Пример #1
0
void fmpz_poly_q_scalar_mul_si(fmpz_poly_q_t rop, const fmpz_poly_q_t op, long x)
{
    fmpz_t cont, fx, gcd;

    if (fmpz_poly_q_is_zero(op) || (x == 0))
    {
        fmpz_poly_q_zero(rop);
        return;
    }

    if (x == 1)
    {
        fmpz_poly_q_set(rop, op);
        return;
    }

    fmpz_init(cont);
    fmpz_poly_content(cont, op->den);

    if (fmpz_is_one(cont))
    {
        fmpz_poly_scalar_mul_si(rop->num, op->num, x);
        fmpz_poly_set(rop->den, op->den);
        fmpz_clear(cont);
        return;
    }

    fmpz_init(fx);
    fmpz_init(gcd);

    fmpz_set_si(fx, x);
    fmpz_gcd(gcd, cont, fx);

    if (fmpz_is_one(gcd))
    {
        fmpz_poly_scalar_mul_si(rop->num, op->num, x);
        fmpz_poly_set(rop->den, op->den);
    }
    else
    {
        fmpz_divexact(fx, fx, gcd);
        fmpz_poly_scalar_mul_fmpz(rop->num, op->num, fx);
        fmpz_poly_scalar_divexact_fmpz(rop->den, op->den, gcd);
    }

    fmpz_clear(cont);
    fmpz_clear(fx);
    fmpz_clear(gcd);
}
Пример #2
0
void
fmpz_poly_scalar_mul_ui(fmpz_poly_t poly1, const fmpz_poly_t poly2, ulong x)
{
    long i;

    /* Either scalar or input poly is zero */
    if ((x == 0) || (poly2->length == 0))
    {
        fmpz_poly_zero(poly1);
        return;
    }

    /* Special case, multiply by 1 */
    if (x == 1)
    {
        fmpz_poly_set(poly1, poly2);
        return;
    }

    fmpz_poly_fit_length(poly1, poly2->length);

    for (i = 0; i < poly2->length; i++)
        fmpz_mul_ui(poly1->coeffs + i, poly2->coeffs + i, x);

    _fmpz_poly_set_length(poly1, poly2->length);
}
Пример #3
0
int dgsl_rot_mp_call_gpv_inlattice(fmpz_poly_t rop,  const dgsl_rot_mp_t *self, gmp_randstate_t state) {
  assert(rop); assert(self);

  const long n = self->n;
  mpz_t  tmp_z; mpz_init(tmp_z);
  fmpz_t tmp; fmpz_init(tmp);

  fmpz_poly_zero(rop);

  fmpz_poly_t tmp_poly;
  fmpz_poly_init(tmp_poly);
  fmpz_poly_set(tmp_poly, self->B);
  fmpz_poly_realloc(tmp_poly, n);
  tmp_poly->length = n;

  fmpz_poly_t tmp2;
  fmpz_poly_init(tmp2);

  for(long i=0; i<n; i++) {
    self->D[i]->call(tmp_z, self->D[i], state); fmpz_set_mpz(tmp, tmp_z);
    fmpz_poly_scalar_mul_fmpz(tmp2, tmp_poly, tmp);
    fmpz_poly_add(rop, rop, tmp2);
    _fmpz_vec_rot_left_neg(tmp_poly->coeffs, tmp_poly->coeffs, n);
  }
  fmpz_poly_clear(tmp_poly);
  fmpz_poly_add(rop, rop, self->c_z);

  fmpz_poly_clear(tmp2);
  mpz_clear(tmp_z);
  fmpz_clear(tmp);
  return 0;
}
Пример #4
0
void
poly_starmultiply(fmpz_poly_t c,
		const fmpz_poly_t a,
		const fmpz_poly_t b,
		const ntru_params *params,
		uint32_t modulus)
{
	fmpz_poly_t a_tmp;
	fmpz_t c_coeff_k;

	fmpz_poly_init(a_tmp);
	fmpz_init(c_coeff_k);

	/* avoid side effects */
	fmpz_poly_set(a_tmp, a);
	fmpz_poly_zero(c);

	for (int k = params->N - 1; k >= 0; k--) {
		int j;

		j = k + 1;

		fmpz_set_si(c_coeff_k, 0);

		for (int i = params->N - 1; i >= 0; i--) {
			fmpz *a_tmp_coeff_i,
				 *b_coeff_j;

			if (j == (int)(params->N))
				j = 0;

			a_tmp_coeff_i = fmpz_poly_get_coeff_ptr(a_tmp, i);
			b_coeff_j = fmpz_poly_get_coeff_ptr(b, j);

			if (fmpz_cmp_si_n(a_tmp_coeff_i, 0) &&
					fmpz_cmp_si_n(b_coeff_j, 0)) {
				fmpz_t fmpz_tmp;

				fmpz_init(fmpz_tmp);

				fmpz_mul(fmpz_tmp, a_tmp_coeff_i, b_coeff_j);
				fmpz_add(fmpz_tmp, fmpz_tmp, c_coeff_k);
				fmpz_mod_ui(c_coeff_k, fmpz_tmp, modulus);

				fmpz_poly_set_coeff_fmpz(c, k, c_coeff_k);

				fmpz_clear(fmpz_tmp);
			}
			j++;
		}
		fmpz_clear(c_coeff_k);
	}

	fmpz_poly_clear(a_tmp);
}
Пример #5
0
int
main(void)
{
    int iter;
    FLINT_TEST_INIT(state);

    flint_printf("sgn_eval_at_half....");
    fflush(stdout);

    /* Check aliasing */
    for (iter = 0; iter < 1000 * flint_test_multiplier(); iter++)
    {
        fmpz_t a;
        fmpz_poly_t f, g;
        long i, d;
        int s1, s2;

        fmpz_init(a);
        fmpz_poly_init(f);
        fmpz_poly_init(g);

        fmpz_poly_randtest(f, state, n_randint(state, 100), 200);

        s1 = fmpz_poly_sgn_eval_at_half(f);

        fmpz_poly_set(g, f);
        d = fmpz_poly_degree(g);
        for (i = 0; i <= d; i++)
        {
            fmpz_mul_2exp(fmpz_poly_get_coeff_ptr(g, i),
                          fmpz_poly_get_coeff_ptr(g, i), d - i);
        }

        fmpz_one(a);
        fmpz_poly_evaluate_fmpz(a, g, a);

        s2 = fmpz_sgn(a);

        if (s1 != s2)
        {
            flint_printf("FAIL:\n");
            fmpz_poly_print(f); printf("\n\n");
            printf("s1 = %d, s2 = %d\n\n", s1, s2);
            abort();
        }

        fmpz_clear(a);
        fmpz_poly_clear(f);
        fmpz_poly_clear(g);
    }

    FLINT_TEST_CLEANUP(state);
    flint_printf("PASS\n");
    return 0;
}
Пример #6
0
int dgsl_rot_mp_call_plus_fmpz_poly(fmpz_poly_t rop, const dgsl_rot_mp_t *self, const fmpz_poly_t c, gmp_randstate_t state) {
  fmpz_poly_t t;  fmpz_poly_init(t);
  fmpz_poly_set(t, c);
  fmpq_poly_t tq; fmpq_poly_init(tq); // == 0
  fmpq_poly_set_fmpz_poly(tq, t);
  fmpq_poly_neg(tq, tq);
  dgsl_rot_mp_call_recenter_fmpq_poly(rop, self, tq, state);
  fmpz_poly_add(rop, rop, t);
  fmpq_poly_clear(tq);
  fmpz_poly_clear(t);
  return 0;
}
Пример #7
0
void
fmpz_poly_mat_trace(fmpz_poly_t trace, const fmpz_poly_mat_t mat)
{
    long i, n = fmpz_poly_mat_nrows(mat);

    if (n == 0)
        fmpz_poly_zero(trace);
    else
    {
        fmpz_poly_set(trace, fmpz_poly_mat_entry(mat, 0, 0));
        for (i = 1; i < n; i++)
            fmpz_poly_add(trace, trace, fmpz_poly_mat_entry(mat, i, i));
    }
}
Пример #8
0
int
main(void)
{
    int i, result;
    FLINT_TEST_INIT(state);

    flint_printf("swap....");
    fflush(stdout);

    

    for (i = 0; i < 1000 * flint_test_multiplier(); i++)
    {
        fmpz_poly_t a, b, c;

        fmpz_poly_init(a);
        fmpz_poly_init(b);
        fmpz_poly_init(c);
        fmpz_poly_randtest(a, state, n_randint(state, 100), 200);
        fmpz_poly_randtest(b, state, n_randint(state, 100), 200);

        fmpz_poly_set(c, b);
        fmpz_poly_swap(a, b);

        result = (fmpz_poly_equal(a, c));
        if (!result)
        {
            flint_printf("FAIL:\n");
            fmpz_poly_print(a), flint_printf("\n\n");
            fmpz_poly_print(b), flint_printf("\n\n");
            fmpz_poly_print(c), flint_printf("\n\n");
            abort();
        }

        fmpz_poly_clear(a);
        fmpz_poly_clear(b);
        fmpz_poly_clear(c);
    }

    FLINT_TEST_CLEANUP(state);
    
    flint_printf("PASS\n");
    return 0;
}
Пример #9
0
void
fmpz_poly_pow_multinomial(fmpz_poly_t res, const fmpz_poly_t poly, ulong e)
{
    const long len = poly->length;
    long rlen;

    if ((len < 2) | (e < 3UL))
    {
        if (e == 0UL)
            fmpz_poly_set_ui(res, 1);
        else if (len == 0)
            fmpz_poly_zero(res);
        else if (len == 1)
        {
            fmpz_poly_fit_length(res, 1);
            fmpz_pow_ui(res->coeffs, poly->coeffs, e);
            _fmpz_poly_set_length(res, 1);
        }
        else if (e == 1UL)
            fmpz_poly_set(res, poly);
        else  /* e == 2UL */
            fmpz_poly_sqr(res, poly);
        return;
    }
    
    rlen = (long) e * (len - 1) + 1;

    if (res != poly)
    {
        fmpz_poly_fit_length(res, rlen);
        _fmpz_poly_pow_multinomial(res->coeffs, poly->coeffs, len, e);
        _fmpz_poly_set_length(res, rlen);
    }
    else
    {
        fmpz_poly_t t;
        fmpz_poly_init2(t, rlen);
        _fmpz_poly_pow_multinomial(t->coeffs, poly->coeffs, len, e);
        _fmpz_poly_set_length(t, rlen);
        fmpz_poly_swap(res, t);
        fmpz_poly_clear(t);
    }
}
Пример #10
0
void
fmpz_poly_pow_binomial(fmpz_poly_t res, const fmpz_poly_t poly, ulong e)
{
    const long len = poly->length;
    long rlen;

    if (len != 2)
    {
        printf("Exception: poly->length not equal to 2 in fmpz_poly_pow_binomial\n");
        abort();
    }

    if (e < 3UL)
    {
        if (e == 0UL)
            fmpz_poly_set_ui(res, 1UL);
        else if (e == 1UL)
            fmpz_poly_set(res, poly);
        else  /* e == 2UL */
            fmpz_poly_sqr(res, poly);
        return;
    }
    
    rlen = (long) e + 1;

    if (res != poly)
    {
        fmpz_poly_fit_length(res, rlen);
        _fmpz_poly_set_length(res, rlen);
        _fmpz_poly_pow_binomial(res->coeffs, poly->coeffs, e);
    }
    else
    {
        fmpz_poly_t t;
        fmpz_poly_init2(t, rlen);
        _fmpz_poly_set_length(t, rlen);
        _fmpz_poly_pow_binomial(t->coeffs, poly->coeffs, e);
        fmpz_poly_swap(res, t);
        fmpz_poly_clear(t);
    }
}
Пример #11
0
void
fmpz_poly_deflate(fmpz_poly_t result, const fmpz_poly_t input, ulong deflation)
{
    slong res_length, i;

    if (deflation == 0)
    {
        flint_printf("Exception (fmpz_poly_deflate). Division by zero.\n");
        abort();
    }

    if (input->length <= 1 || deflation == 1)
    {
        fmpz_poly_set(result, input);
        return;
    }

    res_length = (input->length - 1) / deflation + 1;
    fmpz_poly_fit_length(result, res_length);
    for (i = 0; i < res_length; i++)
        fmpz_set(result->coeffs + i, input->coeffs + i*deflation);

    result->length = res_length;
}
Пример #12
0
int
main(void)
{
    int i, result;
    FLINT_TEST_INIT(state);

    flint_printf("set_si_equal....");
    fflush(stdout);

    

    /* equal polynomials */
    for (i = 0; i < 1000 * flint_test_multiplier(); i++)
    {
        fmpz_poly_t a, b;
        slong n;

        fmpz_poly_init(a);
        fmpz_poly_init(b);
        n = z_randtest(state);

        fmpz_poly_set_si(a, n);
        fmpz_poly_set(b, a);

        result = (fmpz_poly_equal(a, b));
        if (!result)
        {
            flint_printf("FAIL:\n");
            flint_printf("n = %wd\n\n", n);
            flint_printf("a = "), fmpz_poly_print(a), flint_printf("\n\n");
            flint_printf("b = "), fmpz_poly_print(b), flint_printf("\n\n");
            abort();
        }

        fmpz_poly_clear(a);
        fmpz_poly_clear(b);
    }

    for (i = 0; i < 1000 * flint_test_multiplier(); i++)
    {
        fmpz_poly_t a, b;
        slong m, n;

        fmpz_poly_init(a);
        fmpz_poly_init(b);

        m = z_randtest(state);
        n = z_randtest(state);
        while (m == n)
            n = z_randtest(state);
        fmpz_poly_set_si(a, m);
        fmpz_poly_set_si(b, n);

        result = (!fmpz_poly_equal(a, b));
        if (!result)
        {
            flint_printf("FAIL:\n");
            flint_printf("m = %wd\n\n", m);
            flint_printf("n = %wd\n\n", n);
            flint_printf("a = "), fmpz_poly_print(a), flint_printf("\n\n");
            flint_printf("b = "), fmpz_poly_print(b), flint_printf("\n\n");
            abort();
        }

        fmpz_poly_clear(a);
        fmpz_poly_clear(b);
    }

    FLINT_TEST_CLEANUP(state);
    
    flint_printf("PASS\n");
    return 0;
}
Пример #13
0
bool
poly_inverse_poly_q(fmpz_poly_t Fq,
		const fmpz_poly_t a,
		const ntru_params *params)
{
	bool retval = false;
	int k = 0,
		j = 0;
	fmpz *b_last;
	fmpz_poly_t a_tmp,
				b,
				c,
				f,
				g;

