Пример #1
0
void ofxffmv::initializeWithGUID(GUID cameraGuid,int cameraWidth,int cameraHeight,int cameraLeft,int cameraTop,bool useROI,unsigned char cameraDepth,int cameraFramerate,bool isPlaying)
{
	FlyCaptureInfoEx* tempArInfo = new FlyCaptureInfoEx[_MAX_CAMERAS_];
	unsigned int camNum = 0;
	flycaptureBusEnumerateCamerasEx( tempArInfo, &camNum );
	for (int i=0;i<camNum;i++)
	{
		if ((unsigned long)tempArInfo[i].SerialNumber == cameraGuid.Data1)
			index = i;
	}
	arInfo = tempArInfo[index];
	flycaptureCreateContext(&context);
	flycaptureInitialize( context, index );
	guid = cameraGuid;
	width = cameraWidth;
	height = cameraHeight;
	framerate = cameraFramerate;
	left = cameraLeft;
	top = cameraTop;
	roiMode = useROI;
	depth = cameraDepth;
	flycaptureStartCustomImage(context,0,left,top,width,height,100,FLYCAPTURE_MONO8);
	flycaptureGrabImage2( context, &fcImage );
	width = fcImage.iCols;
	height = fcImage.iRows;
	depth = (width*height!=0) ? fcImage.iRowInc/fcImage.iRows : 0;
	flycaptureSetColorProcessingMethod( context,FLYCAPTURE_DISABLE);
	isInitialized = true;
	delete tempArInfo;
}
//======================================================================================
// implimetation of functions for IEEE1394 camera (for Point Gray Inc.)
//======================================================================================
// initialize camera
bool IEEE1394Cam::Opens() {
#ifdef WIN32
	FlyCaptureError fe;

	// Open the camera
	fe = flycaptureCreateContext( &_flycapture );
	if (fe != FLYCAPTURE_OK) {
		return false;
	}

	// Initialize the WebIEEE1394Cam context
	fe = flycaptureInitialize( _flycapture, 0 );
	if (fe != FLYCAPTURE_OK) {
		return false;
	}

	// Get camera information
	fe = flycaptureGetCameraInfo( _flycapture, &_pInfo );
	if (fe != FLYCAPTURE_OK) {
		return false;
	}

	// set video mode
	_videoMode = FLYCAPTURE_VIDEOMODE_ANY;

	if ( _pInfo.CameraModel == FLYCAPTURE_BUMBLEBEE2 || _pInfo.CameraModel == FLYCAPTURE_FLEA2 || _pInfo.CameraModel == FLYCAPTURE_FLEA ) {
		// start transfering the image from camera
		if (!_use_stereo) {
			// flea, flea2
			fe = flycaptureStart( _flycapture, _videoMode, FLYCAPTURE_FRAMERATE_ANY);
		} else {
			// bumblebee2
			fe = flycaptureStartCustomImage( _flycapture, 3, 0, 0, 640, 480, 100, FLYCAPTURE_RAW16);
		}
		
		if (fe != FLYCAPTURE_OK) {
			return false;
		}
	} else {
		// camera is not supported by this class
		return false;
	}

	FlyCaptureImage flycaptureImage;
	// Grab an image from the camera
	fe = flycaptureGrabImage2( _flycapture, &flycaptureImage );
	if (fe != FLYCAPTURE_OK) {
		return false;
	}
	
	_height = flycaptureImage.iRows;
	_width = flycaptureImage.iCols;
	_row_size =	flycaptureImage.iRowInc;

	_activated = true;
	return true;
#else
	return false;
#endif //WIN32
}
int
main( int /* argc */, char** /* argv */ )
{
   TriclopsContext    triclops;
   TriclopsImage      disparityImage;
   TriclopsImage      refImage;
   TriclopsInput      triclopsInput;
   TriclopsROI*       pRois;
   int                nMaxRois;
   TriclopsError      te;

   FlyCaptureContext  flycapture; 
   FlyCaptureImage    flycaptureImage;
   FlyCaptureInfoEx pInfo;
   FlyCapturePixelFormat pixelFormat;
   FlyCaptureError    fe;

   int iMaxCols = 0;
   int iMaxRows = 0;
   
   // Create the camera context
   fe = flycaptureCreateContext( &flycapture );
   _HANDLE_FLYCAPTURE_ERROR( "flycaptureCreateContext()", fe );

   // Initialize the camera
   fe = flycaptureInitialize( flycapture, 0 );
   _HANDLE_FLYCAPTURE_ERROR( "flycaptureInitialize()", fe );

