Пример #1
0
void
fmpr_divappr_abs_ubound(fmpr_t z, const fmpr_t x, const fmpr_t y, slong prec)
{
    if (fmpr_is_special(x) || fmpr_is_special(y) || fmpz_is_pm1(fmpr_manref(y)))
    {
        fmpr_div(z, x, y, prec, FMPR_RND_UP);
        fmpr_abs(z, z);
    }
    else
    {
        fmpz_t t, u;
        slong xbits, ybits, tbits, ubits, shift;

        xbits = fmpz_bits(fmpr_manref(x));
        ybits = fmpz_bits(fmpr_manref(y));

        fmpz_init(t);
        fmpz_init(u);

        ubits = FLINT_MIN(ybits, prec);
        tbits = prec + ubits + 1;

        /* upper bound for |x|, shifted */
        if (xbits <= tbits)
        {
            fmpz_mul_2exp(t, fmpr_manref(x), tbits - xbits);
            fmpz_abs(t, t);
        }
        else if (fmpz_sgn(fmpr_manref(x)) > 0)
        {
            fmpz_cdiv_q_2exp(t, fmpr_manref(x), xbits - tbits);
        }
        else
        {
            fmpz_fdiv_q_2exp(t, fmpr_manref(x), xbits - tbits);
            fmpz_neg(t, t);
        }

        /* lower bound for |y|, shifted */
        if (ybits <= ubits)
            fmpz_mul_2exp(u, fmpr_manref(y), ubits - ybits);
        else
            fmpz_tdiv_q_2exp(u, fmpr_manref(y), ybits - ubits);
        fmpz_abs(u, u);

        fmpz_cdiv_q(fmpr_manref(z), t, u);

        shift = (ubits - ybits) - (tbits - xbits);
        fmpz_sub(fmpr_expref(z), fmpr_expref(x), fmpr_expref(y));
        if (shift >= 0)
            fmpz_add_ui(fmpr_expref(z), fmpr_expref(z), shift);
        else
            fmpz_sub_ui(fmpr_expref(z), fmpr_expref(z), -shift);

        _fmpr_normalise(fmpr_manref(z), fmpr_expref(z), prec, FMPR_RND_UP);

        fmpz_clear(t);
        fmpz_clear(u);
    }
}
Пример #2
0
int
main(void)
{
    long iter;
    int result;
    flint_rand_t state;

    printf("abs_ubound_ui_2exp....");
    fflush(stdout);

    flint_randinit(state);

    for (iter = 0; iter < 100000; iter++)
    {
        fmpz_t x, y;
        long bits, yexp;
        long exp;
        mp_limb_t man;

        fmpz_init(x);
        fmpz_init(y);

        fmpz_randtest_not_zero(x, state, 1 + n_randint(state, 400));

        bits = 1 + n_randint(state, FLINT_BITS - 1);

        /* compute an exactly rounded mantissa */
        fmpz_abs(y, x);

        if (fmpz_is_zero(y))
        {
            yexp = 0;
        }
        else
        {
            yexp = fmpz_bits(y) - bits;

            if (yexp >= 0)
            {
                fmpz_cdiv_q_2exp(y, y, yexp);
                if (fmpz_bits(y) == bits + 1)
                {
                    fmpz_tdiv_q_2exp(y, y, 1);
                    yexp--;
                }
            }
            else
            {
                fmpz_mul_2exp(y, y, -yexp);
            }
        }

        man = fmpz_abs_ubound_ui_2exp(&exp, x, bits);

        if (FLINT_BIT_COUNT(man) != bits)
        {
            printf("wrong number of bits!\n");
            printf("bits = %ld, count = %u\n\n", bits, FLINT_BIT_COUNT(man));
            printf("x = "); fmpz_print(x); printf("\n\n");
            printf("bits(x) = %ld\n\n", fmpz_bits(x));
            printf("y = "); fmpz_print(y); printf("\n\n");
            printf("yexp = %ld\n\n", yexp);
            printf("man = %lu, exp = %ld\n", man, exp);
            abort();
        }

        /* ok if equal */
        result = (fmpz_cmp_ui(y, man) == 0);

        /* ok if mantissa is 1 larger */
        if (!result)
        {
            result = ((exp == yexp) && (fmpz_cmp_ui(y, man - 1) == 0));
        }

