Пример #1
0
void ahrs_float_invariant_propagate(struct FloatRates* gyro, float dt)
{
  // realign all the filter if needed
  // a complete init cycle is required
  if (ahrs_float_inv.reset) {
    ahrs_float_inv.reset = false;
    ahrs_float_inv.is_aligned = false;
    init_invariant_state();
  }

  // fill command vector
  struct FloatRates gyro_meas_body;
  struct FloatRMat *body_to_imu_rmat = orientationGetRMat_f(&ahrs_float_inv.body_to_imu);
  float_rmat_transp_ratemult(&gyro_meas_body, body_to_imu_rmat, gyro);
  ahrs_float_inv.cmd.rates = gyro_meas_body;

  // update correction gains
  error_output(&ahrs_float_inv);

  // propagate model
  struct inv_state new_state;
  runge_kutta_4_float((float *)&new_state,
                      (float *)&ahrs_float_inv.state, INV_STATE_DIM,
                      (float *)&ahrs_float_inv.cmd, INV_COMMAND_DIM,
                      invariant_model, dt);
  ahrs_float_inv.state = new_state;

  // normalize quaternion
  float_quat_normalize(&ahrs_float_inv.state.quat);

  //------------------------------------------------------------//

#if SEND_INVARIANT_FILTER
  struct FloatEulers eulers;
  float foo = 0.f;
  float_eulers_of_quat(&eulers, &ahrs_float_inv.state.quat);
  RunOnceEvery(3,
      pprz_msg_send_INV_FILTER(&(DefaultChannel).trans_tx, &(DefaultDevice).device,
        AC_ID,
        &ahrs_float_inv.state.quat.qi,
        &eulers.phi,
        &eulers.theta,
        &eulers.psi,
        &foo,
        &foo,
        &foo,
        &foo,
        &foo,
        &foo,
        &ahrs_float_inv.state.bias.p,
        &ahrs_float_inv.state.bias.q,
        &ahrs_float_inv.state.bias.r,
        &ahrs_float_inv.state.as,
        &ahrs_float_inv.state.cs,
        &foo,
        &foo);
      );
Пример #2
0
/**
 * Compute body orientation and rates from imu orientation and rates
 */
static inline void compute_body_orientation_and_rates(void) {
  /* Compute LTP to BODY quaternion */
  struct FloatQuat ltp_to_body_quat;
  struct FloatQuat *body_to_imu_quat = orientationGetQuat_f(&imu.body_to_imu);
  float_quat_comp_inv(&ltp_to_body_quat, &ahrs_impl.ltp_to_imu_quat, body_to_imu_quat);
  /* Set state */
  stateSetNedToBodyQuat_f(&ltp_to_body_quat);

  /* compute body rates */
  struct FloatRates body_rate;
  struct FloatRMat *body_to_imu_rmat = orientationGetRMat_f(&imu.body_to_imu);
  float_rmat_transp_ratemult(&body_rate, body_to_imu_rmat, &ahrs_impl.imu_rate);
  stateSetBodyRates_f(&body_rate);
}
Пример #3
0
void ahrs_fc_update_accel(struct Int32Vect3 *accel, float dt)
{
  // check if we had at least one propagation since last update
  if (ahrs_fc.accel_cnt == 0) {
    return;
  }

  /* last column of roation matrix = ltp z-axis in imu-frame */
  struct FloatVect3  c2 = { RMAT_ELMT(ahrs_fc.ltp_to_imu_rmat, 0, 2),
           RMAT_ELMT(ahrs_fc.ltp_to_imu_rmat, 1, 2),
           RMAT_ELMT(ahrs_fc.ltp_to_imu_rmat, 2, 2)
  };

  struct FloatVect3 imu_accel_float;
  ACCELS_FLOAT_OF_BFP(imu_accel_float, *accel);

  struct FloatVect3 residual;

  struct FloatVect3 pseudo_gravity_measurement;

