Пример #1
0
/*
 *	s o l v e O Q P b e n c h m a r k
 */
returnValue solveOQPbenchmark(	int nQP, int nV,
								const real_t* const _H, const real_t* const g,
								const real_t* const lb, const real_t* const ub,
								BooleanType isSparse, 
								const Options& options, int& nWSR, real_t& maxCPUtime,
								real_t& maxStationarity, real_t& maxFeasibility, real_t& maxComplementarity
								)
{
	int k;

	/* I) SETUP AUXILIARY VARIABLES: */
	/* 1) Keep nWSR and store current and maximum number of
	 *    working set recalculations in temporary variables */
	int nWSRcur;
	int maxNWSR = 0;

	real_t CPUtimeLimit = maxCPUtime;
	real_t CPUtimeCur = CPUtimeLimit;
	real_t stat, feas, cmpl;
	maxCPUtime = 0.0;
	maxStationarity = 0.0;
	maxFeasibility = 0.0;
	maxComplementarity = 0.0;

	/* 2) Pointers to data of current QP ... */
	const real_t* gCur;
	const real_t* lbCur;
	const real_t* ubCur;

	/* 3) Vectors for solution obtained by qpOASES. */
	real_t* x = new real_t[nV];
	real_t* y = new real_t[nV];

	/* 4) Prepare matrix objects */
	SymmetricMatrix *H; 
	if ( isSparse == BT_TRUE )
	{
		SymSparseMat *Hs;
		H = Hs = new SymSparseMat(nV, nV, nV, _H);
		Hs->createDiagInfo();
	}
	else
	{
		H = new SymDenseMat(nV, nV, nV, const_cast<real_t *>(_H));
	}

	/* II) SETUP QPROBLEM OBJECT */
	QProblemB qp( nV );
	qp.setOptions( options );
	qp.setPrintLevel( PL_LOW );


	/* III) RUN BENCHMARK SEQUENCE: */
	returnValue returnvalue;

	for( k=0; k<nQP; ++k )
	{
		/* 1) Update pointers to current QP data. */
		gCur   = &( g[k*nV] );
		lbCur  = &( lb[k*nV] );
		ubCur  = &( ub[k*nV] );

		/* 2) Set nWSR and maximum CPU time. */
		nWSRcur = nWSR;
		CPUtimeCur = CPUtimeLimit;

		/* 3) Solve current QP. */
		if ( k == 0 )
		{
			/* initialise */
			returnvalue = qp.init( H,gCur,lbCur,ubCur, nWSRcur,&CPUtimeCur );
			if ( ( returnvalue != SUCCESSFUL_RETURN ) && ( returnvalue != RET_MAX_NWSR_REACHED ) )
			{
				delete H; delete[] y; delete[] x;
				return THROWERROR( returnvalue );
			}
		}
		else
		{
			/* hotstart */
			returnvalue = qp.hotstart( gCur,lbCur,ubCur, nWSRcur,&CPUtimeCur );
			if ( ( returnvalue != SUCCESSFUL_RETURN ) && ( returnvalue != RET_MAX_NWSR_REACHED ) )
			{
				delete H; delete[] y; delete[] x;
				return THROWERROR( returnvalue );
			}
		}

		/* 4) Obtain solution vectors and objective function value ... */
		qp.getPrimalSolution( x );
		qp.getDualSolution( y );

		/* 5) Compute KKT residuals */
		getKKTResidual( nV,0, _H,gCur,0,lbCur,ubCur,0,0, x,y, stat,feas,cmpl );