        /* ok if the exact mantissa is 2^r-1 and overflow to 2^r happened */
        if (!result)
        {
            fmpz_t t;
            fmpz_init(t);
            fmpz_set_ui(t, man);
            fmpz_mul_ui(t, t, 2);
            fmpz_sub_ui(t, t, 1);
            result = (exp == yexp + 1) && fmpz_equal(t, y);
            fmpz_clear(t);
        }

        if (!result)
        {
            printf("different from exact ceiling division\n");
            printf("bits = %ld\n\n", bits);
            printf("x = "); fmpz_print(x); printf("\n\n");
            printf("bits(x) = %ld\n\n", fmpz_bits(x));
            printf("y = "); fmpz_print(y); printf(", yexp = %ld\n\n", yexp);
            printf("man = %lu, exp = %ld\n", man, exp);
            abort();
        }

        fmpz_clear(x);
        fmpz_clear(y);
    }

    flint_randclear(state);
    _fmpz_cleanup();
    printf("PASS\n");
    return 0;
}
Пример #3
0
int
arb_get_unique_fmpz(fmpz_t z, const arb_t x)
{
    if (!arb_is_finite(x))
    {
        return 0;
    }
    else if (arb_is_exact(x))
    {
        /* x = b*2^e, e >= 0 */
        if (arf_is_int(arb_midref(x)))
        {
            /* arf_get_fmpz aborts on overflow */
            arf_get_fmpz(z, arb_midref(x), ARF_RND_DOWN);
            return 1;
        }
        else
        {
            return 0;
        }
    }
    /* if the radius is >= 1, there are at least two integers */
    else if (mag_cmp_2exp_si(arb_radref(x), 0) >= 0)
    {
        return 0;
    }
    /* there are 0 or 1 integers if the radius is < 1 */
    else
    {
        fmpz_t a, b, exp;
        int res;

        /* if the midpoint is exactly an integer, it is what we want */
        if (arf_is_int(arb_midref(x)))
        {
            /* arf_get_fmpz aborts on overflow */
            arf_get_fmpz(z, arb_midref(x), ARF_RND_DOWN);
            return 1;
        }

        fmpz_init(a);
        fmpz_init(b);
        fmpz_init(exp);

        /* if the radius is tiny, it can't be an integer */
        arf_bot(a, arb_midref(x));

        if (fmpz_cmp(a, MAG_EXPREF(arb_radref(x))) > 0)
        {
            res = 0;
        }
        else
        {
            arb_get_interval_fmpz_2exp(a, b, exp, x);

            if (COEFF_IS_MPZ(*exp))
            {
                flint_printf("arb_get_unique_fmpz: input too large\n");
                abort();
            }

            if (*exp >= 0)
            {
                res = fmpz_equal(a, b);

                if (res)
                {
                    fmpz_mul_2exp(a, a, *exp);
                    fmpz_mul_2exp(b, b, *exp);
                }
            }
            else
            {
                fmpz_cdiv_q_2exp(a, a, -(*exp));
                fmpz_fdiv_q_2exp(b, b, -(*exp));
                res = fmpz_equal(a, b);
            }

            if (res)
                fmpz_set(z, a);
        }

        fmpz_clear(a);
        fmpz_clear(b);
        fmpz_clear(exp);

        return res;
    }
}
Пример #4
0
void
_arb_bell_sum_taylor(arb_t res, const fmpz_t n,
        const fmpz_t a, const fmpz_t b, const fmpz_t mmag, long tol)
{
    fmpz_t m, r, R, tmp;
    mag_t B, C, D, bound;
    arb_t t, u;
    long wp, k, N;

    if (_fmpz_sub_small(b, a) < 5)
    {
        arb_bell_sum_bsplit(res, n, a, b, mmag, tol);
        return;
    }

    fmpz_init(m);
    fmpz_init(r);
    fmpz_init(R);
    fmpz_init(tmp);

    /* r = max(m - a, b - m) */
    /* m = a + (b - a) / 2 */
    fmpz_sub(r, b, a);
    fmpz_cdiv_q_2exp(r, r, 1);
    fmpz_add(m, a, r);

    fmpz_mul_2exp(R, r, RADIUS_BITS);

    mag_init(B);
    mag_init(C);
    mag_init(D);
    mag_init(bound);

    arb_init(t);
    arb_init(u);

    if (fmpz_cmp(R, m) >= 0)
    {
        mag_inf(C);
        mag_inf(D);
    }
    else
    {
        /* C = exp(R * |F'(m)| + (1/2) R^2 * (n/(m-R)^2 + 1/(m-R))) */
        /* C = exp(R * (|F'(m)| + (1/2) R * (n/(m-R) + 1)/(m-R))) */
        /* D = (1/2) R * (n/(m-R) + 1)/(m-R) */
        fmpz_sub(tmp, m, R);
        mag_set_fmpz(D, n);
        mag_div_fmpz(D, D, tmp);
        mag_one(C);
        mag_add(D, D, C);
        mag_div_fmpz(D, D, tmp);
        mag_mul_fmpz(D, D, R);
        mag_mul_2exp_si(D, D, -1);