	/* general initialization of temp variables */
	fmpz_poly_init(b);
	fmpz_poly_set_coeff_ui(b, 0, 1);
	fmpz_poly_init(c);
	fmpz_poly_init(f);
	fmpz_poly_set(f, a);

	/* set g(x) = x^N − 1 */
	fmpz_poly_init(g);
	fmpz_poly_set_coeff_si(g, 0, -1);
	fmpz_poly_set_coeff_si(g, params->N, 1);

	/* avoid side effects */
	fmpz_poly_init(a_tmp);
	fmpz_poly_set(a_tmp, a);
	fmpz_poly_zero(Fq);

	while (1) {
		while (fmpz_poly_get_coeff_ptr(f, 0) &&
				fmpz_is_zero(fmpz_poly_get_coeff_ptr(f, 0))) {
			for (uint32_t i = 1; i <= params->N; i++) {
				fmpz *f_coeff = fmpz_poly_get_coeff_ptr(f, i);
				fmpz *c_coeff = fmpz_poly_get_coeff_ptr(c, params->N - i);

				/* f(x) = f(x) / x */
				fmpz_poly_set_coeff_fmpz_n(f, i - 1,
						f_coeff);

				/* c(x) = c(x) * x */
				fmpz_poly_set_coeff_fmpz_n(c, params->N + 1 - i,
						c_coeff);
			}

			fmpz_poly_set_coeff_si(f, params->N, 0);
			fmpz_poly_set_coeff_si(c, 0, 0);

			k++;

			if (fmpz_poly_degree(f) == -1)
				goto cleanup;
		}

		if (fmpz_poly_is_zero(g) == 1)
			goto cleanup;

		if (fmpz_poly_degree(f) == 0)
			break;

		if (fmpz_poly_degree(f) < fmpz_poly_degree(g)) {
			fmpz_poly_swap(f, g);
			fmpz_poly_swap(b, c);
		}

		fmpz_poly_add(f, g, f);
		fmpz_poly_mod_unsigned(f, 2);

		fmpz_poly_add(b, c, b);
		fmpz_poly_mod_unsigned(b, 2);
	}

	k = k % params->N;

	b_last = fmpz_poly_get_coeff_ptr(b, params->N);
	if (fmpz_cmp_si_n(b_last, 0))
		goto cleanup;

	/* Fq(x) = x^(N-k) * b(x) */
	for (int i = params->N - 1; i >= 0; i--) {
		fmpz *b_i;

		j = i - k;

		if (j < 0)
			j = j + params->N;

		b_i = fmpz_poly_get_coeff_ptr(b, i);
		fmpz_poly_set_coeff_fmpz_n(Fq, j, b_i);
	}

	poly_mod2_to_modq(Fq, a_tmp, params);

	/* check if the f * Fq = 1 (mod p) condition holds true */
	fmpz_poly_set(a_tmp, a);
	poly_starmultiply(a_tmp, a_tmp, Fq, params, params->q);
	if (fmpz_poly_is_one(a_tmp))
		retval = true;
	else
		fmpz_poly_zero(Fq);

cleanup:
	fmpz_poly_clear(a_tmp);
	fmpz_poly_clear(b);
	fmpz_poly_clear(c);
	fmpz_poly_clear(f);
	fmpz_poly_clear(g);

	return retval;
}
Пример #14
0
dgsl_rot_mp_t *dgsl_rot_mp_init(const long n, const fmpz_poly_t B, mpfr_t sigma, fmpq_poly_t c, const dgsl_alg_t algorithm, const oz_flag_t flags) {
  assert(mpfr_cmp_ui(sigma, 0) > 0);

  dgsl_rot_mp_t *self = (dgsl_rot_mp_t*)calloc(1, sizeof(dgsl_rot_mp_t));
  if(!self) dgs_die("out of memory");

  dgsl_alg_t alg = algorithm;

  self->n = n;

  self->prec = mpfr_get_prec(sigma);

  fmpz_poly_init(self->B);
  fmpz_poly_set(self->B, B);
  if(fmpz_poly_length(self->B) > n)
    dgs_die("polynomial is longer than length n");
  else
    fmpz_poly_realloc(self->B, n);


  fmpz_poly_init(self->c_z);
  fmpq_poly_init(self->c);

  mpfr_init2(self->sigma, self->prec);
  mpfr_set(self->sigma, sigma, MPFR_RNDN);

  if (alg == DGSL_DETECT) {
    if (fmpz_poly_is_one(self->B) && (c && fmpq_poly_is_zero(c))) {
      alg = DGSL_IDENTITY;
    } else if (c && fmpq_poly_is_zero(c))
      alg = DGSL_INLATTICE;
    else
      alg = DGSL_COSET; //TODO: we could test for lattice membership here
  }

  size_t tau = 3;
  if (2*ceil(sqrt(log2((double)n))) > tau)
    tau = 2*ceil(sqrt(log2((double)n)));

  switch(alg) {
  case DGSL_IDENTITY: {
    self->D = (dgs_disc_gauss_mp_t**)calloc(1, sizeof(dgs_disc_gauss_mp_t*));
    mpfr_t c_;
    mpfr_init2(c_, self->prec);
    mpfr_set_d(c_, 0.0, MPFR_RNDN);
    self->D[0] = dgs_disc_gauss_mp_init(self->sigma, c_, tau, DGS_DISC_GAUSS_DEFAULT);
    self->call = dgsl_rot_mp_call_identity;
    mpfr_clear(c_);
    break;
  }
  case DGSL_GPV_INLATTICE: {
    self->D = (dgs_disc_gauss_mp_t**)calloc(n, sizeof(dgs_disc_gauss_mp_t*));

    if (c && !fmpq_poly_is_zero(c)) {
      fmpq_t c_i;
      fmpq_init(c_i);
      for(int i=0; i<n; i++) {
        fmpq_poly_get_coeff_fmpq(c_i, c, i);
        fmpz_poly_set_coeff_fmpz(self->c_z, i, fmpq_numref(c_i));
      }
      fmpq_clear(c_i);
    }
    mpfr_mat_t G;
    mpfr_mat_init(G, n, n, self->prec);
    mpfr_mat_set_fmpz_poly(G, B);
    mpfr_mat_gso(G, MPFR_RNDN);

    mpfr_t sigma_;
    mpfr_init2(sigma_, self->prec);

    mpfr_t norm;
    mpfr_init2(norm, self->prec);

    mpfr_t c_;
    mpfr_init2(c_, self->prec);
    mpfr_set_d(c_, 0.0, MPFR_RNDN);

    for(long i=0; i<n; i++) {
      _mpfr_vec_2norm(norm, G->rows[i], n, MPFR_RNDN);
      assert(mpfr_cmp_d(norm, 0.0) > 0);
      mpfr_div(sigma_, self->sigma, norm, MPFR_RNDN);
      assert(mpfr_cmp_d(sigma_, 0.0) > 0);
      self->D[i] = dgs_disc_gauss_mp_init(sigma_, c_, tau, DGS_DISC_GAUSS_DEFAULT);
    }

    mpfr_clear(sigma_);
    mpfr_clear(norm);
    mpfr_clear(c_);
    mpfr_mat_clear(G);

    self->call = dgsl_rot_mp_call_gpv_inlattice;
    break;
  }
  case DGSL_INLATTICE: {
    fmpq_poly_init(self->sigma_sqrt);
    long r= 2*ceil(sqrt(log(n)));

    fmpq_poly_t Bq;    fmpq_poly_init(Bq);
    fmpq_poly_set_fmpz_poly(Bq, self->B);
    fmpq_poly_oz_invert_approx(self->B_inv, Bq, n, self->prec, flags);
    fmpq_poly_clear(Bq);

    _dgsl_rot_mp_sqrt_sigma_2(self->sigma_sqrt, self->B, sigma, r, n, self->prec, flags);

    mpfr_init2(self->r_f, self->prec);
    mpfr_set_ui(self->r_f, r, MPFR_RNDN);

    self->call = dgsl_rot_mp_call_inlattice;
    break;
  }
  case DGSL_COSET:
    dgs_die("not implemented");

  default:
    dgs_die("not implemented");
  }


  return self;
}
Пример #15
0
void
fmpz_poly_pseudo_divrem_cohen(fmpz_poly_t Q, fmpz_poly_t R, 
                              const fmpz_poly_t A, const fmpz_poly_t B)
{
    long lenq, lenr;
    fmpz *q, *r;
    
    if (B->length == 0)
    {
        printf("Exception: division by zero in fmpz_poly_pseudo_divrem_cohen\n");
        abort();
    }
    if (Q == R)
    {
        printf("Exception: output arguments Q and R may not be aliased\n");
        abort();
    }
    if (A->length < B->length)
    {
        fmpz_poly_zero(Q);
        fmpz_poly_set(R, A);
        return;
    }
    
    lenq = A->length - B->length + 1;
    lenr = A->length;
    if ((Q == A) || (Q == B))
        q = _fmpz_vec_init(lenq);
    else
    {
        fmpz_poly_fit_length(Q, lenq);
        q = Q->coeffs;
    }
    if (R == B)
        r = _fmpz_vec_init(lenr);
    else
    {
        fmpz_poly_fit_length(R, lenr);
        r = R->coeffs;
    }
    
    _fmpz_poly_pseudo_divrem_cohen(q, r, A->coeffs, A->length, B->coeffs, B->length);
    
    for (lenr = B->length - 1; (lenr >= 0) && r[lenr] == 0L; lenr--) ;
    lenr++;
    
    if ((Q == A) || (Q == B))
    {
        _fmpz_vec_clear(Q->coeffs, Q->alloc);
        Q->coeffs = q;
        Q->alloc = lenq;
        Q->length = lenq;
    }
    else
        _fmpz_poly_set_length(Q, lenq);
    if (R == B)
    {
        _fmpz_vec_clear(R->coeffs, R->alloc);
        R->coeffs = r;
        R->alloc = A->length;
        R->length = lenr;
    }
    else
        _fmpz_poly_set_length(R, lenr);
}
Пример #16
0
bool
poly_inverse_poly_p(fmpz_poly_t Fp,
		const fmpz_poly_t a,
		const ntru_params *params)
{
	bool retval = false;
	int k = 0,
		j = 0;
	fmpz *b_last;
	fmpz_poly_t a_tmp,
				b,
				c,
				f,
				g;

	/* general initialization of temp variables */
	fmpz_poly_init(b);
	fmpz_poly_set_coeff_ui(b, 0, 1);
	fmpz_poly_init(c);
	fmpz_poly_init(f);
	fmpz_poly_set(f, a);

	/* set g(x) = x^N − 1 */
	fmpz_poly_init(g);
	fmpz_poly_set_coeff_si(g, 0, -1);
	fmpz_poly_set_coeff_si(g, params->N, 1);

	/* avoid side effects */
	fmpz_poly_init(a_tmp);
	fmpz_poly_set(a_tmp, a);
	fmpz_poly_zero(Fp);

	while (1) {
		while (fmpz_poly_get_coeff_ptr(f, 0) &&
				fmpz_is_zero(fmpz_poly_get_coeff_ptr(f, 0))) {
			for (uint32_t i = 1; i <= params->N; i++) {
				fmpz *f_coeff = fmpz_poly_get_coeff_ptr(f, i);
				fmpz *c_coeff = fmpz_poly_get_coeff_ptr(c, params->N - i);

				/* f(x) = f(x) / x */
				fmpz_poly_set_coeff_fmpz_n(f, i - 1,
						f_coeff);

				/* c(x) = c(x) * x */
				fmpz_poly_set_coeff_fmpz_n(c, params->N + 1 - i,
						c_coeff);
			}

			fmpz_poly_set_coeff_si(f, params->N, 0);
			fmpz_poly_set_coeff_si(c, 0, 0);

			k++;

			if (fmpz_poly_degree(f) == -1)
				goto cleanup;
		}

		if (fmpz_poly_is_zero(g) == 1)
			goto cleanup;

		if (fmpz_poly_degree(f) == 0)
			break;

		if (fmpz_poly_degree(f) < fmpz_poly_degree(g)) {
			/* exchange f and g and exchange b and c */
			fmpz_poly_swap(f, g);
			fmpz_poly_swap(b, c);
		}

		{
			fmpz_poly_t c_tmp,
						g_tmp;
			fmpz_t u,
				   mp_tmp;

			fmpz_init(u);
			fmpz_zero(u);

			fmpz_init_set(mp_tmp, fmpz_poly_get_coeff_ptr(f, 0));

			fmpz_poly_init(g_tmp);
			fmpz_poly_set(g_tmp, g);

			fmpz_poly_init(c_tmp);
			fmpz_poly_set(c_tmp, c);

			/* u = f[0] * g[0]^(-1) mod p */
			  /* = (f[0] mod p) * (g[0] inverse mod p) mod p */
			fmpz_invmod_ui(u,
					fmpz_poly_get_coeff_ptr(g, 0),
					params->p);
			fmpz_mod_ui(mp_tmp, mp_tmp, params->p);
			fmpz_mul(u, mp_tmp, u);
			fmpz_mod_ui(u, u, params->p);

			/* f = f - u * g mod p */
			fmpz_poly_scalar_mul_fmpz(g_tmp, g_tmp, u);
			fmpz_poly_sub(f, f, g_tmp);
			fmpz_poly_mod_unsigned(f, params->p);