   // Get the camera configuration
   char* szCalFile;
   fe = flycaptureGetCalibrationFileFromCamera( flycapture, &szCalFile );
   _HANDLE_FLYCAPTURE_ERROR( "flycaptureGetCalibrationFileFromCamera()", fe );

   // Create a Triclops context from the cameras calibration file
   te = triclopsGetDefaultContextFromFile( &triclops, szCalFile );
   _HANDLE_TRICLOPS_ERROR( "triclopsGetDefaultContextFromFile()", te );
   
   // Get camera information
   fe = flycaptureGetCameraInfo( flycapture, &pInfo );
   _HANDLE_FLYCAPTURE_ERROR( "flycatpureGetCameraInfo()", fe );
   
   if (pInfo.CameraType == FLYCAPTURE_COLOR)
   {
      pixelFormat = FLYCAPTURE_RAW16;
   } 
   else 
   {
      pixelFormat = FLYCAPTURE_MONO16;
   }
   
   switch (pInfo.CameraModel)
   {
   case FLYCAPTURE_BUMBLEBEE2:
      {
	 unsigned long ulValue;
	 flycaptureGetCameraRegister( flycapture, 0x1F28, &ulValue );
	 
	 if ( ( ulValue & 0x2 ) == 0 )
	 {
	    // Hi-res BB2
	    iMaxCols = 1024; 
	    iMaxRows = 768;   
	 }
	 else
	 {
	    // Low-res BB2
	    iMaxCols = 640;
	    iMaxRows = 480;
	 }
      }   
      break;
      
   case FLYCAPTURE_BUMBLEBEEXB3:
      iMaxCols = 1280;
      iMaxRows = 960;
      break;
      
   default:
      te = TriclopsErrorInvalidCamera;
      _HANDLE_TRICLOPS_ERROR( "triclopsCheckCameraModel()", te );
      break;
   }
 
   // Start grabbing
   fe = flycaptureStartCustomImage( 
      flycapture, 3, 0, 0, iMaxCols, iMaxRows, 100, pixelFormat);
   _HANDLE_FLYCAPTURE_ERROR( "flycaptureStart()", fe );
   
   // Grab an image from the camera
   fe = flycaptureGrabImage2( flycapture, &flycaptureImage );
   _HANDLE_FLYCAPTURE_ERROR( "flycaptureGrabImage()", fe );

   // Extract information from the FlycaptureImage
   int imageCols = flycaptureImage.iCols;
   int imageRows = flycaptureImage.iRows;
   int imageRowInc = flycaptureImage.iRowInc;
   int iSideBySideImages = flycaptureImage.iNumImages;
   unsigned long timeStampSeconds = flycaptureImage.timeStamp.ulSeconds;
   unsigned long timeStampMicroSeconds = flycaptureImage.timeStamp.ulMicroSeconds;

   // Create buffers for holding the mono images
   unsigned char* rowIntColor = 
      new unsigned char[ imageCols * imageRows * iSideBySideImages * 4];
   unsigned char* rowIntMono = 
      new unsigned char[ imageCols * imageRows * iSideBySideImages ];

   // Create a temporary FlyCaptureImage for preparing the stereo image
   FlyCaptureImage tempColorImage;
   FlyCaptureImage tempMonoImage;
   
   tempColorImage.pData = rowIntColor;
   tempMonoImage.pData = rowIntMono;

   // Convert the pixel interleaved raw data to row interleaved format
   fe = flycapturePrepareStereoImage( 
      flycapture, flycaptureImage, &tempMonoImage, &tempColorImage );
   _HANDLE_FLYCAPTURE_ERROR( "flycapturePrepareStereoImage()", fe );

   // Pointers to positions in the mono buffer that correspond to the beginning
   // of the red, green and blue sections
   unsigned char* redMono = NULL;
   unsigned char* greenMono = NULL;
   unsigned char* blueMono = NULL;

   redMono = rowIntMono;
   if (flycaptureImage.iNumImages == 2)
   {
	   greenMono = redMono + imageCols;
	   blueMono = redMono + imageCols;
   }
   if (flycaptureImage.iNumImages == 3)
   {
	   greenMono = redMono + imageCols;
	   blueMono = redMono + ( 2 * imageCols );
   }
   