		/* 6) update maximum values. */
		if ( nWSRcur > maxNWSR )
			maxNWSR = nWSRcur;
		if (stat > maxStationarity) maxStationarity = stat;
		if (feas > maxFeasibility) maxFeasibility = feas;
		if (cmpl > maxComplementarity) maxComplementarity = cmpl;

		if ( CPUtimeCur > maxCPUtime )
			maxCPUtime = CPUtimeCur;
	}

	delete H; delete[] y; delete[] x;

	return SUCCESSFUL_RETURN;
}
Пример #2
0
int main( )
{
	USING_NAMESPACE_QPOASES

	long i;
	int nWSR;
	real_t tic, toc;
	real_t errP=0.0, errD=0.0;
	real_t *x1 = new real_t[180];
	real_t *y1 = new real_t[271];
	real_t *x2 = new real_t[180];
	real_t *y2 = new real_t[271];

	/* create sparse matrices */
	SymSparseMat *H = new SymSparseMat(180, 180, H_ir, H_jc, H_val);
	SparseMatrix *A = new SparseMatrix(91, 180, A_ir, A_jc, A_val);

	H->createDiagInfo();

	real_t* H_full = H->full();
	real_t* A_full = A->full();

	SymDenseMat *Hd = new SymDenseMat(180,180,180,H_full);
	DenseMatrix *Ad = new DenseMatrix(91,180,180,A_full);

	/* solve with dense matrices */
	nWSR = 1000;
	QProblem qrecipeD(180, 91);
	tic = getCPUtime();
	qrecipeD.init(Hd, g, Ad, lb, ub, lbA, ubA, nWSR, 0);
	toc = getCPUtime();
	qrecipeD.getPrimalSolution(x1);
	qrecipeD.getDualSolution(y1);

	fprintf(stdFile, "Solved dense problem in %d iterations, %.3f seconds.\n", nWSR, toc-tic);

	/* Compute KKT tolerances */
	real_t stat, feas, cmpl;

	getKKTResidual(	180,91,
					H_full,g,A_full,lb,ub,lbA,ubA,
					x1,y1,
					stat,feas,cmpl
					);
	printf( "stat = %e\nfeas = %e\ncmpl = %e\n\n", stat,feas,cmpl );


	/* solve with sparse matrices */
	nWSR = 1000;
	QProblem qrecipeS(180, 91);
	tic = getCPUtime();
	qrecipeS.init(H, g, A, lb, ub, lbA, ubA, nWSR, 0);
	toc = getCPUtime();
	qrecipeS.getPrimalSolution(x2);
	qrecipeS.getDualSolution(y2);

	fprintf(stdFile, "Solved sparse problem in %d iterations, %.3f seconds.\n", nWSR, toc-tic);
	
	/* Compute KKT tolerances */
	real_t stat2, feas2, cmpl2;
	getKKTResidual(	180,91,
					H_full,g,A_full,lb,ub,lbA,ubA,
					x2,y2,
					stat2,feas2,cmpl2
					);
	printf( "stat = %e\nfeas = %e\ncmpl = %e\n\n", stat2,feas2,cmpl2 );

	/* check distance of solutions */
	for (i = 0; i < 180; i++)
		if (getAbs(x1[i] - x2[i]) > errP)
			errP = getAbs(x1[i] - x2[i]);
	fprintf(stdFile, "Primal error: %9.2e\n", errP);

	for (i = 0; i < 271; i++)
		if (getAbs(y1[i] - y2[i]) > errD)
			errD = getAbs(y1[i] - y2[i]);
	fprintf(stdFile, "Dual error: %9.2e (might not be unique)\n", errD);

	delete H;
	delete A;
	delete[] H_full;
	delete[] A_full;
	delete Hd;
	delete Ad;

	delete[] y2;
	delete[] x2;
	delete[] y1;
	delete[] x1;

	QPOASES_TEST_FOR_TRUE( stat <= 1e-15 );
	QPOASES_TEST_FOR_TRUE( feas <= 1e-15 );
	QPOASES_TEST_FOR_TRUE( cmpl <= 1e-15 );
	
	QPOASES_TEST_FOR_TRUE( stat2 <= 1e-14 );
	QPOASES_TEST_FOR_TRUE( feas2 <= 1e-14 );
	QPOASES_TEST_FOR_TRUE( cmpl2 <= 1e-13 );

