void LSM9DS0_readGyro(LSM9DS0_t* lsm_t) { uint8_t temp[6]; // We'll read six bytes from the gyro into temp gReadBytes(lsm_t,OUT_X_L_G, temp, 6); // Read 6 bytes, beginning at OUT_X_L_G lsm_t->gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx lsm_t->gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy lsm_t->gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz }
void LSM330D::readGyro() { uint8_t temp[6]; // We'll read six bytes from the gyro into temp gReadBytes(OUT_X_L_G, temp, 6); // Read 6 bytes, beginning at OUT_X_L_G gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz }
bool LSM9DS0::readGyro() { // uint8_t temp[6]; // We'll read six bytes from the gyro into temp // gReadBytes(OUT_X_L_G, temp, 6); // Read 6 bytes, beginning at OUT_X_L_G uint8_t temp[7]; // We'll read six bytes from the gyro into temp gReadBytes(STATUS_REG_G, temp, 7); // Read 6 bytes, beginning at OUT_X_L_G if ( temp[0] & BIT_ZYXxDA ) { gx = (temp[2] << 8) | temp[1]; // Store x-axis values into gx gy = (temp[4] << 8) | temp[3]; // Store y-axis values into gy gz = (temp[6] << 8) | temp[5]; // Store z-axis values into gz return true; } return false; }
void LSM9DS0_readGyro(LSM9DS0_t* lsm_t) { uint8_t temp[6]; #if(DEBUG_R_G==1) temp[0]=gReadByte(lsm_t,OUT_X_L_G); temp[1]=gReadByte(lsm_t,OUT_X_H_G); temp[2]=gReadByte(lsm_t,OUT_Y_L_G); temp[3]=gReadByte(lsm_t,OUT_Y_H_G); temp[4]=gReadByte(lsm_t,OUT_Z_L_G); temp[5]=gReadByte(lsm_t,OUT_Z_H_G); #else //uint8_t temp[6]; // We'll read six bytes from the gyro into temp gReadBytes(lsm_t,OUT_X_L_G, temp, 6); // Read 6 bytes, beginning at OUT_X_L_G #endif lsm_t->gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx lsm_t->gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy lsm_t->gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz }
void LSM330D::calLSM330D(float * gbias, float * abias) { uint8_t data[6] = {0, 0, 0, 0, 0, 0}; int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; uint16_t samples, ii; // First get gyro bias byte c = gReadByte(CTRL_REG5_G); gWriteByte(CTRL_REG5_G, c | 0x40); // Enable gyro FIFO delay(20); // Wait for change to take effect gWriteByte(FIFO_CTRL_REG_G, 0x20 | 0x1F); // Enable gyro FIFO stream mode and set watermark at 32 samples delay(1000); // delay 1000 milliseconds to collect FIFO samples samples = (gReadByte(FIFO_SRC_REG_G) & 0x1F); // Read number of stored samples for(ii = 0; ii < samples ; ii++) { // Read the gyro data stored in the FIFO int16_t gyro_temp[3] = {0, 0, 0}; gReadBytes(OUT_X_L_G, &data[0], 6); gyro_temp[0] = (int16_t) (((int16_t)data[1] << 8) | data[0]); // Form signed 16-bit integer for each sample in FIFO gyro_temp[1] = (int16_t) (((int16_t)data[3] << 8) | data[2]); gyro_temp[2] = (int16_t) (((int16_t)data[5] << 8) | data[4]); gyro_bias[0] += (int32_t) gyro_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases gyro_bias[1] += (int32_t) gyro_temp[1]; gyro_bias[2] += (int32_t) gyro_temp[2]; } gyro_bias[0] /= samples; // average the