   // Use the row interleaved images to build up an RGB TriclopsInput.  
   // An RGB triclops input will contain the 3 raw images (1 from each camera).
   te = triclopsBuildRGBTriclopsInput(
      imageCols, 
      imageRows, 
      imageRowInc,  
      timeStampSeconds, 
      timeStampMicroSeconds, 
      redMono, 
      greenMono, 
      blueMono, 
      &triclopsInput);
   _HANDLE_TRICLOPS_ERROR( "triclopsBuildRGBTriclopsInput()", te );

  
   // Set up some stereo parameters:
   // Set to 640x480 output images
   te = triclopsSetResolution( triclops, 480, 640 );
   _HANDLE_TRICLOPS_ERROR( "triclopsSetResolution()", te );

   // Set disparity range to be quite wide
   te = triclopsSetDisparity( triclops, 0, 200 );
   _HANDLE_TRICLOPS_ERROR( "triclopsSetDisparity()", te );

   // Set subpixel interpolation off - so we know we don't need to use 
   // TriclopsImage16 structures when we access and save the disparity image
   te = triclopsSetSubpixelInterpolation( triclops, 0 );
   _HANDLE_TRICLOPS_ERROR( "triclopsSetSubpixelInterpolation()", te );
   
   
   // Get the pointer to the regions of interest array
   te = triclopsGetROIs( triclops, &pRois, &nMaxRois );
   _HANDLE_TRICLOPS_ERROR( "triclopsGetROIs()", te );
   
   if( nMaxRois >= 4 ) 
   {
      // Set up four regions of interest: 
      
      // Entire upper left quadrant of image
      pRois[0].row   = 0;
      pRois[0].col   = 0;
      pRois[0].nrows = 240;
      pRois[0].ncols = 320;
      
      // Part of the lower right
      pRois[1].row   = 240;
      pRois[1].col   = 320;
      pRois[1].nrows = 180;
      pRois[1].ncols = 240;
      
      // Centered in upper right quadrant
      pRois[2].row   = 60;
      pRois[2].col   = 400;
      pRois[2].nrows = 120;
      pRois[2].ncols = 160;
      
      // Small section of lower left
      pRois[3].row   = 300;
      pRois[3].col   = 30;
      pRois[3].nrows = 80;
      pRois[3].ncols = 80;
      
      // Tell the TriclopsContext how many ROIs we want to process
      te = triclopsSetNumberOfROIs( triclops, 4 );
      _HANDLE_TRICLOPS_ERROR( "triclopsSetNumberOfROIs()", te );
   }
   else
   {
      printf( "Only %d ROIs available in the TriclopsContext "
	      "- this should never happen!\n"
	      "Aborting!\n",
	      nMaxRois );
	      
      // Destroy the Triclops context
      triclopsDestroyContext( triclops ) ;
      
      // Close the camera and destroy the context
      flycaptureStop( flycapture );
      flycaptureDestroyContext( flycapture );
      return 1;
   }
   
   
   // Rectify the images
   te = triclopsRectify( triclops, &triclopsInput );
   _HANDLE_TRICLOPS_ERROR( "triclopsRectify()", te );
   
   // Do stereo processing
   te = triclopsStereo( triclops );
   _HANDLE_TRICLOPS_ERROR( "triclopsStereo()", te );
   
   // Retrieve the disparity image from the Triclops context
   te = triclopsGetImage( triclops, 
			  TriImg_DISPARITY, 
			  TriCam_REFERENCE, 
			  &disparityImage );
   _HANDLE_TRICLOPS_ERROR( "triclopsGetImage()", te );

   // Retrieve the rectified image from the Triclops context
   te = triclopsGetImage( triclops, 
			  TriImg_RECTIFIED, 
			  TriCam_REFERENCE, 
			  &refImage );
   _HANDLE_TRICLOPS_ERROR( "triclopsGetImage()", te );

   // Save the disparity image
   te = triclopsSaveImage( &disparityImage, "disparity.pgm" );
   _HANDLE_TRICLOPS_ERROR( "triclopsSaveImage()", te );

   // Save the rectified image
   te = triclopsSaveImage( &refImage, "rectified.pgm" );
   _HANDLE_TRICLOPS_ERROR( "triclopsSaveImage()", te );

   // Delete the image buffer, it is not needed once the TriclopsInput
   // has been built
   delete [] rowIntMono;
   redMono = NULL;
   greenMono = NULL;
   blueMono = NULL;
   
   // Destroy the Triclops context
   triclopsDestroyContext( triclops ) ;
   
   // Close the camera and destroy the Flycapture context
   flycaptureStop( flycapture );
   flycaptureDestroyContext( flycapture );
   
   return 0;
}
Пример #4
0
int 
main( int argc, char* argv[] )
{
   FlyCaptureError   error;
   FlyCaptureContext context;