			/* b = b - u * c mod p */
			fmpz_poly_scalar_mul_fmpz(c_tmp, c_tmp, u);
			fmpz_poly_sub(b, b, c_tmp);
			fmpz_poly_mod_unsigned(b, params->p);

			fmpz_clear(u);
			fmpz_poly_clear(g_tmp);
			fmpz_poly_clear(c_tmp);
		}
	}

	k = k % params->N;

	b_last = fmpz_poly_get_coeff_ptr(b, params->N);
	if (fmpz_cmp_si_n(b_last, 0))
		goto cleanup;

	/* Fp(x) = x^(N-k) * b(x) */
	for (int i = params->N - 1; i >= 0; i--) {
		fmpz *b_i;

		/* b(X) = f[0]^(-1) * b(X) (mod p) */
		{
			fmpz_t mp_tmp;

			fmpz_init(mp_tmp);

			fmpz_invmod_ui(mp_tmp,
					fmpz_poly_get_coeff_ptr(f, 0),
					params->p);

			if (fmpz_poly_get_coeff_ptr(b, i)) {
				fmpz_mul(fmpz_poly_get_coeff_ptr(b, i),
						fmpz_poly_get_coeff_ptr(b, i),
						mp_tmp);
				fmpz_mod_ui(fmpz_poly_get_coeff_ptr(b, i),
						fmpz_poly_get_coeff_ptr(b, i),
						params->p);
			}
		}

		j = i - k;
		if (j < 0)
			j = j + params->N;

		b_i = fmpz_poly_get_coeff_ptr(b, i);
		fmpz_poly_set_coeff_fmpz_n(Fp, j, b_i);
	}

	/* check if the f * Fp = 1 (mod p) condition holds true */
	fmpz_poly_set(a_tmp, a);
	poly_starmultiply(a_tmp, a_tmp, Fp, params, params->p);
	if (fmpz_poly_is_one(a_tmp))
		retval = true;
	else
		fmpz_poly_zero(Fp);

cleanup:
	fmpz_poly_clear(a_tmp);
	fmpz_poly_clear(b);
	fmpz_poly_clear(c);
	fmpz_poly_clear(f);
	fmpz_poly_clear(g);

	return retval;
}
Пример #17
0
int
main(void)
{
    int i, result;
    flint_rand_t state;

    printf("mul_KS....");
    fflush(stdout);

    flint_randinit(state);

    /* Check aliasing of a and b */
    for (i = 0; i < 2000; i++)
    {
        fmpz_poly_t a, b, c;

        fmpz_poly_init(a);
        fmpz_poly_init(b);
        fmpz_poly_init(c);
        fmpz_poly_randtest(b, state, n_randint(state, 50), 200);
        fmpz_poly_randtest(c, state, n_randint(state, 50), 200);
        fmpz_poly_mul_KS(a, b, c);
        fmpz_poly_mul_KS(b, b, c);

        result = (fmpz_poly_equal(a, b));
        if (!result)
        {
            printf("FAIL:\n");
            fmpz_poly_print(a), printf("\n\n");
            fmpz_poly_print(b), printf("\n\n");
            abort();
        }

        fmpz_poly_clear(a);
        fmpz_poly_clear(b);
        fmpz_poly_clear(c);
    }

    /* Check aliasing of a and c */
    for (i = 0; i < 2000; i++)
    {
        fmpz_poly_t a, b, c;

        fmpz_poly_init(a);
        fmpz_poly_init(b);
        fmpz_poly_init(c);
        fmpz_poly_randtest(b, state, n_randint(state, 50), 200);
        fmpz_poly_randtest(c, state, n_randint(state, 50), 200);

        fmpz_poly_mul_KS(a, b, c);
        fmpz_poly_mul_KS(c, b, c);

        result = (fmpz_poly_equal(a, c));
        if (!result)
        {
            printf("FAIL:\n");
            fmpz_poly_print(a), printf("\n\n");
            fmpz_poly_print(c), printf("\n\n");
            abort();
        }

        fmpz_poly_clear(a);
        fmpz_poly_clear(b);
        fmpz_poly_clear(c);
    }

    /* Check aliasing of b and c */
    for (i = 0; i < 2000; i++)
    {
        fmpz_poly_t a, b, c;

        fmpz_poly_init(a);
        fmpz_poly_init(b);
        fmpz_poly_init(c);
        fmpz_poly_randtest(b, state, n_randint(state, 50), 200);
        fmpz_poly_set(c, b);

        fmpz_poly_mul_KS(a, b, b);
        fmpz_poly_mul_KS(c, b, c);

        result = (fmpz_poly_equal(a, c));
        if (!result)
        {
            printf("FAIL:\n");
            fmpz_poly_print(a), printf("\n\n");
            fmpz_poly_print(c), printf("\n\n");
            abort();
        }

        fmpz_poly_clear(a);
        fmpz_poly_clear(b);
        fmpz_poly_clear(c);
    }

    /* Compare with mul_classical */
    for (i = 0; i < 10000; i++)
    {
        fmpz_poly_t a, b, c, d;

        fmpz_poly_init(a);
        fmpz_poly_init(b);
        fmpz_poly_init(c);
        fmpz_poly_init(d);
        fmpz_poly_randtest(b, state, n_randint(state, 50), 200);
        fmpz_poly_randtest(c, state, n_randint(state, 50), 200);

        fmpz_poly_mul_KS(a, b, c);
        fmpz_poly_mul_classical(d, b, c);

        result = (fmpz_poly_equal(a, d));
        if (!result)
        {
            printf("FAIL:\n");
            fmpz_poly_print(a), printf("\n\n");
            fmpz_poly_print(d), printf("\n\n");
            abort();
        }

        fmpz_poly_clear(a);
        fmpz_poly_clear(b);
        fmpz_poly_clear(c);
        fmpz_poly_clear(d);
    }

    /* Compare with mul_classical unsigned */
    for (i = 0; i < 10000; i++)
    {
        fmpz_poly_t a, b, c, d;

        fmpz_poly_init(a);
        fmpz_poly_init(b);
        fmpz_poly_init(c);
        fmpz_poly_init(d);
        fmpz_poly_randtest_unsigned(b, state, n_randint(state, 50), 200);
        fmpz_poly_randtest_unsigned(c, state, n_randint(state, 50), 200);

        fmpz_poly_mul_KS(a, b, c);
        fmpz_poly_mul_classical(d, b, c);

        result = (fmpz_poly_equal(a, d));
        if (!result)
        {
            printf("FAIL:\n");
            fmpz_poly_print(a), printf("\n\n");
            fmpz_poly_print(d), printf("\n\n");
            abort();
        }

        fmpz_poly_clear(a);
        fmpz_poly_clear(b);
        fmpz_poly_clear(c);
        fmpz_poly_clear(d);
    }

    /* Check _fmpz_poly_mul_KS directly */
    for (i = 0; i < 2000; i++)
    {
        long len1, len2;
        fmpz_poly_t a, b, out1, out2;

        len1 = n_randint(state, 100) + 1;
        len2 = n_randint(state, 100) + 1;
        fmpz_poly_init(a);
        fmpz_poly_init(b);
        fmpz_poly_init(out1);
        fmpz_poly_init(out2);
        fmpz_poly_randtest(a, state, len1, 200);
        fmpz_poly_randtest(b, state, len2, 200);

        fmpz_poly_mul_KS(out1, a, b);
        fmpz_poly_fit_length(a, a->alloc + n_randint(state, 10));
        fmpz_poly_fit_length(b, b->alloc + n_randint(state, 10));
        a->length = a->alloc;
        b->length = b->alloc;
        fmpz_poly_fit_length(out2, a->length + b->length - 1);
        _fmpz_poly_mul_KS(out2->coeffs, a->coeffs, a->length,
                                        b->coeffs, b->length);
        _fmpz_poly_set_length(out2, a->length + b->length - 1);
        _fmpz_poly_normalise(out2);

        result = (fmpz_poly_equal(out1, out2));
        if (!result)
        {
            printf("FAIL:\n");
            fmpz_poly_print(out1), printf("\n\n");
            fmpz_poly_print(out2), printf("\n\n");
            abort();
        }

        fmpz_poly_clear(a);
        fmpz_poly_clear(b);
        fmpz_poly_clear(out1);
        fmpz_poly_clear(out2);
    }

    flint_randclear(state);
    _fmpz_cleanup();
    printf("PASS\n");
    return 0;
}
Пример #18
0
long _fmpz_poly_hensel_start_lift(fmpz_poly_factor_t lifted_fac, long *link, 
    fmpz_poly_t *v, fmpz_poly_t *w, const fmpz_poly_t f, 
    const nmod_poly_factor_t local_fac, long N)
{
    const long r = local_fac->num;

    long i, preve;
    fmpz_t p, P;
    fmpz_poly_t monic_f;

    fmpz_init(p);
    fmpz_init(P);
    fmpz_poly_init(monic_f);

    fmpz_set_ui(p, (local_fac->p + 0)->mod.n);
    fmpz_pow_ui(P, p, N);

    if (fmpz_is_one(fmpz_poly_lead(f)))
    {
        fmpz_poly_set(monic_f, f);
    }
    else if (fmpz_cmp_si(fmpz_poly_lead(f), -1) == 0)
    {
        fmpz_poly_neg(monic_f, f);
    }
    else
    {
        fmpz_t t;

        fmpz_init(t);
        fmpz_mod(t, fmpz_poly_lead(f), P);

        if (fmpz_invmod(t, t, P) == 0)
        {
            printf("Exception in fmpz_poly_start_hensel_lift.\n");
            abort();
        }

        fmpz_poly_scalar_mul_fmpz(monic_f, f, t);
        fmpz_poly_scalar_mod_fmpz(monic_f, monic_f, P);
        fmpz_clear(t);
    }

    fmpz_poly_hensel_build_tree(link, v, w, local_fac);

    {
        long *e, n = FLINT_CLOG2(N) + 1;

        e = flint_malloc(n * sizeof(long));
        for (e[i = 0] = N; e[i] > 1; i++)
            e[i + 1] = (e[i] + 1) / 2;

        for (i--; i > 0; i--)
        {
            fmpz_poly_hensel_lift_tree(link, v, w, monic_f, r, 
                p, e[i+1], e[i], 1);
        }
        if (N > 1)
        {
            fmpz_poly_hensel_lift_tree(link, v, w, monic_f, r, 
                p, e[i+1], e[i], 0);
        }

        preve = e[i+1];

        flint_free(e);
    }

    /*
        Now everything is lifted to p^N, we just need to 
        insert the factors into their correct places in lifted_fac.
     */
    fmpz_poly_factor_fit_length(lifted_fac, r);

    for (i = 0; i < 2*r - 2; i++)
    { 
        if (link[i] < 0)
        {
            fmpz_poly_scalar_smod_fmpz(lifted_fac->p + (- link[i] - 1), v[i], P);
            lifted_fac->exp[- link[i] - 1] = 1L; 
        }
    }
    lifted_fac->num = r;

    fmpz_clear(p);
    fmpz_clear(P);
    fmpz_poly_clear(monic_f);

    return preve;
}
Пример #19
0
int main(int argc, char *argv[]) {
  cmdline_params_t cmdline_params;

  const char *name =  "Jigsaw Puzzles";
  parse_cmdline(cmdline_params, argc, argv, name, NULL);

  print_header(name, cmdline_params);

  aes_randstate_t randstate;
  aes_randinit_seed(randstate, cmdline_params->shaseed, NULL);

  uint64_t t = ggh_walltime(0);
  uint64_t t_total = ggh_walltime(0);

  uint64_t t_gen = 0;

  gghlite_sk_t self;


  gghlite_jigsaw_init(self,
                      cmdline_params->lambda,
                      cmdline_params->kappa,
                      cmdline_params->flags,
                      randstate);

  printf("\n");
  gghlite_params_print(self->params);
  printf("\n---\n\n");

  t_gen = ggh_walltime(t);
  printf("1. GGH InstGen wall time:                 %8.2f s\n", ggh_seconds(t_gen));

  t = ggh_walltime(0);

  fmpz_t p; fmpz_init(p);
  fmpz_poly_oz_ideal_norm(p, self->g, self->params->n, 0);

  fmpz_t a[5];
  for(long k=0; k<5; k++)
    fmpz_init(a[k]);

  fmpz_t acc;  fmpz_init(acc);
  fmpz_set_ui(acc, 1);