data gyro_bias[1] /= samples; gyro_bias[2] /= samples; gbias[0] = (float)gyro_bias[0]*gRes; // Properly scale the data to get deg/s gbias[1] = (float)gyro_bias[1]*gRes; gbias[2] = (float)gyro_bias[2]*gRes; c = gReadByte(CTRL_REG5_G); gWriteByte(CTRL_REG5_G, c & ~0x40); // Disable gyro FIFO delay(20); gWriteByte(FIFO_CTRL_REG_G, 0x00); // Enable gyro bypass mode // Now get the accelerometer biases c = xmReadByte(CTRL_REG5_A); xmWriteByte(CTRL_REG5_A, c | 0x40); // Enable accelerometer FIFO delay(20); // Wait for change to take effect xmWriteByte(FIFO_CTRL_REG, 0x40 | 0x1F); // Enable accelerometer FIFO stream mode and set watermark at 32 samples delay(1000); // delay 1000 milliseconds to collect FIFO samples samples = (xmReadByte(FIFO_SRC_REG) & 0x1F); // Read number of stored accelerometer samples for(ii = 0; ii < samples ; ii++) { // Read the accelerometer data stored in the FIFO int16_t accel_temp[3] = {0, 0, 0}; xmReadBytes(OUT_X_L_A, &data[0], 6); accel_temp[0] = (int16_t) (((int16_t)data[1] << 8) | data[0]);// Form signed 16-bit integer for each sample in FIFO accel_temp[1] = (int16_t) (((int16_t)data[3] << 8) | data[2]); accel_temp[2] = (int16_t) (((int16_t)data[5] << 8) | data[4]); accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases accel_bias[1] += (int32_t) accel_temp[1]; accel_bias[2] += (int32_t) accel_temp[2]; } accel_bias[0] /= samples; // average the data accel_bias[1] /= samples; accel_bias[2] /= samples; if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) (1.0/aRes);} // Remove gravity from the z-axis accelerometer bias calculation else {accel_bias[2] += (int32_t) (1.0/aRes);} abias[0] = (float)accel_bias[0]*aRes; // Properly scale data to get gs abias[1] = (float)accel_bias[1]*aRes; abias[2] = (float)accel_bias[2]*aRes; c = xmReadByte(CTRL_REG5_A); xmWriteByte(CTRL_REG5_A, c & ~0x40); // Disable accelerometer FIFO delay(20); xmWriteByte(FIFO_CTRL_REG, 0x00); // Enable accelerometer bypass mode }
// This is a function that uses the FIFO to accumulate sample of accelerometer and gyro data, average // them, scales them to gs and deg/s, respectively, and then passes the biases to the main sketch // for subtraction from all subsequent data. There are no gyro and accelerometer bias registers to store // the data as there are in the ADXL345, a precursor to the LSM9DS0, or the MPU-9150, so we have to // subtract the biases ourselves. This results in a more accurate measurement in general and can // remove errors due to imprecise or varying initial placement. Calibration of sensor data in this manner // is good practice. void calLSM9DS0(LSM9DS0_t* lsm_t, float * gbias, float * abias) { uint8_t data[6] = {0, 0, 0, 0, 0, 0}; int16_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; int samples, ii; // First get gyro bias uint8_t c = gReadByte(lsm_t,CTRL_REG5_G); //read modify write gWriteByte(lsm_t, CTRL_REG5_G, c | 0x40); // Enable gyro FIFO delay(20); // Wait for change to take effect