   // check the arguments of the call to make sure the utility is being called properly.
   if (argc != 2){
      PrintUsage();

      printf( "Done!  (hit enter)" );
      getchar();

      return 0;
   } else {
      if (!((strcmp(argv[1], "-retrieve") == 0) || (strcmp(argv[1], "-capture") == 0)))
      {
	 PrintUsage();  

	 printf( "Done!  (hit enter)" );
	 getchar();

	 return 0;
      }
   }

   //
   // Enumerate the cameras on the bus.
   //
   FlyCaptureInfoEx  arInfo[ _MAX_CAMS ];
   unsigned int	     uiSize = _MAX_CAMS;

   error = flycaptureBusEnumerateCamerasEx( arInfo, &uiSize );
   _HANDLE_ERROR( error, "flycaptureBusEnumerateCameras()" );

   for( unsigned int uiBusIndex = 0; uiBusIndex < uiSize; uiBusIndex++ )
   {
      FlyCaptureInfoEx* pinfo = &arInfo[ uiBusIndex ];
      printf( 
         "Index %u: %s (%u)\n",
         uiBusIndex,
         pinfo->pszModelName,
         pinfo->SerialNumber );
   }

   //
   // Create the context.
   //
   error = flycaptureCreateContext( &context );
   _HANDLE_ERROR( error, "flycaptureCreateContext()" );
   
   //
   // Initialize the camera.
   //
   printf( "Initializing camera %u.\n", _CAMERA_INDEX );
   error = flycaptureInitialize( context, _CAMERA_INDEX );
   _HANDLE_ERROR( error, "flycaptureInitialize()" );

   //
   // Reset the camera to default factory settings by asserting bit 0
   //
   error = flycaptureSetCameraRegister( context, INITIALIZE, 0x80000000 );
   _HANDLE_ERROR( error, "flycaptureSetCameraRegister()" );

   //
   // Power-up the camera (for cameras that support this feature)
   //
   error = flycaptureSetCameraRegister( context, CAMERA_POWER, 0x80000000 );
   _HANDLE_ERROR( error, "flycaptureSetCameraRegister()" );

   //
   // Report camera info.
   //
   FlyCaptureInfoEx info;
   error = flycaptureGetCameraInfo( context, &info );
   _HANDLE_ERROR( error, "flycaptureGetCameraInfo()" );

   printf( "Camera info:\n" );
   reportCameraInfo( &info );

   //
   // Query and report on the camera's ability to handle custom image modes.
   // We use the maximum and unit values to determine the size of the image
   // which can be saved to flash.
   //
   bool		  bAvailable;
   unsigned int	  uiMaxImageSizeCols;
   unsigned int	  uiMaxImageSizeRows;
   unsigned int	  uiImageUnitSizeHorz;
   unsigned int	  uiImageUnitSizeVert;
   unsigned int   uiOffsetUnitSizeHorz;
   unsigned int   uiOffsetUnitSizeVert;
   unsigned int   uiPixelFormats;

   error = ::flycaptureQueryCustomImageEx(
      context,
      MODE,
      &bAvailable,
      &uiMaxImageSizeCols,
      &uiMaxImageSizeRows,
      &uiImageUnitSizeHorz,
      &uiImageUnitSizeVert,
      &uiOffsetUnitSizeHorz,
      &uiOffsetUnitSizeVert,
      &uiPixelFormats );
   _HANDLE_ERROR( error, "flycaptureQueryCustomImageEx()" );

   //
   // Check to see if Flash Reading/Writing is supported by the camera
   //
   unsigned long ulRegVal;
   error = flycaptureGetCameraRegister(context, DATA_FLASH_CTRL, &ulRegVal);
   printf( "Data control register = %x\n", ulRegVal );

   if((0x80000000 & ulRegVal) == 0)
   {
      printf("This camera does not support the user data area feature. Exiting...\n");
     
      //
      // Destroy the context
      //
      flycaptureDestroyContext(context);

      printf( "Done!  (hit enter)" );
      getchar();

      return 0;
   }

   // Determine the available size of the Flash from the DATA_FLASH_CTRL register
   int iPageSize = (int)pow(2.0, (int)(ulRegVal & 0x00FFF000) >> 12);
   int iNumPages = (int)pow(2.0, (int)(ulRegVal & 0x00000FFF));
   unsigned int uiAvailableFlashSize = iPageSize * iNumPages;

   unsigned int uiHeight = uiMaxImageSizeCols;
   unsigned int uiWidth = uiMaxImageSizeRows;