        /* C = |F'(m)| */
        wp = 20 + 1.05 * fmpz_bits(n);
        arb_set_fmpz(t, n);
        arb_div_fmpz(t, t, m, wp);
        fmpz_add_ui(tmp, m, 1);
        arb_set_fmpz(u, tmp);
        arb_digamma(u, u, wp);
        arb_sub(t, t, u, wp);
        arb_get_mag(C, t);

        /* C = exp(R * (C + D)) */
        mag_add(C, C, D);
        mag_mul_fmpz(C, C, R);
        mag_exp(C, C);
    }

    if (mag_cmp_2exp_si(C, tol / 4 + 2) > 0)
    {
        _arb_bell_sum_taylor(res, n, a, m, mmag, tol);
        _arb_bell_sum_taylor(t, n, m, b, mmag, tol);
        arb_add(res, res, t, 2 * tol);
    }
    else
    {
        arb_ptr mx, ser1, ser2, ser3;

        /* D = T(m) */
        wp = 20 + 1.05 * fmpz_bits(n);
        arb_set_fmpz(t, m);
        arb_pow_fmpz(t, t, n, wp);
        fmpz_add_ui(tmp, m, 1);
        arb_gamma_fmpz(u, tmp, wp);
        arb_div(t, t, u, wp);
        arb_get_mag(D, t);

        /* error bound: (b-a) * C * D * B^N / (1 - B), B = r/R */
        /*              ((b-a) * C * D * 2) * 2^(-N*RADIUS_BITS) */

        /* ((b-a) * C * D * 2) */
        mag_mul(bound, C, D);
        mag_mul_2exp_si(bound, bound, 1);
        fmpz_sub(tmp, b, a);
        mag_mul_fmpz(bound, bound, tmp);

        /* N = (tol + log2((b-a)*C*D*2) - mmag) / RADIUS_BITS */
        if (mmag == NULL)
        {
            /* estimate D ~= 2^mmag */
            fmpz_add_ui(tmp, MAG_EXPREF(C), tol);
            fmpz_cdiv_q_ui(tmp, tmp, RADIUS_BITS);
        }
        else
        {
            fmpz_sub(tmp, MAG_EXPREF(bound), mmag);
            fmpz_add_ui(tmp, tmp, tol);
            fmpz_cdiv_q_ui(tmp, tmp, RADIUS_BITS);
        }

        if (fmpz_cmp_ui(tmp, 5 * tol / 4) > 0)
            N = 5 * tol / 4;
        else if (fmpz_cmp_ui(tmp, 2) < 0)
            N = 2;
        else
            N = fmpz_get_ui(tmp);

        /* multiply by 2^(-N*RADIUS_BITS) */
        mag_mul_2exp_si(bound, bound, -N * RADIUS_BITS);

        mx = _arb_vec_init(2);
        ser1 = _arb_vec_init(N);
        ser2 = _arb_vec_init(N);
        ser3 = _arb_vec_init(N);

        /* estimate (this should work for moderate n and tol) */
        wp = 1.1 * tol + 1.05 * fmpz_bits(n) + 5;

        /* increase precision until convergence */
        while (1)
        {
            /* (m+x)^n / gamma(m+1+x) */
            arb_set_fmpz(mx, m);
            arb_one(mx + 1);
            _arb_poly_log_series(ser1, mx, 2, N, wp);
            for (k = 0; k < N; k++)
                arb_mul_fmpz(ser1 + k, ser1 + k, n, wp);
            arb_add_ui(mx, mx, 1, wp);
            _arb_poly_lgamma_series(ser2, mx, 2, N, wp);
            _arb_vec_sub(ser1, ser1, ser2, N, wp);
            _arb_poly_exp_series(ser3, ser1, N, N, wp);

            /* t = a - m, u = b - m */
            arb_set_fmpz(t, a);
            arb_sub_fmpz(t, t, m, wp);
            arb_set_fmpz(u, b);
            arb_sub_fmpz(u, u, m, wp);
            arb_power_sum_vec(ser1, t, u, N, wp);

            arb_zero(res);
            for (k = 0; k < N; k++)
                arb_addmul(res, ser3 + k, ser1 + k, wp);

            if (mmag != NULL)
            {
                if (_fmpz_sub_small(MAG_EXPREF(arb_radref(res)), mmag) <= -tol)
                    break;
            }
            else
            {
                if (arb_rel_accuracy_bits(res) >= tol)
                    break;
            }

            wp = 2 * wp;
        }

        /* add the series truncation bound */
        arb_add_error_mag(res, bound);

        _arb_vec_clear(mx, 2);
        _arb_vec_clear(ser1, N);
        _arb_vec_clear(ser2, N);
        _arb_vec_clear(ser3, N);
    }

    mag_clear(B);
    mag_clear(C);
    mag_clear(D);
    mag_clear(bound);
    arb_clear(t);
    arb_clear(u);

    fmpz_clear(m);
    fmpz_clear(r);
    fmpz_clear(R);
    fmpz_clear(tmp);
}