gWriteByte(lsm_t, FIFO_CTRL_REG_G, 0x20 | 0x1F); // Enable gyro FIFO stream mode and set watermark at 32 samples delay(1000); // delay 1000 milliseconds to collect FIFO samples samples = (gReadByte(lsm_t,FIFO_SRC_REG_G) & 0x1F); // Read number of stored samples for(ii = 0; ii < samples ; ii++) { // Read the gyro data stored in the FIFO gReadBytes(lsm_t,OUT_X_L_G, &data[0], 6); gyro_bias[0] += (((int16_t)data[1] << 8) | data[0]); gyro_bias[1] += (((int16_t)data[3] << 8) | data[2]); gyro_bias[2] += (((int16_t)data[5] << 8) | data[4]); } gyro_bias[0] /= samples; // average the data gyro_bias[1] /= samples; gyro_bias[2] /= samples; gbias[0] = (float)gyro_bias[0]*lsm_t->gRes; // Properly scale the data to get deg/s gbias[1] = (float)gyro_bias[1]*lsm_t->gRes; gbias[2] = (float)gyro_bias[2]*lsm_t->gRes; c = gReadByte(lsm_t,CTRL_REG5_G); gWriteByte(lsm_t, CTRL_REG5_G, c & ~0x40); // Disable gyro FIFO delay(20); gWriteByte(lsm_t, FIFO_CTRL_REG_G, 0x00); // Enable gyro bypass mode // Now get the accelerometer biases c = xmReadByte(lsm_t,CTRL_REG0_XM); xmWriteByte(lsm_t,CTRL_REG0_XM, c | 0x40); // Enable accelerometer FIFO delay(20); // Wait for change to take effect xmWriteByte(lsm_t,FIFO_CTRL_REG, 0x20 | 0x1F); // Enable accelerometer FIFO stream mode and set watermark at 32 samples delay(1000); // delay 1000 milliseconds to collect FIFO samples samples = (xmReadByte(lsm_t,FIFO_SRC_REG) & 0x1F); // Read number of stored accelerometer samples for(ii = 0; ii < samples ; ii++) { // Read the accelerometer data stored in the FIFO xmReadBytes(lsm_t,OUT_X_L_A, &data[0], 6); accel_bias[0] += (((int16_t)data[1] << 8) | data[0]); accel_bias[1] += (((int16_t)data[3] << 8) | data[2]); accel_bias[2] += (((int16_t)data[5] << 8) | data[4]) - (int16_t)(1.0f/lsm_t->aRes); // Assumes sensor facing up! } accel_bias[0] /= samples; // average the data accel_bias[1] /= samples; accel_bias[2] /= samples; abias[0] = (float)accel_bias[0]*lsm_t->aRes; // Properly scale data to get gs abias[1] = (float)accel_bias[1]*lsm_t->aRes; abias[2] = (float)accel_bias[2]*lsm_t->aRes; c = xmReadByte(lsm_t,CTRL_REG0_XM); xmWriteByte(lsm_t,CTRL_REG0_XM, c & ~0x40); // Disable accelerometer FIFO delay(20); xmWriteByte(lsm_t,FIFO_CTRL_REG, 0x00); // Enable accelerometer bypass mode }
void initGyro( LSM9DS0_t* lsm_t ) { #if (DEBUG0==1) uint8_t test[5],test1[5],i; #endif /* CTRL_REG1_G sets output data rate, bandwidth, power-down and enables Bits[7:0]: DR1 DR0 BW1 BW0 PD Zen Xen Yen DR[1:0] - Output data rate selection 00=95Hz, 01=190Hz, 10=380Hz, 11=760Hz BW[1:0] - Bandwidth selection (sets cutoff frequency) Value depends on ODR. See datasheet table 21. PD - Power down enable (0=power down mode, 1=normal or sleep mode) Zen, Xen, Yen - Axis enable (o=disabled, 1=enabled) */ //gWriteByte(lsm_t, CTRL_REG1_G, 0x0F); // Normal mode, enable all axes lsm_t->gCtrl[0]=0b01111111; #if (DEBUG0==1) gWriteByte(lsm_t, CTRL_REG1_G, lsm_t->gCtrl[0]); test[0] = gReadByte(lsm_t,CTRL_REG1_G); assert(test[0]==lsm_t->gCtrl[0]); #endif /* CTRL_REG2_G sets up the HPF Bits[7:0]: 0 0 HPM1 HPM0 HPCF3 HPCF2 HPCF1 HPCF0 HPM[1:0] - High pass filter mode selection 00=normal (reset reading HP_RESET_FILTER, 01=ref signal for filtering, 10=normal, 11=autoreset on interrupt HPCF[3:0] - High pass filter cutoff frequency Value depends on data rate. See datasheet table 26. */ //gWriteByte(lsm_t, CTRL_REG2_G, 0x25); // Normal mode, high cutoff frequency //0x00 lsm_t->gCtrl[1]=0b00100101; #if (DEBUG0==1) gWriteByte(lsm_t, CTRL_REG2_G, lsm_t->gCtrl[1]); test[1] = gReadByte(lsm_t,CTRL_REG2_G); assert(test[1]==lsm_t->gCtrl[1]); #endif /* CTRL_REG3_G sets up interrupt and DRDY_G pins Bits[7:0]: I1_IINT1 I1_BOOT H_LACTIVE PP_OD I2_DRDY I2_WTM I2_ORUN I2_EMPTY I1_INT1 - Interrupt enable on INT_G pin (0=disable, 1=enable) I1_BOOT - Boot status available on INT_G (0=disable, 1=enable) H_LACTIVE - Interrupt active configuration on INT_G (0:high, 1:low) PP_OD - Push-pull/open-drain (0=push-pull, 1=open-drain) I2_DRDY - Data ready on DRDY_G (0=disable, 1=enable) I2_WTM - FIFO watermark interrupt on DRDY_G (0=disable 1=enable) I2_ORUN - FIFO overrun interrupt on DRDY_G (0=disable 1=enable) I2_EMPTY - FIFO empty interrupt on DRDY_G (0=disable 1=enable) */ // Int1 enabled (pp, active low), data read on DRDY_G: //gWriteByte(lsm_t, CTRL_REG3_G, 0x00); //88 lsm_t->gCtrl[2]=0b00000000; #if (DEBUG0==1) gWriteByte(lsm_t, CTRL_REG3_G, lsm_t->gCtrl[2]); test[2] = gReadByte(lsm_t,CTRL_REG3_G); assert(test[2]==lsm_t->gCtrl[2]); #endif /* CTRL_REG4_G sets the scale, update mode Bits[7:0] - BDU BLE FS1 FS0 - ST1 ST0 SIM BDU - Block data update (0=continuous, 1=output not updated until read BLE - Big/little endian (0=data LSB @ lower address, 1=LSB @ higher add) FS[1:0] - Full-scale selection 00=245dps, 01=500dps, 10=2000dps, 11=2000dps ST[1:0] - Self-test enable 00=disabled, 01=st 0 (x+, y-, z-), 10=undefined, 11=st 1 (x-, y+, z+) SIM - SPI serial interface mode select 0=4 wire, 1=3 wire */ //gWriteByte(lsm_t, CTRL_REG4_G, 0x90); // Set scale to 245 dps//00 lsm_t->gCtrl[3]=0b10010000; #if (DEBUG0==1) gWriteByte(lsm_t, CTRL_REG4_G, lsm_t->gCtrl[3]); test[3] = gReadByte(lsm_t,CTRL_REG4_G); assert(test[3]==lsm_t->gCtrl[3]); #endif /* CTRL_REG5_G sets up the FIFO, HPF, and INT1 Bits[7:0] - BOOT FIFO_EN - HPen INT1_Sel1 INT1_Sel0 Out_Sel1 Out_Sel0 BOOT - Reboot memory content (0=normal, 1=reboot) FIFO_EN - FIFO enable (0=disable, 1=enable) HPen - HPF enable (0=disable, 1=enable) INT1_Sel[1:0] - Int 1 selection configuration Out_Sel[1:0] - Out selection configuration */ //gWriteByte(lsm_t, CTRL_REG5_G, 0x00); lsm_t->gCtrl[4]=0b00000000; #if (DEBUG0==1) gWriteByte(lsm_t, CTRL_REG5_G, lsm_t->gCtrl[4]); test[4] = gReadByte(lsm_t,CTRL_REG5_G); assert(test[4]==lsm_t->gCtrl[4]); #endif if (lsm_t->update==UPDATE_ON_CALL) { gWriteBytes(lsm_t,CTRL_REG1_G, lsm_t->gCtrl,5); } #if (DEBUG0==1) gReadBytes(lsm_t, CTRL_REG1_G,test1,5); for (i=0;i<5;i++) { assert(test[i]==test1[i]); } #endif }