  if (ahrs_fc.correct_gravity && ahrs_fc.ltp_vel_norm_valid) {
    /*
     * centrifugal acceleration in body frame
     * a_c_body = omega x (omega x r)
     * (omega x r) = tangential velocity in body frame
     * a_c_body = omega x vel_tangential_body
     * assumption: tangential velocity only along body x-axis
     */
    const struct FloatVect3 vel_tangential_body = {ahrs_fc.ltp_vel_norm, 0.0, 0.0};
    struct FloatRMat *body_to_imu_rmat = orientationGetRMat_f(&ahrs_fc.body_to_imu);
    struct FloatRates body_rate;
    float_rmat_transp_ratemult(&body_rate, body_to_imu_rmat, &ahrs_fc.imu_rate);
    struct FloatVect3 acc_c_body;
    VECT3_RATES_CROSS_VECT3(acc_c_body, body_rate, vel_tangential_body);

    /* convert centrifugal acceleration from body to imu frame */
    struct FloatVect3 acc_c_imu;
    float_rmat_vmult(&acc_c_imu, body_to_imu_rmat, &acc_c_body);

    /* and subtract it from imu measurement to get a corrected measurement of the gravity vector */
    VECT3_DIFF(pseudo_gravity_measurement, imu_accel_float, acc_c_imu);

  } else {
    VECT3_COPY(pseudo_gravity_measurement, imu_accel_float);
  }

  VECT3_CROSS_PRODUCT(residual, pseudo_gravity_measurement, c2);

  /* FIR filtered pseudo_gravity_measurement */
#define FIR_FILTER_SIZE 8
  static struct FloatVect3 filtered_gravity_measurement = {0., 0., 0.};
  VECT3_SMUL(filtered_gravity_measurement, filtered_gravity_measurement, FIR_FILTER_SIZE - 1);
  VECT3_ADD(filtered_gravity_measurement, pseudo_gravity_measurement);
  VECT3_SDIV(filtered_gravity_measurement, filtered_gravity_measurement, FIR_FILTER_SIZE);

  if (ahrs_fc.gravity_heuristic_factor) {
    /* heuristic on acceleration (gravity estimate) norm */
    /* Factor how strongly to change the weight.
     * e.g. for gravity_heuristic_factor 30:
     * <0.66G = 0, 1G = 1.0, >1.33G = 0
     */

    const float g_meas_norm = float_vect3_norm(&filtered_gravity_measurement) / 9.81;
    ahrs_fc.weight = 1.0 - ahrs_fc.gravity_heuristic_factor * fabs(1.0 - g_meas_norm) / 10.0;
    Bound(ahrs_fc.weight, 0.15, 1.0);
  } else {
    ahrs_fc.weight = 1.0;
  }

  /* Complementary filter proportional gain.
   * Kp = 2 * zeta * omega * weight * ahrs_fc.accel_cnt
   * with ahrs_fc.accel_cnt beeing the number of propagations since last update
   */
  const float gravity_rate_update_gain = -2 * ahrs_fc.accel_zeta * ahrs_fc.accel_omega *
                                         ahrs_fc.weight * ahrs_fc.accel_cnt / 9.81;
  RATES_ADD_SCALED_VECT(ahrs_fc.rate_correction, residual, gravity_rate_update_gain);

  // reset accel propagation counter
  ahrs_fc.accel_cnt = 0;

  /* Complementary filter integral gain
   * Correct the gyro bias.
   * Ki = (omega*weight)^2 * dt
   */
  const float gravity_bias_update_gain = ahrs_fc.accel_omega * ahrs_fc.accel_omega *
                                         ahrs_fc.weight * ahrs_fc.weight * dt / 9.81;
  RATES_ADD_SCALED_VECT(ahrs_fc.gyro_bias, residual, gravity_bias_update_gain);

  /* FIXME: saturate bias */
}