  // reducing these elements to something small mod g is expensive, for benchmarketing purposes we
  // hence avoid this costly step most of the time by doing it only twice and by then computing the
  // remaining elements from those two elements using cheap operations. The reported times still
  // refer to the expensive step for fairness.
  fmpz_randm_aes(a[0], randstate, p);
  fmpz_mul(acc, acc, a[0]);
  fmpz_mod(acc, acc, p);

  fmpz_randm_aes(a[1], randstate, p);
  fmpz_mul(acc, acc, a[1]);
  fmpz_mod(acc, acc, p);

  fmpz_set(a[3], a[0]);
  fmpz_set(a[4], a[1]);

  for(long k=2; k<cmdline_params->kappa; k++) {
    fmpz_mul(a[2], a[0], a[1]);
    fmpz_add_ui(a[2], a[2], k);
    fmpz_mod(a[2], a[2], p);
    fmpz_mul(acc, acc, a[2]);
    fmpz_mod(acc, acc, p);
    fmpz_set(a[1], a[0]);
    fmpz_set(a[0], a[2]);
  }

  printf("2. Sampling from U(Z_p) wall time:        %8.2f s\n", ggh_seconds(ggh_walltime(t)));

  gghlite_clr_t e[3];
  gghlite_clr_init(e[0]);
  gghlite_clr_init(e[1]);
  gghlite_clr_init(e[2]);

  gghlite_enc_t u_k;
  gghlite_enc_init(u_k, self->params);

  gghlite_enc_t left;
  gghlite_enc_init(left, self->params);
  gghlite_enc_set_ui0(left, 1, self->params);

  fmpz_poly_set_coeff_fmpz(e[0], 0, a[3]);

  int GAMMA = 20;
  uint64_t t_enc = ggh_walltime(0);
	int group0[GAMMA];
	memset(group0, 0, GAMMA * sizeof(int));
	group0[0] = 1;
  gghlite_enc_set_gghlite_clr(u_k, self, e[0], 1, group0, 1, randstate);
  t_enc = ggh_walltime(t_enc);

  printf("3. Encoding wall time:                    %8.2f s (per elem)\n", ggh_seconds(t_enc));
  fflush(0);

  uint64_t t_mul = 0;
  t = ggh_walltime(0);
  gghlite_enc_mul(left, self->params, left, u_k);
  t_mul += ggh_walltime(t);

  fmpz_poly_set_coeff_fmpz(e[1], 0, a[4]);
	int group1[GAMMA];
	memset(group1, 0, GAMMA * sizeof(int));
	group1[1] = 1;
  gghlite_enc_set_gghlite_clr(u_k, self, e[1], 1, group1, 1, randstate);
  t = ggh_walltime(0);
  gghlite_enc_mul(left, self->params, left, u_k);
  t_mul += ggh_walltime(t);

  const mp_bitcnt_t prec = (self->params->n/4 < 8192) ? 8192 : self->params->n/4;
  const oz_flag_t flags = (self->params->flags & GGHLITE_FLAGS_VERBOSE) ? OZ_VERBOSE : 0;
  _fmpz_poly_oz_rem_small_iter(e[0], e[0], self->g, self->params->n, self->g_inv, prec, flags);
  _fmpz_poly_oz_rem_small_iter(e[1], e[1], self->g, self->params->n, self->g_inv, prec, flags);

  for(long k=2; k<cmdline_params->kappa; k++) {
    fmpz_poly_oz_mul(e[2], e[0], e[1], self->params->n);
    assert(fmpz_poly_degree(e[2])>=0);
    fmpz_add_ui(e[2]->coeffs, e[2]->coeffs, k);
    _fmpz_poly_oz_rem_small_iter(e[2], e[2], self->g, self->params->n, self->g_inv, prec, flags);
		int groupk[GAMMA];
		memset(groupk, 0, GAMMA * sizeof(int));
		groupk[k] = 1;
		gghlite_enc_set_gghlite_clr(u_k, self, e[2], 1, groupk, 1, randstate);
    t = ggh_walltime(0);
    gghlite_enc_mul(left, self->params, left, u_k);
    t_mul += ggh_walltime(t);
    fmpz_poly_set(e[1], e[0]);
    fmpz_poly_set(e[0], e[2]);
  }

  printf("4. Multiplication wall time:              %8.4f s\n", ggh_seconds(t_mul));
  fflush(0);

  t = ggh_walltime(0);
  gghlite_enc_t rght;
  gghlite_enc_init(rght, self->params);
  gghlite_enc_set_ui0(rght, 1, self->params);

  fmpz_poly_t tmp; fmpz_poly_init(tmp);
  fmpz_poly_set_coeff_fmpz(tmp, 0, acc);
  gghlite_enc_set_gghlite_clr0(rght, self, tmp, randstate);

  for(long k=0; k<cmdline_params->kappa; k++) {
    gghlite_enc_mul(rght, self->params, rght, self->z_inv[k]);
  }

  printf("5. RHS generation wall time:              %8.2f s\n", ggh_seconds(ggh_walltime(t)));
  t = ggh_walltime(0);

  gghlite_enc_sub(rght, self->params, rght, left);
  int status = 1 - gghlite_enc_is_zero(self->params, rght);

  gghlite_clr_t clr; gghlite_clr_init(clr);
  gghlite_enc_extract(clr, self->params, rght);
  double size = fmpz_poly_2norm_log2(clr);
  gghlite_clr_clear(clr);

  printf("6. Checking correctness wall time:        %8.2f s\n", ggh_seconds(ggh_walltime(t)));
  printf("   Correct:                               %8s (%8.2f)\n\n", (status == 0) ? "TRUE" : "FALSE", size);

  for(long i=0; i<5; i++) {
    fmpz_clear(a[i]);
  }

  gghlite_clr_clear(e[0]);
  gghlite_clr_clear(e[1]);
  gghlite_clr_clear(e[2]);
  gghlite_enc_clear(u_k);

  fmpz_clear(acc);
  gghlite_enc_clear(left);
  gghlite_enc_clear(rght);
  gghlite_clr_clear(tmp);
  fmpz_clear(p);
  gghlite_sk_clear(self, 1);

  t_total = ggh_walltime(t_total);
  printf("λ: %3ld, κ: %2ld, n: %6ld, seed: 0x%08lx, success: %d, gen: %10.2fs, enc: %8.2fs, mul: %8.4fs, time: %10.2fs\n",
         cmdline_params->lambda, cmdline_params->kappa, self->params->n, cmdline_params->seed,
         status==0,
         ggh_seconds(t_gen), ggh_seconds(t_enc), ggh_seconds(t_mul), ggh_seconds(t_total));

  aes_randclear(randstate);
  mpfr_free_cache();
  flint_cleanup();
  return status;
}
Пример #20
0
int
main(void)
{
    int i, result;
    flint_rand_t state;

    printf("set_ui_equal....");
    fflush(stdout);

    flint_randinit(state);

    /* equal polynomials */
    for (i = 0; i < 10000; i++)
    {
        fmpz_poly_t a, b;
        ulong n;

        fmpz_poly_init(a);
        fmpz_poly_init(b);
        n = n_randtest(state);

        fmpz_poly_set_ui(a, n);
        fmpz_poly_set(b, a);

        result = (fmpz_poly_equal(a, b));
        if (!result)
        {
            printf("FAIL:\n");
            printf("n = %lu\n\n", n);
            printf("a = "), fmpz_poly_print(a), printf("\n\n");
            printf("b = "), fmpz_poly_print(b), printf("\n\n");
            abort();
        }

        fmpz_poly_clear(a);
        fmpz_poly_clear(b);
    }

    for (i = 0; i < 10000; i++)
    {
        fmpz_poly_t a, b;
        ulong m, n;

        fmpz_poly_init(a);
        fmpz_poly_init(b);

        m = n_randtest(state);
        n = n_randtest(state);
        while (m == n)
            n = n_randtest(state);
        fmpz_poly_set_ui(a, m);
        fmpz_poly_set_ui(b, n);

        result = (!fmpz_poly_equal(a, b));
        if (!result)
        {
            printf("FAIL:\n");
            printf("m = %lu\n\n", m);
            printf("n = %lu\n\n", n);
            printf("a = "), fmpz_poly_print(a), printf("\n\n");
            printf("b = "), fmpz_poly_print(b), printf("\n\n");
            abort();
        }

        fmpz_poly_clear(a);
        fmpz_poly_clear(b);
    }

    flint_randclear(state);
    _fmpz_cleanup();
    printf("PASS\n");
    return 0;
}
Пример #21
0
Файл: inv.c Проект: goens/flint2
int
fmpz_poly_mat_inv(fmpz_poly_mat_t Ainv, fmpz_poly_t den,
                    const fmpz_poly_mat_t A)
{
    long n = fmpz_poly_mat_nrows(A);

    if (n == 0)
    {
        fmpz_poly_one(den);
        return 1;
    }
    else if (n == 1)
    {
        fmpz_poly_set(den, E(A, 0, 0));
        fmpz_poly_one(E(Ainv, 0, 0));
        return !fmpz_poly_is_zero(den);
    }
    else if (n == 2)
    {
        fmpz_poly_mat_det(den, A);
        if (fmpz_poly_is_zero(den))
        {
            return 0;
        }
        else if (Ainv == A)
        {
            fmpz_poly_swap(E(A, 0, 0), E(A, 1, 1));
            fmpz_poly_neg(E(A, 0, 1), E(A, 0, 1));
            fmpz_poly_neg(E(A, 1, 0), E(A, 1, 0));
            return 1;
        }
        else
        {
            fmpz_poly_set(E(Ainv, 0, 0), E(A, 1, 1));
            fmpz_poly_set(E(Ainv, 1, 1), E(A, 0, 0));
            fmpz_poly_neg(E(Ainv, 0, 1), E(A, 0, 1));
            fmpz_poly_neg(E(Ainv, 1, 0), E(A, 1, 0));
            return 1;
        }
    }
    else
    {
        fmpz_poly_mat_t LU, I;
        long * perm;
        int result;

        perm = _perm_init(n);
        fmpz_poly_mat_init_set(LU, A);
        result = (fmpz_poly_mat_fflu(LU, den, perm, LU, 1) == n);

        if (result)
        {
            fmpz_poly_mat_init(I, n, n);
            fmpz_poly_mat_one(I);
            fmpz_poly_mat_solve_fflu_precomp(Ainv, perm, LU, I);
            fmpz_poly_mat_clear(I);
        }
        else
            fmpz_poly_zero(den);

        if (_perm_parity(perm, n))
        {
            fmpz_poly_mat_neg(Ainv, Ainv);
            fmpz_poly_neg(den, den);
        }

        _perm_clear(perm);
        fmpz_poly_mat_clear(LU);
        return result;
    }
}
Пример #22
0
int main(int argc, char *argv[])
{
    int ans;
    char *str, *strout;
    
    fmpz_poly_t zpoly;
    fmpz_poly_q_t qpoly1;
    
    mpz_t mpzzero, mpzone, mpztwo;
    mpq_t mpqzero, mpqone, mpqtwo, mpqtwoinv;
    
    FLINT_TEST_INIT(state);
    
    flint_printf("all... ");
    fflush(stdout);
    
    /* Accessing numerator and denominator ***********************************/
    
    fmpz_poly_q_init(qpoly1);
    fmpz_poly_q_set_str(qpoly1, "2  -1 1/2  0 1");
    str = "2  -1 1";
    strout = fmpz_poly_get_str(fmpz_poly_q_numref(qpoly1));
    ans = !strcmp(str, strout);
    if (!ans)
    {
        flint_printf("test_numref: failed\n");
        flint_printf("    Expected \"%s\", got \"%s\"\n", str, strout);
        flint_printf("    qpoly1 = \""), fmpz_poly_q_print(qpoly1), flint_printf("\"\n");
        abort();
    }
    fmpz_poly_q_clear(qpoly1);
    flint_free(strout);
    
    fmpz_poly_q_init(qpoly1);
    fmpz_poly_q_set_str(qpoly1, "2  -1 1/2  0 1");
    str = "2  0 1";
    strout = fmpz_poly_get_str(fmpz_poly_q_denref(qpoly1));
    ans = !strcmp(str, strout);
    if (!ans)
    {
        flint_printf("test_denref: failed\n");
        flint_printf("    Expected \"%s\", got \"%s\"\n", str, strout);
        abort();
    }
    fmpz_poly_q_clear(qpoly1);
    flint_free(strout);
    
    fmpz_poly_q_init(qpoly1);
    fmpz_poly_init(zpoly);
    fmpz_poly_q_set_str(qpoly1, "2  -1 1/2  0 1");
    fmpz_poly_set(zpoly, fmpz_poly_q_numref(qpoly1));
    str = "2  -1 1";
    strout = fmpz_poly_get_str(zpoly);
    ans = !strcmp(str, strout);
    if (!ans)
    {
        flint_printf("test_get_num: failed\n");
        flint_printf("    Expected \"%s\", got \"%s\"\n", str, strout);
        abort();
    }
    fmpz_poly_q_clear(qpoly1);
    fmpz_poly_clear(zpoly);
    flint_free(strout);
    
    fmpz_poly_q_init(qpoly1);
    fmpz_poly_init(zpoly);
    fmpz_poly_q_set_str(qpoly1, "2  -1 1/2  0 1");
    fmpz_poly_set(zpoly, fmpz_poly_q_denref(qpoly1));
    
    str = "2  0 1";
    strout = fmpz_poly_get_str(zpoly);
    ans = !strcmp(str, strout);
    if (!ans)
    {
        flint_printf("test_get_den: failed\n");
        flint_printf("    Expected \"%s\", got \"%s\"\n", str, strout);
        abort();
    }
    fmpz_poly_q_clear(qpoly1);
    fmpz_poly_clear(zpoly);
    flint_free(strout);
    
    fmpz_poly_q_init(qpoly1);
    fmpz_poly_init(zpoly);
    fmpz_poly_q_set_str(qpoly1, "1  1/1  1");
    fmpz_poly_set_str(zpoly, "2  0 1");
    fmpz_poly_set(fmpz_poly_q_numref(qpoly1), zpoly);
    str = "2  0 1";
    strout = fmpz_poly_get_str(fmpz_poly_q_numref(qpoly1));
    ans = !strcmp(str, strout);
    if (!ans)
    {
        flint_printf("test_set_num: failed\n");
        flint_printf("    Expected \"%s\", got \"%s\"\n", str, strout);
        abort();
    }
    fmpz_poly_q_clear(qpoly1);
    fmpz_poly_clear(zpoly);
    flint_free(strout);
    
    fmpz_poly_q_init(qpoly1);
    fmpz_poly_init(zpoly);
    fmpz_poly_q_set_str(qpoly1, "1  1/1  1");
    fmpz_poly_set_str(zpoly, "2  0 1");
    fmpz_poly_set(fmpz_poly_q_denref(qpoly1), zpoly);
    str = "2  0 1";
    strout = fmpz_poly_get_str(fmpz_poly_q_denref(qpoly1));
    ans = !strcmp(str, strout);
    if (!ans)
    {
        flint_printf("test_set_den: failed\n");
        flint_printf("    Expected \"%s\", got \"%s\"\n", str, strout);
        abort();
    }
    fmpz_poly_q_clear(qpoly1);
    fmpz_poly_clear(zpoly);
    flint_free(strout);
    