   // If the Flash is not large enough to hold a full, high-res image, determine the
   // maximum image with a 4:3 aspect ration which can fit in the flash and use those
   // dimensions.
   if (uiMaxImageSizeCols*uiMaxImageSizeRows > uiAvailableFlashSize)
   {
      uiHeight = (int)sqrt(uiAvailableFlashSize*3.0/4);
      uiWidth = uiHeight*4/3;

      uiHeight -= (uiHeight % uiImageUnitSizeVert);
      uiWidth -= (uiWidth % uiImageUnitSizeHorz);
   }

   //
   // Determine the quadlet offset of the Flash area
   //
   unsigned long ulLUTLoc;
   error = flycaptureGetCameraRegister(context, DATA_FLASH_DATA, &ulLUTLoc);
   _HANDLE_ERROR( error, "flycaptureGetCameraRegister()" );   

   //
   // Start grabbing images in the current videomode and framerate.
   //
   printf( "Starting camera.\n\n" );
   error = flycaptureStartCustomImage(context, 0, 0, 0, uiWidth, uiHeight, 40, FLYCAPTURE_MONO8);
   _HANDLE_ERROR( error, "flycaptureStart()" );

   FlyCaptureImage image;
   memset( &image, 0x0, sizeof( FlyCaptureImage ) );

   // Here, we grab 10 images and only look at the last one, since after starting the camera,
   // it takes a few images for the the auto settings to stabilize (ie. exposure, gain, etc)
   for ( int iImage = 0; iImage < _IMAGES_TO_GRAB; iImage++ )
   {
      error = flycaptureGrabImage2( context, &image );
      _HANDLE_ERROR( error, "flycaptureGrabImage2()" );
   }

   // Check to see if we are capturing or retrieving
   if (strcmp(argv[1], "-capture") == 0)
   {

      printf( "Saving raw image to camera FLASH.\n\n" );

      //
      // Write the image to the cameras flash
      //
      error =  flycaptureWriteRegisterBlock(
	 context,
	 0xFFFF,
	 0xF0000000+ulLUTLoc*4,
	 (const unsigned long*)&(image.pData[0]),
	 (image.iRowInc*image.iRows/4));
      _HANDLE_ERROR( error, "flycaptureWriteRegisterBlock()" );

   } else if (strcmp(argv[1], "-retrieve") == 0){ // if we are not capturing (we are retrieving).

      printf( "Grabbing image from FLASH and saving it to disk as %s.\n\n", FILENAME_RAW_FROM_FLASH );

      // Create a flycapture image to save
      FlyCaptureImage savedImage;
      memset( &savedImage, 0x0, sizeof( FlyCaptureImage ) );

      // Fill in the savedImage structure
      savedImage.iCols = image.iCols;
      savedImage.iRows = image.iRows;
      savedImage.iRowInc = image.iRowInc;
      savedImage.videoMode = image.videoMode;
      savedImage.timeStamp = image.timeStamp;
      savedImage.bStippled = image.bStippled;
      savedImage.pixelFormat = image.pixelFormat;
      savedImage.iNumImages = image.iNumImages;
      savedImage.pData = (unsigned char*)malloc(savedImage.iRowInc*savedImage.iRows);

      // Read data from the flash into the SavedImage structure
      error = flycaptureReadRegisterBlock(
	 context,
	 0xFFFF,
	 0xF0000000+ulLUTLoc*4,
	 (unsigned long*)&(savedImage.pData[0]),
	 (savedImage.iRowInc*savedImage.iRows/4));
      _HANDLE_ERROR( error, "flycaptureReadRegisterBlock()" );   

      // Save the image to disk
      error = flycaptureSaveImage(
	 context,
	 &savedImage,
	 FILENAME_RAW_FROM_FLASH,
	 FLYCAPTURE_FILEFORMAT_PGM );
      _HANDLE_ERROR( error, "flycaptureSaveImage()" );

      free(savedImage.pData);

   } else {

      // We should never get here since the check at the top should catch this,
      // but this is here for completeness.
      PrintUsage();

   }

   //
   // Stop the camera
   //
   error = flycaptureStop( context );
   _HANDLE_ERROR( error, "flycaptureStop()" );

   //
   // Destroy the context.
   //
   error = flycaptureDestroyContext( context );
   _HANDLE_ERROR( error, "flycaptureDestroyContext()" );

   printf( "Done!  (hit enter)" );
   getchar();

   return 0;
}