	QPOASES_TEST_FOR_TRUE( errP <= 1e-13 );

	return TEST_PASSED;
}
/** Example for qpOASES main function using the QProblem class. */
int main( )
{
	USING_NAMESPACE_QPOASES

	/* Setup data of first QP. */
	real_t H[4*4] = { 1.0, 0.0, 0.0, 0.5, 
	                  0.0, 1.0, 0.0, 0.0,
	                  0.0, 0.0, 1.0, 0.0,
	                  0.5, 0.0, 0.0, 1.0 };
	real_t A[3*4] = { 1.0, 1.0, 0.0, 0.0,
	                  1.0, 1.0, 1.0, 0.0,
	                  1.0, 1.0, 1.0, 1.0 };
	real_t g[4] = { 1.5, 1.0, -1.0, -1.0 };
	real_t lb[4] = { 0.5, -2.0, 0.0, 0.0 };
	real_t ub[4] = { 1.0, 2.0, 1.0, 0.5 };
	real_t lbA[3] = { -1.0, -1.0, -1.0 };
	real_t ubA[3] = { 0.0, 0.25, 1.0 };

	

	/* Setting up QProblem object. */
	QProblem example( 4,3 );

	Options options;
	example.setOptions( options );

	/* Solve first QP. */
	int nWSR = 10;
	example.init( H,g,A,lb,ub,lbA,ubA, nWSR );

	/* Get and print solution of second QP. */
	real_t xOpt[4];
	real_t yOpt[4+3];
	example.getPrimalSolution( xOpt );
	example.getDualSolution( yOpt );
	print( xOpt,4,"xOpt" );
	print( yOpt,4+3,"yOpt" );
	printf( "objVal = %e\n\n", example.getObjVal() );
	
	/* Compute KKT tolerances */
	real_t stat, feas, cmpl;

	getKKTResidual(	4,3,
					H,g,A,lb,ub,lbA,ubA,
					xOpt,yOpt,
					stat,feas,cmpl
					);
	printf( "stat = %e\nfeas = %e\ncmpl = %e\n", stat,feas,cmpl );

	QPOASES_TEST_FOR_TRUE( stat <= 1e-15 );
	QPOASES_TEST_FOR_TRUE( feas <= 1e-15 );
	QPOASES_TEST_FOR_TRUE( cmpl <= 1e-15 );


	/* Solve first QP again (with optimal guess for working set). */
	Bounds prevBounds;
	Constraints prevConstraints;
	
	example.getBounds( prevBounds );
	example.getConstraints( prevConstraints );

	nWSR = 10;
	example.hotstart( g,lb,ub,lbA,ubA, nWSR,0,&prevBounds,&prevConstraints );

	/* Get and print solution of second QP. */
	example.getPrimalSolution( xOpt );
	example.getDualSolution( yOpt );
	print( xOpt,4,"xOpt" );
	print( yOpt,4+3,"yOpt" );
	printf( "objVal = %e\n\n", example.getObjVal() );
	
	/* Compute KKT tolerances */
	getKKTResidual(	4,3,
					H,g,A,lb,ub,lbA,ubA,
					xOpt,yOpt,
					stat,feas,cmpl
					);
	printf( "stat = %e\nfeas = %e\ncmpl = %e\n", stat,feas,cmpl );

	QPOASES_TEST_FOR_TRUE( stat <= 1e-15 );
	QPOASES_TEST_FOR_TRUE( feas <= 1e-15 );
	QPOASES_TEST_FOR_TRUE( cmpl <= 1e-15 );


	/* Solve first QP again (with inaccurate guess for working set). */
	prevBounds.print();
	prevBounds.rotate(1);
	//prevBounds.moveFixedToFree(0);
	prevBounds.print();

	prevConstraints.print();
	//prevConstraints.moveInactiveToActive(0,ST_LOWER);
	prevConstraints.moveActiveToInactive(1);
	prevConstraints.print();

	nWSR = 10;
	example.hotstart( g,lb,ub,lbA,ubA, nWSR,0,&prevBounds,&prevConstraints );