    /* Canonicalise **********************************************************/
    
    fmpz_poly_q_init(qpoly1);
    str = "2  -1 1/2  0 1";
    fmpz_poly_q_set_str(qpoly1, str);
    strout = fmpz_poly_q_get_str(qpoly1);
    ans = !strcmp(str, strout);
    if (!ans)
    {
        flint_printf("test_canonicalize: failed\n");
        flint_printf("    Expected \"%s\", got \"%s\"\n", str, strout);
        abort();
    }
    fmpz_poly_q_clear(qpoly1);
    flint_free(strout);
    
    fmpz_poly_q_init(qpoly1);
    str = "2  -1 -1/2  0 1";
    fmpz_poly_q_set_str(qpoly1, "2  1 1/2  0 -1");
    strout = fmpz_poly_q_get_str(qpoly1);
    ans = !strcmp("2  -1 -1/2  0 1", strout);
    if (!ans)
    {
        flint_printf("test_canonicalize: failed\n");
        flint_printf("    Expected \"%s\", got \"%s\"\n", str, strout);
        abort();
    }
    flint_free(strout);
    fmpz_poly_q_clear(qpoly1);
    
    /* Initialization, memory management and basic operations ****************/
    
    test_set("0", "0");
    test_set("0/1  1", "0");
    test_set("3  -1 0 1/2  0 1", "3  -1 0 1/2  0 1");
    test_set("3  -1 0 1/2  1 1", "2  -1 1");
    
    test_set_si(-1, "1  -1");
    test_set_si(13, "1  13");
    test_set_si(0, "0");
    
    test_swap("3  -1 0 1/2  0 1", "1  2/1  3", "1  2/1  3", "3  -1 0 1/2  0 1");
    
    test_zero("0", "0");
    test_zero("0/1  1", "0");
    test_zero("3  -1 0 1/2  0 1", "0");
    
    test_neg("0", "0");
    test_neg("1  1/1  2", "1  -1/1  2");
    test_neg("3  -1 0 1/2  0 1", "3  1 0 -1/2  0 1");
    
    test_inv("1  1/1  2", "1  2");
    test_inv("3  -1 0 1/2  0 1", "2  0 1/3  -1 0 1");
    test_inv("3  -1 0 -1/2  0 1", "2  0 -1/3  1 0 1");
    
    test_inv_inplace("1  1/1  2", "1  2");
    test_inv_inplace("3  -1 0 1/2  0 1", "2  0 1/3  -1 0 1");
    test_inv_inplace("3  -1 0 -1/2  0 1", "2  0 -1/3  1 0 1");
    
    test_is_zero("0", 1);
    test_is_zero("0/1  1", 1);
    test_is_zero("3  -1 0 1/2  0 1", 0);
    test_is_zero("3  -1 0 1/2  1 1", 0);
    
    test_is_one("0", 0);
    test_is_one("0/1  1", 0);
    test_is_one("1  1/1  1", 1);
    test_is_one("2  1 1/2  1 1", 1);
    test_is_one("3  -1 0 1/2  0 1", 0);
    
    test_equal("1  1/1  2", "1  1/1  2", 1);
    test_equal("1  1/1  2", "1  1/1  2", 1);
    test_equal("3  -1 0 1/2  1 1", "2  -1 1", 1);
    test_equal("3  -1 0 1/2  -1 1", "2  -1 1", 0);
    
    /* Addition and subtraction **********************************************/
    
    test_add("3  1 0 1/2  0 1", "2  0 -1/3  1 0 1", "5  1 0 1 0 1/4  0 1 0 1");
    test_add("3  -1 0 1/2  1 1", "1  2/2  -1 1", "3  3 -2 1/2  -1 1");
    test_add("0/2  1 1", "1  2/1  1", "1  2");
    test_add("1  -3/1  4", "0/3  1 0 1", "1  -3/1  4");
    test_add("2  1 1/1  1", "2  -1 1/1  1", "2  0 2");
    test_add("2  1 1/2  0 1", "2  2 1/2  -1 1", "3  -1 2 2/3  0 -1 1");
    test_add("2  -1 1/2  2 1", "3  4 4 1/2  1 1", "4  7 12 7 1/3  2 3 1");
    test_add("2  1 1/2  -1 1", "2  1 1", "3  0 1 1/2  -1 1");
    test_add("1  1/2  1 1", "2  0 1/2  1 1", "1  1");
    test_add("2  1 1/3  4 -4 1", "1  1/2  -2 1", "2  -1 2/3  4 -4 1");
    test_add("3  0 1 1/3  1 2 1", "2  0 -1/2  1 1", "0");
    test_add("2  1 1/2  0 1", "2  -1 1/2  0 1", "1  2");
    test_add("1  1/3  3 5 2", "1  1/3  6 7 2", "1  1/3  2 3 1");
    
    test_add_in_place1("3  1 0 1/2  0 1", "2  0 -1/3  1 0 1", "5  1 0 1 0 1/4  0 1 0 1");
    test_add_in_place1("3  -1 0 1/2  1 1", "1  2/2  -1 1", "3  3 -2 1/2  -1 1");
    test_add_in_place1("0/2  1 1", "1  2/1  1", "1  2");
    test_add_in_place1("1  -3/1  4", "0/3  1 0 1", "1  -3/1  4");
    test_add_in_place1("2  1 1/1  1", "2  -1 1/1  1", "2  0 2");
    test_add_in_place1("2  1 1/2  0 1", "2  2 1/2  -1 1", "3  -1 2 2/3  0 -1 1");
    test_add_in_place1("2  -1 1/2  2 1", "3  4 4 1/2  1 1", "4  7 12 7 1/3  2 3 1");
    test_add_in_place1("2  1 1/2  -1 1", "2  1 1", "3  0 1 1/2  -1 1");
    test_add_in_place1("1  1/2  1 1", "2  0 1/2  1 1", "1  1");
    test_add_in_place1("2  1 1/3  4 -4 1", "1  1/2  -2 1", "2  -1 2/3  4 -4 1");
    test_add_in_place1("3  0 1 1/3  1 2 1", "2  0 -1/2  1 1", "0");
    test_add_in_place1("2  1 1/2  0 1", "2  -1 1/2  0 1", "1  2");
    
    test_add_in_place2("3  1 0 1/2  0 1", "2  0 -1/3  1 0 1", "5  1 0 1 0 1/4  0 1 0 1");
    test_add_in_place2("3  -1 0 1/2  1 1", "1  2/2  -1 1", "3  3 -2 1/2  -1 1");
    test_add_in_place2("0/2  1 1", "1  2/1  1", "1  2");
    test_add_in_place2("1  -3/1  4", "0/3  1 0 1", "1  -3/1  4");
    test_add_in_place2("2  1 1/1  1", "2  -1 1/1  1", "2  0 2");
    test_add_in_place2("2  1 1/2  0 1", "2  2 1/2  -1 1", "3  -1 2 2/3  0 -1 1");
    test_add_in_place2("2  -1 1/2  2 1", "3  4 4 1/2  1 1", "4  7 12 7 1/3  2 3 1");
    test_add_in_place2("2  1 1/2  -1 1", "2  1 1", "3  0 1 1/2  -1 1");
    test_add_in_place2("1  1/2  1 1", "2  0 1/2  1 1", "1  1");
    test_add_in_place2("2  1 1/3  4 -4 1", "1  1/2  -2 1", "2  -1 2/3  4 -4 1");
    test_add_in_place2("3  0 1 1/3  1 2 1", "2  0 -1/2  1 1", "0");
    test_add_in_place2("2  1 1/2  0 1", "2  -1 1/2  0 1", "1  2");
    
    test_add_in_place3("2  1 1", "2  2 2");
    test_add_in_place3("2  1 1/1  2", "2  1 1");
    
    test_sub("3  1 0 1/2  0 1", "2  0 -1/3  1 0 1", "5  1 0 3 0 1/4  0 1 0 1");
    test_sub("3  -1 0 1/2  1 1", "1  2/2  -1 1", "3  -1 -2 1/2  -1 1");
    test_sub("0/2  1 1", "1  2/1  1", "1  -2");
    test_sub("1  -3/1  4", "0/3  1 0 1", "1  -3/1  4");
    test_sub("2  1 1/1  1", "2  -1 1/1  1", "1  2");
    test_sub("2  1 1/2  0 1", "2  2 1/2  -1 1", "2  -1 -2/3  0 -1 1");
    test_sub("2  -1 1/2  2 1", "3  4 4 1/2  1 1", "4  -9 -12 -5 -1/3  2 3 1");
    test_sub("2  -1 1/2  0 1", "1  1", "1  -1/2  0 1");
    test_sub("3  1 0 1/2  0 1", "2  0 -1/3  1 0 1", "5  1 0 3 0 1/4  0 1 0 1");
    test_sub("3  -1 0 1/2  1 1", "1  2/2  -1 1", "3  -1 -2 1/2  -1 1");
    test_sub("0/2  1 1", "1  2/1  1", "1  -2");
    test_sub("1  -3/1  4", "0/3  1 0 1", "1  -3/1  4");
    test_sub("2  1 1/1  1", "2  -1 1/1  1", "1  2");
    test_sub("2  1 1/2  0 1", "2  2 1/2  -1 1", "2  -1 -2/3  0 -1 1");
    test_sub("2  -1 1/2  2 1", "3  4 4 1/2  1 1", "4  -9 -12 -5 -1/3  2 3 1");
    test_sub("2  1 1/2  -1 1", "2  1 1", "3  2 1 -1/2  -1 1");
    test_sub("1  1/2  1 1", "2  0 1/2  1 1", "2  1 -1/2  1 1");
    test_sub("2  1 1/3  4 -4 1", "1  1/2  -2 1", "1  3/3  4 -4 1");
    test_sub("3  0 1 1/3  1 2 1", "2  0 -1/2  1 1", "2  0 2/2  1 1");
    test_sub("2  1 1/2  0 1", "2  -1 1/2  0 1", "1  2/2  0 1");
    test_sub("1  1/3  3 5 2", "1  1/3  6 7 2", "1  1/4  6 13 9 2");
    test_sub("2  1 1/2  0 2", "2  1 1/2  0 2", "0");
    test_sub("2  -1 2/2  0 1", "2  -1 1/2  0 1", "1  1");
    
    test_sub_in_place1("3  1 0 1/2  0 1", "2  0 -1/3  1 0 1", "5  1 0 3 0 1/4  0 1 0 1");
    test_sub_in_place1("3  -1 0 1/2  1 1", "1  2/2  -1 1", "3  -1 -2 1/2  -1 1");
    test_sub_in_place1("0/2  1 1", "1  2/1  1", "1  -2");
    test_sub_in_place1("1  -3/1  4", "0/3  1 0 1", "1  -3/1  4");
    test_sub_in_place1("2  1 1/1  1", "2  -1 1/1  1", "1  2");
    test_sub_in_place1("2  1 1/2  0 1", "2  2 1/2  -1 1", "2  -1 -2/3  0 -1 1");
    test_sub_in_place1("2  -1 1/2  2 1", "3  4 4 1/2  1 1", "4  -9 -12 -5 -1/3  2 3 1");
    
    test_sub_in_place2("3  1 0 1/2  0 1", "2  0 -1/3  1 0 1", "5  1 0 3 0 1/4  0 1 0 1");
    test_sub_in_place2("3  -1 0 1/2  1 1", "1  2/2  -1 1", "3  -1 -2 1/2  -1 1");
    test_sub_in_place2("0/2  1 1", "1  2/1  1", "1  -2");
    test_sub_in_place2("1  -3/1  4", "0/3  1 0 1", "1  -3/1  4");
    test_sub_in_place2("2  1 1/1  1", "2  -1 1/1  1", "1  2");
    test_sub_in_place2("2  1 1/2  0 1", "2  2 1/2  -1 1", "2  -1 -2/3  0 -1 1");
    test_sub_in_place2("2  -1 1/2  2 1", "3  4 4 1/2  1 1", "4  -9 -12 -5 -1/3  2 3 1");
    
    test_sub_in_place3("2  -1 1/2  2 1", "0");
    
    test_addmul("1  1/2  0 2", "2  3 1/1  4", "3  1 0 1/4  -2 0 0 1", "5  -4 3 1 5 1/5  0 -8 0 0 4");
    
    test_submul("1  1/2  0 2", "2  3 1/1  4", "3  1 0 1/4  -2 0 0 1", "5  -4 -3 -1 -1 -1/5  0 -8 0 0 4");
    
    /* Scalar multiplication and devision ************************************/
    
    flint_mpz_init_set_si(mpzzero, 0);
    flint_mpz_init_set_si(mpzone, 1);
    flint_mpz_init_set_si(mpztwo, 2);
    
    mpq_init(mpqzero); flint_mpq_set_si(mpqzero, 0, 1);
    mpq_init(mpqone); flint_mpq_set_si(mpqone, 1, 1);
    mpq_init(mpqtwo); flint_mpq_set_si(mpqtwo, 2, 1);
    mpq_init(mpqtwoinv); flint_mpq_set_si(mpqtwoinv, 1, 2);
    
    test_scalar_mul_si("0", 1, "0");
    test_scalar_mul_si("0", 0, "0");
    test_scalar_mul_si("1  2", 0, "0");
    test_scalar_mul_si("1  1/1  2", -2, "1  -1");
    test_scalar_mul_si("2  1 1/2  -2 3", 5, "2  5 5/2  -2 3");
    test_scalar_mul_si("2  1 1/2  -2 2", 3, "2  3 3/2  -2 2");
    
    test_scalar_mul_mpz("0", mpzone, "0");
    test_scalar_mul_mpz("0", mpzzero, "0");
    test_scalar_mul_mpz("1  2", mpzzero, "0");
    test_scalar_mul_mpz("1  1/1  2", mpztwo, "1  1");
    
    test_scalar_mul_mpq("0", mpqone, "0");
    test_scalar_mul_mpq("0", mpqzero, "0");
    test_scalar_mul_mpq("1  2", mpqzero, "0");
    test_scalar_mul_mpq("1  1/1  2", mpqtwo, "1  1");
    test_scalar_mul_mpq("1  -2/1  1", mpqtwoinv, "1  -1");
    
    test_scalar_div_si("0", 1, "0");
    test_scalar_div_si("1  2", 2, "1  1");
    test_scalar_div_si("1  1/1  2", -2, "1  -1/1  4");
    test_scalar_div_si("3  -5 0 3/2  1 1", 2, "3  -5 0 3/2  2 2");
    test_scalar_div_si("3  2 8 4/2  0 1", 3, "3  2 8 4/2  0 3");
    test_scalar_div_si("3  2 8 4/2  0 1", -3, "3  -2 -8 -4/2  0 3");
    test_scalar_div_si("3  -27 0 9/2  0 1", -3, "3  9 0 -3/2  0 1");
    
    test_scalar_div_mpz("0", mpzone, "0");
    test_scalar_div_mpz("1  2", mpztwo, "1  1");
    test_scalar_div_mpz("1  1/1  2", mpztwo, "1  1/1  4");
    
    test_scalar_div_mpq("0", mpqone, "0");
    test_scalar_div_mpq("1  2", mpqone, "1  2");
    test_scalar_div_mpq("1  1/1  2", mpqtwo, "1  1/1  4");
    test_scalar_div_mpq("1  -2/1  1", mpqtwoinv, "1  -4");
    
    mpz_clear(mpzzero);
    mpz_clear(mpzone);
    mpz_clear(mpztwo);
    mpq_clear(mpqzero);
    mpq_clear(mpqone);
    mpq_clear(mpqtwo);
    mpq_clear(mpqtwoinv);
    
