Пример #1
0
      /* Compute the atmospheric density using an exponential atmosphere model.
       * @param utc Time reference object.
       * @param rb  Reference body object.
       * @param r   ECI position vector in meters.
       * @param v   ECI velocity vector in m/s
       * @return Atmospheric density in kg/m^3.
       */
   double CiraExponentialDrag::computeDensity(UTCTime utc, 
                                              EarthBody& rb,
                                              Vector<double> r, 
                                              Vector<double> v)
   {
      // Get the J2000 to TOD transformation
      Matrix<double> N = ReferenceFrames::J2kToTODMatrix(utc);

      // Transform r from J2000 to TOD
      Vector<double> r_tod = N*r;

      Position geoidPos(r_tod(0),r_tod(1),r_tod(3),Position::Cartesian);
      double height = geoidPos.getAltitude()/1000.0;              //  convert to [km]

      // check to see if too low
      if (height < h0[0])
      {
         string msg = "CiraExponentialDrag is valid for 50.0 km t0 1000.0 km"
            + string("the altitude you try is ")
            + StringUtils::asString(height) + " km!";

         Exception e(msg);

         GPSTK_THROW(e);
      }

      // find the right height bracket
      int n = CIRA_SIZE; //h0.length;
      int bracket = 0;
      if (height >= h0[n-1]) 
      {
         bracket = n - 1;
      }
      else 
      {
         for (int i = 0; i < (n-1); i++) 
         {
            if ((height >= h0[i]) && (height < h0[i+1]))
            {
               bracket = i;
            }
         }
      }

      // compute the density
      this->brack = bracket;
      double rho = rho_0[bracket] * std::exp((h0[bracket] - height)/H[bracket]);

      return rho;

   }  // End of method 'CiraExponentialDrag::computeDensity()'
Пример #2
0
      // this is the real one
   void AtmosphericDrag::doCompute(UTCTime utc, EarthBody& rb, Spacecraft& sc)
   {
      // To consist with STK
      double omega_e = 7.292115E-05;  // IERS 1996 conventions
      //double omega_e = rb.getSpinRate(utc);

      Vector<double> r = sc.R();   // satellite position in m
      Vector<double> v = sc.V();   // satellite velocity in m/s

      const double cd = sc.getDragCoeff();
      const double area = sc.getDragArea();
      const double mass = sc.getDryMass();

      double rmag = norm(r);
      double beta = cd * area / mass;  // [m^2/kg]

      // compute the atmospheric density
      double rho = computeDensity(utc, rb, r, v);   // [kg/m^3]

      // debuging...
      //rho  = 6.3097802844338E-12;
      
      // compute the relative velocity vector and magnitude
      Vector<double> we(3,0.0);
      we(2)= omega_e;

      Vector<double> wxr = cross(we,r);
      Vector<double> vr = v - wxr;
      double vrmag = norm(vr);
      
      // form -1/2 (Cd*A/m) rho
      double coeff = -0.5 * beta * rho;
      double coeff2 = coeff * vrmag;

      // compute the acceleration in ECI frame (km/s^2)
      a = vr * coeff2;                                  ///////// a

      // Partial reference: Montenbruck,P248

      // form partial of drag wrt v  
      // da_dv = -0.5*Cd*(A/M)*p*(vr*transpose(vr)/vr+vr1)
      Matrix<double> tr(3,1,0.0);
      tr(0,0)=vr(0);
      tr(1,0)=vr(1);
      tr(2,0)=vr(2);

      Matrix<double> vrvrt = tr*transpose(tr); 
      vrvrt = vrvrt / vrmag;
      
      double eye3[3*3] = {1,0,0,0,1,0,0,0,1};
      Matrix<double> vrm(3,3,0.0);
      vrm = eye3;

      vrm = vrm * vrmag;
      da_dv = (vrvrt + vrm) * coeff;               //////// da_dv

      // da_dr
      // da_dr = -0.5*Cd*(A/M)*vr*dp_dr-da_dv*X(w)
      da_dr.resize(3,3,0.0);

      Matrix<double> X(3,3,0.0);
      X(0,1) = -we(2);      // -wz
      X(0,2) = +we(1);      //  wy
      X(1,0) = +we(2);      // +wz
      X(1,2) = -we(0);      // -wx
      X(2,0) = -we(1);      // -wy
      X(2,1) = +we(0);      // +wx
      
      Matrix<double> part1(3,3,0.0);
      Matrix<double> part2(3,3,0.0);
      
   
      // Get the J2000 to TOD transformation
      Matrix<double> N = ReferenceFrames::J2kToTODMatrix(utc);

      // Transform r from J2000 to TOD
      Vector<double> r_tod = N * r;
      Position geoidPos(r_tod(0),r_tod(1),r_tod(3));
      
      // Satellite height
      double height = geoidPos.getAltitude()/1000.0;              //  convert to [km]
      
      const int n = CIRA_SIZE; ;

      int bracket = 0;

      if (height >= h0[n-1]) 
      {
         bracket = n - 1;
      }
      else 
      {
         for (int i = 0; i < (n-1); i++) 
         {
            if ((height >= h0[i]) && (height < h0[i+1]))
            {
               bracket = i;
            }
         }
      }  // End 'if (height >= h0[n-1]) '
      
      double Hh = H[bracket];
      double coeff4 = -1.0 / (Hh * rmag);

      Vector<double> drhodr = r*coeff4;
      
      Matrix<double> tr2(3,1,0.0);
      tr2(0,0) = drhodr(0);
      tr2(1,0) = drhodr(1);
      tr2(2,0) = drhodr(2);

      part1 = tr*transpose(tr2);      // //Matrix part1 = vr.outerProduct(drhodr);
      part1 = part1*coeff2;

      //part1 = dp_dr*a/rho;
      part2 =-da_dv*X;
      da_dr = part1-part2;

      // form partial of drag wrt cd
      double coeff3 = coeff2 / cd;
      this->dadcd = vr*coeff3;                        ////////   da_dcd

      this->da_dcd(0,0) = dadcd(0);
      this->da_dcd(1,0) = dadcd(1);
      this->da_dcd(2,0) = dadcd(2);

   }  // End of method 'AtmosphericDrag::doCompute()'