {
							sc.sample_weight = sample_weight;

							sc.type = bssrdf->sc.type;
							sc.N = bssrdf->sc.N;
							sc.data1 = bssrdf->sc.data1;
							sc.T.x = bssrdf->sc.T.x;
							sc.prim = NULL;

							/* disable in case of diffuse ancestor, can't see it well then and
							 * adds considerably noise due to probabilities of continuing path
							 * getting lower and lower */
							if(path_flag & PATH_RAY_DIFFUSE_ANCESTOR)
								bssrdf->radius = make_float3(0.0f, 0.0f, 0.0f);

							/* create one closure for each color channel */
							if(fabsf(weight.x) > 0.0f) {
								sc.weight = make_float3(weight.x, 0.0f, 0.0f);
								sc.data0 = bssrdf->radius.x;
								sc.data1 = 0.0f;
								sd->flag |= bssrdf_setup(&sc, sc.type);
								sd->closure[sd->num_closure++] = sc;
							}

							if(fabsf(weight.y) > 0.0f) {
								sc.weight = make_float3(0.0f, weight.y, 0.0f);
								sc.data0 = bssrdf->radius.y;
								sc.data1 = 0.0f;
								sd->flag |= bssrdf_setup(&sc, sc.type);
								sd->closure[sd->num_closure++] = sc;
							}

							if(fabsf(weight.z) > 0.0f) {
								sc.weight = make_float3(0.0f, 0.0f, weight.z);
								sc.data0 = bssrdf->radius.z;
								sc.data1 = 0.0f;
								sd->flag |= bssrdf_setup(&sc, sc.type);
								sd->closure[sd->num_closure++] = sc;
							}
						}
						break;
					}
					case CClosurePrimitive::Background:
					case CClosurePrimitive::Volume:
						break; /* not relevant */
				}
			}
			break;
		}
	}
}

void OSLShader::eval_surface(KernelGlobals *kg, ShaderData *sd, PathState *state, int path_flag, ShaderContext ctx)
{
	/* setup shader globals from shader data */
	OSLThreadData *tdata = kg->osl_tdata;
	shaderdata_to_shaderglobals(kg, sd, state, path_flag, tdata);

	/* execute shader for this point */
	OSL::ShadingSystem *ss = (OSL::ShadingSystem*)kg->osl_ss;
	OSL::ShaderGlobals *globals = &tdata->globals;
	OSL::ShadingContext *octx = tdata->context[(int)ctx];
	int shader = sd->shader & SHADER_MASK;

	if(kg->osl->surface_state[shader]) {
#if OSL_LIBRARY_VERSION_CODE < 10600
		ss->execute(*octx, *(kg->osl->surface_state[shader]), *globals);
#else
		ss->execute(octx, *(kg->osl->surface_state[shader]), *globals);
#endif
	}

	/* flatten closure tree */
	if(globals->Ci)
		flatten_surface_closure_tree(sd, path_flag, globals->Ci);
}
Пример #9
0
void OSLShader::eval_surface(KernelGlobals *kg, ShaderData *sd, PathState *state, int path_flag)
{
	/* setup shader globals from shader data */
	OSLThreadData *tdata = kg->osl_tdata;
	shaderdata_to_shaderglobals(kg, sd, state, path_flag, tdata);

	/* execute shader for this point */
	OSL::ShadingSystem *ss = (OSL::ShadingSystem*)kg->osl_ss;
	OSL::ShaderGlobals *globals = &tdata->globals;
	OSL::ShadingContext *octx = tdata->context;
	int shader = sd->shader & SHADER_MASK;

	/* automatic bump shader */
	if(kg->osl->bump_state[shader]) {
		/* save state */
		float3 P = sd->P;
		float3 dPdx = sd->dP.dx;
		float3 dPdy = sd->dP.dy;

		/* set state as if undisplaced */
		if(sd->flag & SD_HAS_DISPLACEMENT) {
			float data[9];
			bool found = kg->osl->services->get_attribute(sd, true, OSLRenderServices::u_empty, TypeDesc::TypeVector,
			                                              OSLRenderServices::u_geom_undisplaced, data);
			(void)found;
			assert(found);

			memcpy(&sd->P, data, sizeof(float)*3);
			memcpy(&sd->dP.dx, data+3, sizeof(float)*3);
			memcpy(&sd->dP.dy, data+6, sizeof(float)*3);

			object_position_transform(kg, sd, &sd->P);
			object_dir_transform(kg, sd, &sd->dP.dx);
			object_dir_transform(kg, sd, &sd->dP.dy);

			globals->P = TO_VEC3(sd->P);
			globals->dPdx = TO_VEC3(sd->dP.dx);
			globals->dPdy = TO_VEC3(sd->dP.dy);
		}

		/* execute bump shader */
		ss->execute(octx, *(kg->osl->bump_state[shader]), *globals);

		/* reset state */
		sd->P = P;
		sd->dP.dx = dPdx;
		sd->dP.dy = dPdy;

		globals->P = TO_VEC3(P);
		globals->dPdx = TO_VEC3(dPdx);
		globals->dPdy = TO_VEC3(dPdy);
	}

	/* surface shader */
	if(kg->osl->surface_state[shader]) {
		ss->execute(octx, *(kg->osl->surface_state[shader]), *globals);
	}

	/* flatten closure tree */
	if(globals->Ci)
		flatten_surface_closure_tree(sd, path_flag, globals->Ci);
}