    /* Multiplication, division and powing *********************************/
    
    test_mul("3  1 0 1/2  0 1", "2  0 -1/3  1 0 1", "1  -1");
    test_mul("3  -1 0 1/2  1 1", "1  2/2  -1 1", "1  2");
    test_mul("0/2  1 1", "1  2/1  1", "0");
    test_mul("1  -3/1  4", "0/3  1 0 1", "0");
    test_mul("2  1 1/1  1", "2  -1 1/1  1", "3  -1 0 1");
    test_mul("2  1 1/2  0 1", "2  2 1/2  -1 1", "3  2 3 1/3  0 -1 1");
    test_mul("2  -1 1/2  2 1", "3  4 4 1/2  1 1", "3  -2 1 1/2  1 1");
    
    test_mul_in_place1("3  1 0 1/2  0 1", "2  0 -1/3  1 0 1", "1  -1");
    test_mul_in_place1("3  -1 0 1/2  1 1", "1  2/2  -1 1", "1  2");
    test_mul_in_place1("0/2  1 1", "1  2/1  1", "0");
    test_mul_in_place1("1  -3/1  4", "0/3  1 0 1", "0");
    test_mul_in_place1("2  1 1/1  1", "2  -1 1/1  1", "3  -1 0 1");
    test_mul_in_place1("2  1 1/2  0 1", "2  2 1/2  -1 1", "3  2 3 1/3  0 -1 1");
    test_mul_in_place1("2  -1 1/2  2 1", "3  4 4 1/2  1 1", "3  -2 1 1/2  1 1");
    
    test_mul_in_place2("3  1 0 1/2  0 1", "2  0 -1/3  1 0 1", "1  -1");
    test_mul_in_place2("3  -1 0 1/2  1 1", "1  2/2  -1 1", "1  2");
    test_mul_in_place2("0/2  1 1", "1  2/1  1", "0");
    test_mul_in_place2("1  -3/1  4", "0/3  1 0 1", "0");
    test_mul_in_place2("2  1 1/1  1", "2  -1 1/1  1", "3  -1 0 1");
    test_mul_in_place2("2  1 1/2  0 1", "2  2 1/2  -1 1", "3  2 3 1/3  0 -1 1");
    test_mul_in_place2("2  -1 1/2  2 1", "3  4 4 1/2  1 1", "3  -2 1 1/2  1 1");
    
    test_mul_in_place3("2  0 1/2  1 1", "3  0 0 1/3  1 2 1");
    
    test_div("3  -1 0 1/1  2", "2  1 1/1  1", "2  -1 1/1  2");
    test_div("0/2  1 1", "2  1 1/1  1", "0");
    test_div("3  -1 0 1/1  4", "2  -1 -1/1  2", "2  1 -1/1  2");
    test_div("2  1 1", "2  1 -1/2  1 -1", "2  1 1");
    test_div("2  1 1/3  4 4 1", "2  -1 1/3  6 5 1", "3  3 4 1/3  -2 1 1");
    
    test_div_in_place1("3  -1 0 1/1  2", "2  1 1/1  1", "2  -1 1/1  2");
    test_div_in_place1("0/2  1 1", "2  1 1/1  1", "0");
    test_div_in_place1("3  -1 0 1/1  4", "2  -1 -1/1  2", "2  1 -1/1  2");
    test_div_in_place1("2  1 1", "2  1 -1/2  1 -1", "2  1 1");
    test_div_in_place1("2  1 1/3  4 4 1", "2  -1 1/3  6 5 1", "3  3 4 1/3  -2 1 1");
    test_div_in_place1("0", "1  2/2  3 5", "0");
    
    test_div_in_place2("3  -1 0 1/1  2", "2  1 1/1  1", "2  -1 1/1  2");
    test_div_in_place2("0/2  1 1", "2  1 1/1  1", "0");
    test_div_in_place2("3  -1 0 1/1  4", "2  -1 -1/1  2", "2  1 -1/1  2");
    test_div_in_place2("2  1 1", "2  1 -1/2  1 -1", "2  1 1");
    test_div_in_place2("2  1 1/3  4 4 1", "2  -1 1/3  6 5 1", "3  3 4 1/3  -2 1 1");
    
    test_div_in_place3("3  -1 0 1/1  2", "1  1");
    
    test_pow("2  0 -1/1  2", 3, "4  0 0 0 -1/1  8");
    test_pow("0", 0, "1  1");
    test_pow("2  1 -1", 0, "1  1");
    test_pow("2  1 1/2  0 1", 0, "1  1");
    
    /* Derivative ************************************************************/
    
    test_derivative("0", "0");
    test_derivative("1  2", "0");
    test_derivative("1  -1/1  2", "0");
    test_derivative("2  0 1", "1  1");
    test_derivative("3  1 0 1", "2  0 2");
    test_derivative("1  1/2  0 1", "1  -1/3  0 0 1");
    test_derivative("2  2 1/2  -1 1", "1  -3/3  1 -2 1");
    
    test_derivative("2  0 1/3  1 2 1", "2  1 -1/4  1 3 3 1");

    /* Bug which allowed constant factors */
    test_derivative("3  5 1 -2/2  10 2", "3  0 -10 -1/3  25 10 1");
    
    /* Evaluation ************************************************************/
    
    test_evaluate("1  1/1  2", -2, 3, "1/2");
    test_evaluate("3  1 0 1/2  0 1", -1, 2, "-5/2");
    test_evaluate("2  3 1/2  -1 1", 1, 1, "P");
    test_evaluate("2  3 1/2  -1 1", 2, 3, "-11");
    test_evaluate("2  3 1/2  -1 2", 1, 2, "P");
    test_evaluate("2  1 1/2  -1 1", 2, 1, "3");
    
    /* String methods ********************************************************/
    
    fmpz_poly_q_init(qpoly1);
    ans = fmpz_poly_q_set_str(qpoly1, "1  3/xyz");
    if ((ans == 0) || !fmpz_poly_q_is_zero(qpoly1))
    {
        flint_printf("test_set_str: failed\n");
        abort();
    }
    fmpz_poly_q_clear(qpoly1);
    
    fmpz_poly_q_init(qpoly1);
    ans = fmpz_poly_q_set_str(qpoly1, "abc/1  3");
    if ((ans == 0) || !fmpz_poly_q_is_zero(qpoly1))
    {
        flint_printf("test_set_str: failed\n");
        abort();
    }
    fmpz_poly_q_clear(qpoly1);
    
    fmpz_poly_q_init(qpoly1);
    ans = fmpz_poly_q_set_str(qpoly1, "abc/xyz");
    if ((ans == 0) || !fmpz_poly_q_is_zero(qpoly1))
    {
        flint_printf("test_set_str: failed\n");
        abort();
    }
    fmpz_poly_q_clear(qpoly1);
    
    test_get_str_pretty("1  -3", "-3");
    test_get_str_pretty("3  1 2 1", "t^2+2*t+1");
    test_get_str_pretty("1  -2/2  1 1", "-2/(t+1)");
    test_get_str_pretty("2  1 1/2  -1 1", "(t+1)/(t-1)");
    test_get_str_pretty("2  1 1/1  2", "(t+1)/2");
    test_get_str_pretty("1  1/1  2", "1/2");

    FLINT_TEST_CLEANUP(state);
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
Пример #23
0
int
main(void)
{
    int i, result;
    FLINT_TEST_INIT(state);

    flint_printf("sqr_karatsuba....");
    fflush(stdout);

    

    /* Check aliasing of a and b */
    for (i = 0; i < 200 * flint_test_multiplier(); i++)
    {
        fmpz_poly_t a, b, c;

        fmpz_poly_init(a);
        fmpz_poly_init(b);
        fmpz_poly_init(c);
        fmpz_poly_randtest(a, state, n_randint(state, 50), 200);
        fmpz_poly_set(b, a);

        fmpz_poly_sqr_karatsuba(c, b);
        fmpz_poly_sqr_karatsuba(b, b);

        result = (fmpz_poly_equal(b, c));
        if (!result)
        {
            flint_printf("FAIL:\n");
            fmpz_poly_print(a), flint_printf("\n\n");
            fmpz_poly_print(b), flint_printf("\n\n");
            fmpz_poly_print(c), flint_printf("\n\n");
            abort();
        }

        fmpz_poly_clear(a);
        fmpz_poly_clear(b);
        fmpz_poly_clear(c);
    }

    /* Compare with mul_karatsuba */
    for (i = 0; i < 200 * flint_test_multiplier(); i++)
    {
        fmpz_poly_t a, b, c;

        fmpz_poly_init(a);
        fmpz_poly_init(b);
        fmpz_poly_init(c);
        fmpz_poly_randtest(a, state, n_randint(state, 50), 200);

        fmpz_poly_sqr_karatsuba(b, a);
        fmpz_poly_mul_karatsuba(c, a, a);

        result = (fmpz_poly_equal(b, c));
        if (!result)
        {
            flint_printf("FAIL:\n");
            fmpz_poly_print(a), flint_printf("\n\n");
            fmpz_poly_print(b), flint_printf("\n\n");
            fmpz_poly_print(c), flint_printf("\n\n");
            abort();
        }

        fmpz_poly_clear(a);
        fmpz_poly_clear(b);
        fmpz_poly_clear(c);
    }

    /* Check _fmpz_poly_sqr_karatsuba directly */
    for (i = 0; i < 200 * flint_test_multiplier(); i++)
    {
        slong len;
        fmpz_poly_t a, out1, out2;

        len = n_randint(state, 100) + 1;
        fmpz_poly_init(a);
        fmpz_poly_init(out1);
        fmpz_poly_init(out2);
        fmpz_poly_randtest(a, state, len, 200);

        fmpz_poly_sqr_karatsuba(out1, a);
        fmpz_poly_fit_length(a, a->alloc + n_randint(state, 10));
        a->length = a->alloc;
        fmpz_poly_fit_length(out2, 2 * a->length - 1);
        _fmpz_poly_sqr_karatsuba(out2->coeffs, a->coeffs, a->length);
        _fmpz_poly_set_length(out2, 2 * a->length - 1);
        _fmpz_poly_normalise(out2);

        result = (fmpz_poly_equal(out1, out2));
        if (!result)
        {
            flint_printf("FAIL:\n");
            fmpz_poly_print(out1), flint_printf("\n\n");
            fmpz_poly_print(out2), flint_printf("\n\n");
            abort();
        }

        fmpz_poly_clear(a);
        fmpz_poly_clear(out1);
        fmpz_poly_clear(out2);
    }

    FLINT_TEST_CLEANUP(state);
    
    flint_printf("PASS\n");
    return 0;
}
Пример #24
0
int
fmpz_poly_gcd_heuristic(fmpz_poly_t res,
                           const fmpz_poly_t poly1, const fmpz_poly_t poly2)
{
    const long len1 = poly1->length;
    const long len2 = poly2->length;
    long rlen;
    int done = 0;

    if (len1 == 0)
    {
        if (len2 == 0)
            fmpz_poly_zero(res);
        else
        {
            if (fmpz_sgn(poly2->coeffs + (len2 - 1)) > 0)
                fmpz_poly_set(res, poly2);
            else
                fmpz_poly_neg(res, poly2);
        }
        return 1;
    }
    else
    {
        if (len2 == 0)
        {
            if (fmpz_sgn(poly1->coeffs + (len1 - 1)) > 0)
                fmpz_poly_set(res, poly1);
            else
                fmpz_poly_neg(res, poly1);
            return 1;
        }
    }

    rlen = FLINT_MIN(len1, len2);

    if (res == poly1 || res == poly2)
    {
       fmpz_poly_t temp;
       fmpz_poly_init2(temp, rlen);
       if (len1 >= len2)
          done = _fmpz_poly_gcd_heuristic(temp->coeffs, poly1->coeffs, len1,
                                    poly2->coeffs, len2);
       else
          done = _fmpz_poly_gcd_heuristic(temp->coeffs, poly2->coeffs, len2,
                                    poly1->coeffs, len1);
       fmpz_poly_swap(temp, res);
       fmpz_poly_clear(temp);
    }
    else
    {
       fmpz_poly_fit_length(res, rlen);
       if (len1 >= len2)
          done = _fmpz_poly_gcd_heuristic(res->coeffs, poly1->coeffs, len1,
                                    poly2->coeffs, len2);
       else
          done = _fmpz_poly_gcd_heuristic(res->coeffs, poly2->coeffs, len2,
                                    poly1->coeffs, len1);
    }
    
    if (done)
    {
       _fmpz_poly_set_length(res, rlen);
       _fmpz_poly_normalise(res);
    }

    return done;
}
Пример #25
0
int
main(void)
{
    int i, result;
    FLINT_TEST_INIT(state);

    flint_printf("scalar_addmul_fmpz....");
    fflush(stdout);

    