	/* Get and print solution of second QP. */
	example.getPrimalSolution( xOpt );
	example.getDualSolution( yOpt );
	print( xOpt,4,"xOpt" );
	print( yOpt,4+3,"yOpt" );
	printf( "objVal = %e\n\n", example.getObjVal() );
	
	/* Compute KKT tolerances */
	getKKTResidual(	4,3,
					H,g,A,lb,ub,lbA,ubA,
					xOpt,yOpt,
					stat,feas,cmpl
					);
	printf( "stat = %e\nfeas = %e\ncmpl = %e\n", stat,feas,cmpl );

	QPOASES_TEST_FOR_TRUE( stat <= 1e-15 );
	QPOASES_TEST_FOR_TRUE( feas <= 1e-15 );
	QPOASES_TEST_FOR_TRUE( cmpl <= 1e-15 );

	return TEST_PASSED;
}
/** Example for qpOASES main function using the QProblemB class. */
int main( )
{
	USING_NAMESPACE_QPOASES

	/* Setup data of first QP. */
	real_t H[2*2] = { 1.0, 0.0, 0.0, 0.5 };
	real_t g[2] = { 1.5, 1.0 };
	real_t lb[2] = { 0.5, -2.0 };
	real_t ub[2] = { 5.0, 2.0 };

	/* Setup data of second QP. */
	real_t g_new[2] = { 1.0, 1.5 };
	real_t lb_new[2] = { 0.0, -1.0 };
	real_t ub_new[2] = { 5.0, -0.5 };


	/* Setting up QProblemB object. */
	QProblemB example( 2 );

	Options options;
	//options.enableFlippingBounds = BT_FALSE;
	options.initialStatusBounds = ST_INACTIVE;
	options.numRefinementSteps = 1;
	options.enableCholeskyRefactorisation = 1;
	example.setOptions( options );

	/* Solve first QP. */
	int nWSR = 10;
	example.init( H,g,lb,ub, nWSR,0 );
// 	printf( "\nnWSR = %d\n\n", nWSR );

	real_t xOpt[2];
	real_t yOpt[2];
	example.getPrimalSolution( xOpt );
	example.getDualSolution( yOpt );

	/* Compute KKT tolerances */
	real_t stat, feas, cmpl;

	getKKTResidual(	2,
					H,g,lb,ub,
					xOpt,yOpt,
					stat,feas,cmpl
					);
	printf( "stat = %e\nfeas = %e\ncmpl = %e\n", stat,feas,cmpl );

	QPOASES_TEST_FOR_TRUE( stat <= 1e-15 );
	QPOASES_TEST_FOR_TRUE( feas <= 1e-15 );
	QPOASES_TEST_FOR_TRUE( cmpl <= 1e-15 );

	
	/* Solve second QP. */
	nWSR = 10;
	example.hotstart( g_new,lb_new,ub_new, nWSR,0 );
// 	printf( "\nnWSR = %d\n\n", nWSR );

	/* Get and print solution of second QP. */
	example.getPrimalSolution( xOpt );
	example.getDualSolution( yOpt );
	printf( "\nxOpt = [ %e, %e ];  objVal = %e\n\n", xOpt[0],xOpt[1],example.getObjVal() );

	/* Compute KKT tolerances */
	getKKTResidual(	2,
					H,g_new,lb_new,ub_new,
					xOpt,yOpt,
					stat,feas,cmpl
					);
	printf( "stat = %e\nfeas = %e\ncmpl = %e\n", stat,feas,cmpl );

	QPOASES_TEST_FOR_TRUE( stat <= 1e-15 );
	QPOASES_TEST_FOR_TRUE( feas <= 1e-15 );
	QPOASES_TEST_FOR_TRUE( cmpl <= 1e-15 );

	return TEST_PASSED;
}