    /* Check aliasing of a and b */
    for (i = 0; i < 1000 * flint_test_multiplier(); i++)
    {
        fmpz_poly_t a, b, c;
        fmpz_t x;

        fmpz_init(x);
        fmpz_poly_init(a);
        fmpz_poly_init(b);
        fmpz_poly_init(c);
        fmpz_randtest(x, state, n_randint(state, 100));
        fmpz_poly_randtest(a, state, n_randint(state, 100), 200);
        fmpz_poly_set(b, a);
        fmpz_poly_set(c, a);

        fmpz_poly_scalar_addmul_fmpz(b, a, x);
        fmpz_poly_scalar_addmul_fmpz(a, a, x);

        result = (fmpz_poly_equal(a, b));
        if (!result)
        {
            flint_printf("FAIL (1):\n");
            flint_printf("a = "), fmpz_poly_print(a), flint_printf("\n\n");
            flint_printf("b = "), fmpz_poly_print(b), flint_printf("\n\n");
            flint_printf("c = "), fmpz_poly_print(c), flint_printf("\n\n");
            flint_printf("x = "), fmpz_print(x), flint_printf("\n\n");
            abort();
        }

        fmpz_clear(x);
        fmpz_poly_clear(a);
        fmpz_poly_clear(b);
        fmpz_poly_clear(c);
    }

    /* Check that b += x*a is the same as c = b + x*a */
    for (i = 0; i < 1000 * flint_test_multiplier(); i++)
    {
        fmpz_poly_t a, b, c;
        fmpz_t x;

        fmpz_init(x);
        fmpz_poly_init(a);
        fmpz_poly_init(b);
        fmpz_poly_init(c);
        fmpz_randtest(x, state, n_randint(state, 100));
        fmpz_poly_randtest(a, state, n_randint(state, 100), 200);
        fmpz_poly_randtest(b, state, n_randint(state, 100), 200);

        fmpz_poly_scalar_mul_fmpz(c, a, x);
        fmpz_poly_add(c, b, c);

        fmpz_poly_scalar_addmul_fmpz(b, a, x);

        result = (fmpz_poly_equal(b, c));
        if (!result)
        {
            flint_printf("FAIL (2):\n");
            flint_printf("a = "), fmpz_poly_print(a), flint_printf("\n\n");
            flint_printf("b = "), fmpz_poly_print(b), flint_printf("\n\n");
            flint_printf("c = "), fmpz_poly_print(c), flint_printf("\n\n");
            flint_printf("x = "), fmpz_print(x), flint_printf("\n\n");
            abort();
        }

        fmpz_clear(x);
        fmpz_poly_clear(a);
        fmpz_poly_clear(b);
        fmpz_poly_clear(c);
    }

    FLINT_TEST_CLEANUP(state);
    
    flint_printf("PASS\n");
    return 0;
}
Пример #26
0
void frob(const mpoly_t P, const ctx_t ctxFracQt,
          const qadic_t t1, const qadic_ctx_t Qq,
          prec_t *prec, const prec_t *prec_in,
          int verbose)
{
    const padic_ctx_struct *Qp = &Qq->pctx;
    const fmpz *p = Qp->p;
    const long a  = qadic_ctx_degree(Qq);
    const long n  = P->n - 1;
    const long d  = mpoly_degree(P, -1, ctxFracQt);
    const long b  = gmc_basis_size(n, d);

    long i, j, k;

    /* Diagonal fibre */
    padic_mat_t F0;

    /* Gauss--Manin Connection */
    mat_t M;
    mon_t *bR, *bC;
    fmpz_poly_t r;

    /* Local solution */
    fmpz_poly_mat_t C, Cinv;
    long vC, vCinv;

    /* Frobenius */
    fmpz_poly_mat_t F;
    long vF;

    fmpz_poly_mat_t F1;
    long vF1;

    fmpz_poly_t cp;

    clock_t c0, c1;
    double c;

    if (verbose)
    {
        printf("Input:\n");
        printf("  P  = "), mpoly_print(P, ctxFracQt), printf("\n");
        printf("  p  = "), fmpz_print(p), printf("\n");
        printf("  t1 = "), qadic_print_pretty(t1, Qq), printf("\n");
        printf("\n");
        fflush(stdout);
    }

    /* Step 1 {M, r} *********************************************************/

    c0 = clock();

    mat_init(M, b, b, ctxFracQt);
    fmpz_poly_init(r);

    gmc_compute(M, &bR, &bC, P, ctxFracQt);

    {
        fmpz_poly_t t;

        fmpz_poly_init(t);
        fmpz_poly_set_ui(r, 1);
        for (i = 0; i < M->m; i++)
            for (j = 0; j < M->n; j++)
            {
                fmpz_poly_lcm(t, r, fmpz_poly_q_denref(
                                  (fmpz_poly_q_struct *) mat_entry(M, i, j, ctxFracQt)));
                fmpz_poly_swap(r, t);
            }
        fmpz_poly_clear(t);
    }

    c1 = clock();
    c  = (double) (c1 - c0) / CLOCKS_PER_SEC;

    if (verbose)
    {
        printf("Gauss-Manin connection:\n");
        printf("  r(t) = "), fmpz_poly_print_pretty(r, "t"), printf("\n");
        printf("  Time = %f\n", c);
        printf("\n");
        fflush(stdout);
    }

    {
        qadic_t t;

        qadic_init2(t, 1);
        fmpz_poly_evaluate_qadic(t, r, t1, Qq);

        if (qadic_is_zero(t))
        {
            printf("Exception (deformation_frob).\n");
            printf("The resultant r evaluates to zero (mod p) at t1.\n");
            abort();
        }
        qadic_clear(t);
    }

    /* Precisions ************************************************************/

    if (prec_in != NULL)
    {
        *prec = *prec_in;
    }
    else
    {
        deformation_precisions(prec, p, a, n, d, fmpz_poly_degree(r));
    }

    if (verbose)
    {
        printf("Precisions:\n");
        printf("  N0   = %ld\n", prec->N0);
        printf("  N1   = %ld\n", prec->N1);
        printf("  N2   = %ld\n", prec->N2);
        printf("  N3   = %ld\n", prec->N3);
        printf("  N3i  = %ld\n", prec->N3i);
        printf("  N3w  = %ld\n", prec->N3w);
        printf("  N3iw = %ld\n", prec->N3iw);
        printf("  N4   = %ld\n", prec->N4);
        printf("  m    = %ld\n", prec->m);
        printf("  K    = %ld\n", prec->K);
        printf("  r    = %ld\n", prec->r);
        printf("  s    = %ld\n", prec->s);
        printf("\n");
        fflush(stdout);
    }

    /* Initialisation ********************************************************/

    padic_mat_init2(F0, b, b, prec->N4);

    fmpz_poly_mat_init(C, b, b);
    fmpz_poly_mat_init(Cinv, b, b);

    fmpz_poly_mat_init(F, b, b);
    vF = 0;

    fmpz_poly_mat_init(F1, b, b);
    vF1 = 0;

    fmpz_poly_init(cp);

    /* Step 2 {F0} ***********************************************************/

    {
        padic_ctx_t pctx_F0;
        fmpz *t;

        padic_ctx_init(pctx_F0, p, FLINT_MIN(prec->N4 - 10, 0), prec->N4, PADIC_VAL_UNIT);
        t = _fmpz_vec_init(n + 1);

        c0 = clock();

        mpoly_diagonal_fibre(t, P, ctxFracQt);

        diagfrob(F0, t, n, d, prec->N4, pctx_F0, 0);
        padic_mat_transpose(F0, F0);

        c1 = clock();
        c  = (double) (c1 - c0) / CLOCKS_PER_SEC;

        if (verbose)
        {
            printf("Diagonal fibre:\n");
            printf("  P(0) = {"), _fmpz_vec_print(t, n + 1), printf("}\n");
            printf("  Time = %f\n", c);
            printf("\n");
            fflush(stdout);
        }

        _fmpz_vec_clear(t, n + 1);
        padic_ctx_clear(pctx_F0);
    }

    /* Step 3 {C, Cinv} ******************************************************/
    /*
        Compute C as a matrix over Z_p[[t]].  A is the same but as a series
        of matrices over Z_p.  Mt is the matrix -M^t, and Cinv is C^{-1}^t,
        the local solution of the differential equation replacing M by Mt.
     */

    c0 = clock();
    {
        const long K = prec->K;
        padic_mat_struct *A;

        gmde_solve(&A, K, p, prec->N3, prec->N3w, M, ctxFracQt);
        gmde_convert_soln(C, &vC, A, K, p);

        for(i = 0; i < K; i++)
            padic_mat_clear(A + i);
        free(A);
    }
    c1 = clock();
    c  = (double) (c1 - c0) / CLOCKS_PER_SEC;
    if (verbose)
    {
        printf("Local solution:\n");
        printf("  Time for C      = %f\n", c);
        fflush(stdout);
    }

    c0 = clock();
    {
        const long K = (prec->K + (*p) - 1) / (*p);
        mat_t Mt;
        padic_mat_struct *Ainv;

        mat_init(Mt, b, b, ctxFracQt);
        mat_transpose(Mt, M, ctxFracQt);
        mat_neg(Mt, Mt, ctxFracQt);
        gmde_solve(&Ainv, K, p, prec->N3i, prec->N3iw, Mt, ctxFracQt);
        gmde_convert_soln(Cinv, &vCinv, Ainv, K, p);

        fmpz_poly_mat_transpose(Cinv, Cinv);
        fmpz_poly_mat_compose_pow(Cinv, Cinv, *p);

        for(i = 0; i < K; i++)
            padic_mat_clear(Ainv + i);
        free(Ainv);
        mat_clear(Mt, ctxFracQt);
    }
    c1 = clock();
    c  = (double) (c1 - c0) / CLOCKS_PER_SEC;
    if (verbose)
    {
        printf("  Time for C^{-1} = %f\n", c);
        printf("\n");
        fflush(stdout);
    }

    /* Step 4 {F(t) := C(t) F(0) C(t^p)^{-1}} ********************************/
    /*
        Computes the product C(t) F(0) C(t^p)^{-1} modulo (p^{N_2}, t^K).
        This is done by first computing the unit part of the product
        exactly over the integers modulo t^K.
     */

    c0 = clock();
    {
        fmpz_t pN;
        fmpz_poly_mat_t T;

        fmpz_init(pN);
        fmpz_poly_mat_init(T, b, b);

        for (i = 0; i < b; i++)
        {
            /* Find the unique k s.t. F0(i,k) is non-zero */
            for (k = 0; k < b; k++)
                if (!fmpz_is_zero(padic_mat_entry(F0, i, k)))
                    break;
            if (k == b)
            {
                printf("Exception (frob). F0 is singular.\n\n");
                abort();
            }

            for (j = 0; j < b; j++)
            {
                fmpz_poly_scalar_mul_fmpz(fmpz_poly_mat_entry(T, i, j),
                                          fmpz_poly_mat_entry(Cinv, k, j),
                                          padic_mat_entry(F0, i, k));
            }
        }

        fmpz_poly_mat_mul(F, C, T);
        fmpz_poly_mat_truncate(F, prec->K);
        vF = vC + padic_mat_val(F0) + vCinv;

        /* Canonicalise (F, vF) */
        {
            long v = fmpz_poly_mat_ord_p(F, p);

            if (v == LONG_MAX)
            {
                printf("ERROR (deformation_frob).  F(t) == 0.\n");
                abort();
            }
            else if (v > 0)
            {
                fmpz_pow_ui(pN, p, v);
                fmpz_poly_mat_scalar_divexact_fmpz(F, F, pN);
                vF = vF + v;
            }
        }

        /* Reduce (F, vF) modulo p^{N2} */
        fmpz_pow_ui(pN, p, prec->N2 - vF);
        fmpz_poly_mat_scalar_mod_fmpz(F, F, pN);

        fmpz_clear(pN);
        fmpz_poly_mat_clear(T);
    }
    c1 = clock();
    c  = (double) (c1 - c0) / CLOCKS_PER_SEC;
    if (verbose)
    {
        printf("Matrix for F(t):\n");
        printf("  Time = %f\n", c);
        printf("\n");
        fflush(stdout);
    }

    /* Step 5 {G = r(t)^m F(t)} **********************************************/

    c0 = clock();
    {
        fmpz_t pN;
        fmpz_poly_t t;

        fmpz_init(pN);
        fmpz_poly_init(t);

        fmpz_pow_ui(pN, p, prec->N2 - vF);

        /* Compute r(t)^m mod p^{N2-vF} */
        if (prec->denR == NULL)
        {
            fmpz_mod_poly_t _t;

            fmpz_mod_poly_init(_t, pN);
            fmpz_mod_poly_set_fmpz_poly(_t, r);
            fmpz_mod_poly_pow(_t, _t, prec->m);
            fmpz_mod_poly_get_fmpz_poly(t, _t);
            fmpz_mod_poly_clear(_t);
        }
        else
        {
            /* TODO: We don't really need a copy */
            fmpz_poly_set(t, prec->denR);
        }

        fmpz_poly_mat_scalar_mul_fmpz_poly(F, F, t);
        fmpz_poly_mat_scalar_mod_fmpz(F, F, pN);

        /* TODO: This should not be necessary? */
        fmpz_poly_mat_truncate(F, prec->K);

        fmpz_clear(pN);
        fmpz_poly_clear(t);
    }
    c1 = clock();
    c  = (double) (c1 - c0) / CLOCKS_PER_SEC;
    if (verbose)
    {
        printf("Analytic continuation:\n");
        printf("  Time = %f\n", c);
        printf("\n");
        fflush(stdout);
    }

    /* Steps 6 and 7 *********************************************************/

    if (a == 1)
    {
        /* Step 6 {F(1) = r(t_1)^{-m} G(t_1)} ********************************/

        c0 = clock();
        {
            const long N = prec->N2 - vF;

            fmpz_t f, g, t, pN;

            fmpz_init(f);
            fmpz_init(g);
            fmpz_init(t);
            fmpz_init(pN);

            fmpz_pow_ui(pN, p, N);

            /* f := \hat{t_1}, g := r(\hat{t_1})^{-m} */
            _padic_teichmuller(f, t1->coeffs + 0, p, N);
            if (prec->denR == NULL)
            {
                _fmpz_mod_poly_evaluate_fmpz(g, r->coeffs, r->length, f, pN);
                fmpz_powm_ui(t, g, prec->m, pN);
            }
            else
            {
                _fmpz_mod_poly_evaluate_fmpz(t, prec->denR->coeffs, prec->denR->length, f, pN);
            }
            _padic_inv(g, t, p, N);

            /* F1 := g G(\hat{t_1}) */
            for (i = 0; i < b; i++)
                for (j = 0; j < b; j++)
                {
                    const fmpz_poly_struct *poly = fmpz_poly_mat_entry(F, i, j);
                    const long len               = poly->length;

                    if (len == 0)
                    {
                        fmpz_poly_zero(fmpz_poly_mat_entry(F1, i, j));
                    }
                    else
                    {
                        fmpz_poly_fit_length(fmpz_poly_mat_entry(F1, i, j), 1);

                        _fmpz_mod_poly_evaluate_fmpz(t, poly->coeffs, len, f, pN);
                        fmpz_mul(fmpz_poly_mat_entry(F1, i, j)->coeffs + 0, g, t);
                        fmpz_mod(fmpz_poly_mat_entry(F1, i, j)->coeffs + 0,
                                 fmpz_poly_mat_entry(F1, i, j)->coeffs + 0, pN);

                        _fmpz_poly_set_length(fmpz_poly_mat_entry(F1, i, j), 1);
                        _fmpz_poly_normalise(fmpz_poly_mat_entry(F1, i, j));
                    }
                }

            vF1 = vF;
            fmpz_poly_mat_canonicalise(F1, &vF1, p);

            fmpz_clear(f);
            fmpz_clear(g);
            fmpz_clear(t);
            fmpz_clear(pN);
        }
        c1 = clock();
        c  = (double) (c1 - c0) / CLOCKS_PER_SEC;
        if (verbose)
        {
            printf("Evaluation:\n");
            printf("  Time = %f\n", c);
            printf("\n");
            fflush(stdout);
        }
    }
    else
    {
        /* Step 6 {F(1) = r(t_1)^{-m} G(t_1)} ********************************/

        c0 = clock();
        {
            const long N = prec->N2 - vF;
            fmpz_t pN;
            fmpz *f, *g, *t;

            fmpz_init(pN);

            f = _fmpz_vec_init(a);
            g = _fmpz_vec_init(2 * a - 1);
            t = _fmpz_vec_init(2 * a - 1);

            fmpz_pow_ui(pN, p, N);

            /* f := \hat{t_1}, g := r(\hat{t_1})^{-m} */
            _qadic_teichmuller(f, t1->coeffs, t1->length, Qq->a, Qq->j, Qq->len, p, N);
            if (prec->denR == NULL)
            {
                fmpz_t e;
                fmpz_init_set_ui(e, prec->m);
                _fmpz_mod_poly_compose_smod(g, r->coeffs, r->length, f, a,
                                            Qq->a, Qq->j, Qq->len, pN);
                _qadic_pow(t, g, a, e, Qq->a, Qq->j, Qq->len, pN);
                fmpz_clear(e);
            }
            else
            {
                _fmpz_mod_poly_reduce(prec->denR->coeffs, prec->denR->length, Qq->a, Qq->j, Qq->len, pN);
                _fmpz_poly_normalise(prec->denR);

                _fmpz_mod_poly_compose_smod(t, prec->denR->coeffs, prec->denR->length, f, a,
                                            Qq->a, Qq->j, Qq->len, pN);
            }
            _qadic_inv(g, t, a, Qq->a, Qq->j, Qq->len, p, N);

            /* F1 := g G(\hat{t_1}) */
            for (i = 0; i < b; i++)
                for (j = 0; j < b; j++)
                {
                    const fmpz_poly_struct *poly = fmpz_poly_mat_entry(F, i, j);
                    const long len               = poly->length;

                    fmpz_poly_struct *poly2 = fmpz_poly_mat_entry(F1, i, j);

                    if (len == 0)
                    {
                        fmpz_poly_zero(poly2);
                    }
                    else
                    {
                        _fmpz_mod_poly_compose_smod(t, poly->coeffs, len, f, a,
                                                    Qq->a, Qq->j, Qq->len, pN);

                        fmpz_poly_fit_length(poly2, 2 * a - 1);
                        _fmpz_poly_mul(poly2->coeffs, g, a, t, a);
                        _fmpz_mod_poly_reduce(poly2->coeffs, 2 * a - 1, Qq->a, Qq->j, Qq->len, pN);
                        _fmpz_poly_set_length(poly2, a);
                        _fmpz_poly_normalise(poly2);
                    }
                }

            /* Now the matrix for p^{-1} F_p at t=t_1 is (F1, vF1). */
            vF1 = vF;
            fmpz_poly_mat_canonicalise(F1, &vF1, p);

            fmpz_clear(pN);
            _fmpz_vec_clear(f, a);
            _fmpz_vec_clear(g, 2 * a - 1);
            _fmpz_vec_clear(t, 2 * a - 1);
        }
        c1 = clock();
        c  = (double) (c1 - c0) / CLOCKS_PER_SEC;
        if (verbose)
        {
            printf("Evaluation:\n");
            printf("  Time = %f\n", c);
            printf("\n");
            fflush(stdout);
        }

        /* Step 7 {Norm} *****************************************************/
        /*
            Computes the matrix for $q^{-1} F_q$ at $t = t_1$ as the
            product $F \sigma(F) \dotsm \sigma^{a-1}(F)$ up appropriate
            transpositions because our convention of columns vs rows is
            the opposite of that used by Gerkmann.

            Note that, in any case, transpositions do not affect
            the characteristic polynomial.
         */

        c0 = clock();
        {
            const long N = prec->N1 - a * vF1;

            fmpz_t pN;
            fmpz_poly_mat_t T;

            fmpz_init(pN);
            fmpz_poly_mat_init(T, b, b);

            fmpz_pow_ui(pN, p, N);

            fmpz_poly_mat_frobenius(T, F1, 1, p, N, Qq);
            _qadic_mat_mul(F1, F1, T, pN, Qq);

            for (i = 2; i < a; i++)
            {
                fmpz_poly_mat_frobenius(T, T, 1, p, N, Qq);
                _qadic_mat_mul(F1, F1, T, pN, Qq);
            }

            vF1 = a * vF1;
            fmpz_poly_mat_canonicalise(F1, &vF1, p);

            fmpz_clear(pN);
            fmpz_poly_mat_clear(T);
        }
        c1 = clock();
        c  = (double) (c1 - c0) / CLOCKS_PER_SEC;
        if (verbose)
        {
            printf("Norm:\n");
            printf("  Time = %f\n", c);
            printf("\n");
            fflush(stdout);
        }
    }

    /* Step 8 {Reverse characteristic polynomial} ****************************/

    c0 = clock();

    deformation_revcharpoly(cp, F1, vF1, n, d, prec->N0, prec->r, prec->s, Qq);

    c1 = clock();
    c  = (double) (c1 - c0) / CLOCKS_PER_SEC;
    if (verbose)
    {
        printf("Reverse characteristic polynomial:\n");
        printf("  p(T) = "), fmpz_poly_print_pretty(cp, "T"), printf("\n");
        printf("  Time = %f\n", c);
        printf("\n");
        fflush(stdout);
    }

    /* Clean up **************************************************************/

    padic_mat_clear(F0);

    mat_clear(M, ctxFracQt);
    free(bR);
    free(bC);
    fmpz_poly_clear(r);

    fmpz_poly_mat_clear(C);
    fmpz_poly_mat_clear(Cinv);

    fmpz_poly_mat_clear(F);
    fmpz_poly_mat_clear(F1);
    fmpz_poly_clear(cp);
}
Пример #27
0
void
fmpz_poly_divrem_divconquer(fmpz_poly_t Q, fmpz_poly_t R,
                            const fmpz_poly_t A, const fmpz_poly_t B)
{
    const long lenA = A->length;
    const long lenB = B->length;
    fmpz_poly_t tQ, tR;
    fmpz *q, *r;

    if (lenB == 0)
    {
        printf("Exception: division by zero in fmpz_poly_divrem_divconquer\n");
        abort();
    }

    if (lenA < lenB)
    {
        fmpz_poly_set(R, A);
        fmpz_poly_zero(Q);
        return;
    }

    if (Q == A || Q == B)
    {
        fmpz_poly_init2(tQ, lenA - lenB + 1);
        q = tQ->coeffs;
    }
    else
    {
        fmpz_poly_fit_length(Q, lenA - lenB + 1);
        q = Q->coeffs;
    }

    if (R == A || R == B)
    {
        fmpz_poly_init2(tR, lenA);
        r = tR->coeffs;
    }
    else
    {
        fmpz_poly_fit_length(R, lenA);
        r = R->coeffs;
    }

    _fmpz_poly_divrem_divconquer(q, r, A->coeffs, lenA, B->coeffs, lenB);

    if (Q == A || Q == B)
    {
        _fmpz_poly_set_length(tQ, lenA - lenB + 1);
        fmpz_poly_swap(tQ, Q);
        fmpz_poly_clear(tQ);
    }
    else
        _fmpz_poly_set_length(Q, lenA - lenB + 1);

    if (R == A || R == B)
    {
        _fmpz_poly_set_length(tR, lenA);
        fmpz_poly_swap(tR, R);
        fmpz_poly_clear(tR);
    }
    else
        _fmpz_poly_set_length(R, lenA);

    _fmpz_poly_normalise(Q);
    _fmpz_poly_normalise(R);
}
Пример #28
0
void
fmpz_poly_complex_roots_squarefree(const fmpz_poly_t poly,
                                   slong initial_prec,
                                   slong target_prec,
                                   slong print_digits)
{
    slong i, j, prec, deg, deg_deflated, isolated, maxiter, deflation;
    acb_poly_t cpoly, cpoly_deflated;
    fmpz_poly_t poly_deflated;
    acb_ptr roots, roots_deflated;
    int removed_zero;

    if (fmpz_poly_degree(poly) < 1)
        return;

    fmpz_poly_init(poly_deflated);
    acb_poly_init(cpoly);
    acb_poly_init(cpoly_deflated);

    /* try to write poly as poly_deflated(x^deflation), possibly multiplied by x */
    removed_zero = fmpz_is_zero(poly->coeffs);
    if (removed_zero)
        fmpz_poly_shift_right(poly_deflated, poly, 1);
    else
        fmpz_poly_set(poly_deflated, poly);
    deflation = fmpz_poly_deflation(poly_deflated);
    fmpz_poly_deflate(poly_deflated, poly_deflated, deflation);

    deg = fmpz_poly_degree(poly);
    deg_deflated = fmpz_poly_degree(poly_deflated);

    flint_printf("searching for %wd roots, %wd deflated\n", deg, deg_deflated);

    roots = _acb_vec_init(deg);
    roots_deflated = _acb_vec_init(deg_deflated);

    for (prec = initial_prec; ; prec *= 2)
    {
        acb_poly_set_fmpz_poly(cpoly_deflated, poly_deflated, prec);
        maxiter = FLINT_MIN(FLINT_MAX(deg_deflated, 32), prec);

        TIMEIT_ONCE_START
        flint_printf("prec=%wd: ", prec);
        isolated = acb_poly_find_roots(roots_deflated, cpoly_deflated,
                                       prec == initial_prec ? NULL : roots_deflated, maxiter, prec);
        flint_printf("%wd isolated roots | ", isolated);
        TIMEIT_ONCE_STOP

        if (isolated == deg_deflated)
        {
            if (!check_accuracy(roots_deflated, deg_deflated, target_prec))
                continue;

            if (deflation == 1)
            {
                _acb_vec_set(roots, roots_deflated, deg_deflated);
            }
            else  /* compute all nth roots */
            {
                acb_t w, w2;

                acb_init(w);
                acb_init(w2);

                acb_unit_root(w, deflation, prec);
                acb_unit_root(w2, 2 * deflation, prec);

                for (i = 0; i < deg_deflated; i++)
                {
                    if (arf_sgn(arb_midref(acb_realref(roots_deflated + i))) > 0)
                    {
                        acb_root_ui(roots + i * deflation,
                                    roots_deflated + i, deflation, prec);
                    }
                    else
                    {
                        acb_neg(roots + i * deflation, roots_deflated + i);
                        acb_root_ui(roots + i * deflation,
                                    roots + i * deflation, deflation, prec);
                        acb_mul(roots + i * deflation,
                                roots + i * deflation, w2, prec);
                    }

                    for (j = 1; j < deflation; j++)
                    {
                        acb_mul(roots + i * deflation + j,
                                roots + i * deflation + j - 1, w, prec);
                    }
                }

                acb_clear(w);
                acb_clear(w2);
            }

            /* by assumption that poly is squarefree, must be just one */
            if (removed_zero)
                acb_zero(roots + deg_deflated * deflation);

            if (!check_accuracy(roots, deg, target_prec))
                continue;

            acb_poly_set_fmpz_poly(cpoly, poly, prec);

            if (!acb_poly_validate_real_roots(roots, cpoly, prec))
                continue;

            for (i = 0; i < deg; i++)
            {
                if (arb_contains_zero(acb_imagref(roots + i)))
                    arb_zero(acb_imagref(roots + i));
            }

            flint_printf("done!\n");
            break;
        }
    }

    if (print_digits != 0)
    {
        _acb_vec_sort_pretty(roots, deg);

        for (i = 0; i < deg; i++)
        {
            acb_printn(roots + i, print_digits, 0);
            flint_printf("\n");
        }
    }

    fmpz_poly_clear(poly_deflated);
    acb_poly_clear(cpoly);
    acb_poly_clear(cpoly_deflated);
    _acb_vec_clear(roots, deg);
    _acb_vec_clear(roots_deflated, deg_deflated);
}