/*------------------------------------------------------------------------*/ int sci_plot2d(char* fname, void *pvApiCtx) { SciErr sciErr; int* piAddrl1 = NULL; double* l1 = NULL; int* piAddrl2 = NULL; double* l2 = NULL; double* lt = NULL; int iTypel1 = 0; int iTypel2 = 0; int lw = 0; int m1 = 0, n1 = 0, m2 = 0, n2 = 0; int test = 0, i = 0, j = 0, iskip = 0; int frame_def = 8; int *frame = &frame_def; int axes_def = 1; int *axes = &axes_def; /* F.Leray 18.05.04 : log. case test*/ int size_x = 0, size_y = 0; char dataflag = 0; char* logFlags = NULL; int* style = NULL; double* rect = NULL; char* strf = NULL; char* legend = NULL; int* nax = NULL; BOOL flagNax = FALSE; char strfl[4]; BOOL freeStrf = FALSE; rhs_opts opts[] = { { -1, "axesflag", -1, 0, 0, NULL}, { -1, "frameflag", -1, 0, 0, NULL}, { -1, "leg", -1, 0, 0, NULL}, { -1, "logflag", -1, 0, 0, NULL}, { -1, "nax", -1, 0, 0, NULL}, { -1, "rect", -1, 0, 0, NULL}, { -1, "strf", -1, 0, 0, NULL}, { -1, "style", -1, 0, 0, NULL}, { -1, NULL, -1, 0, 0, NULL} }; if (nbInputArgument(pvApiCtx) == 0) { sci_demo(fname, pvApiCtx); return 0; } CheckInputArgument(pvApiCtx, 1, 9); iskip = 0; if (getOptionals(pvApiCtx, fname, opts) == 0) { ReturnArguments(pvApiCtx); return 0; } if (checkInputArgumentType(pvApiCtx, 1, sci_strings)) { /* logflags */ GetLogflags(pvApiCtx, fname, 1, opts, &logFlags); iskip = 1; } if (FirstOpt(pvApiCtx) == 2 + iskip) /** plot2d([loglags,] y, <opt_args>); **/ { sciErr = getVarAddressFromPosition(pvApiCtx, 1 + iskip, &piAddrl2); if (sciErr.iErr) { printError(&sciErr, 0); return 1; } sciErr = getVarType(pvApiCtx, piAddrl2, &iTypel2); if (sciErr.iErr) { printError(&sciErr, 0); return 1; } // the argument can be a matrix of doubles or other // If it is not a matrix of doubles, call overload if (iTypel2 == sci_matrix) { // Retrieve a matrix of double at position 1 + iskip. sciErr = getMatrixOfDouble(pvApiCtx, piAddrl2, &m2, &n2, &l2); if (sciErr.iErr) { printError(&sciErr, 0); Scierror(202, _("%s: Wrong type for argument #%d: A real expected.\n"), fname, 1 + iskip); return 1; } } else { OverLoad(1); return 0; } if (m2 == 1 && n2 > 1) { m2 = n2; n2 = 1; } m1 = m2; n1 = n2; sciErr = allocMatrixOfDouble(pvApiCtx, nbInputArgument(pvApiCtx) + 1, m1, n1, &l1); if (sciErr.iErr) { printError(&sciErr, 0); Scierror(999, _("%s: Memory allocation error.\n"), fname); return 1; } for (i = 0; i < m2 ; ++i) { for (j = 0 ; j < n2 ; ++j) { *(l1 + i + m2 * j) = (double) i + 1; } } } else if (FirstOpt(pvApiCtx) >= 3 + iskip) /** plot2d([loglags,] x, y[, style [,...]]); **/ { /* x */ sciErr = getVarAddressFromPosition(pvApiCtx, 1 + iskip, &piAddrl1); if (sciErr.iErr) { printError(&sciErr, 0); return 1; } sciErr = getVarType(pvApiCtx, piAddrl1, &iTypel1); if (sciErr.iErr) { printError(&sciErr, 0); return 1; } // x can be a matrix of doubles or other // If x is not a matrix of doubles, call overload if (iTypel1 == sci_matrix) { // Retrieve a matrix of double at position 1 + iskip. sciErr = getMatrixOfDouble(pvApiCtx, piAddrl1, &m1, &n1, &l1); if (sciErr.iErr) { printError(&sciErr, 0); Scierror(202, _("%s: Wrong type for argument #%d: A real expected.\n"), fname, 1 + iskip); return 1; } } else { OverLoad(1); return 0; } /* y */ sciErr = getVarAddressFromPosition(pvApiCtx, 2 + iskip, &piAddrl2); if (sciErr.iErr) { printError(&sciErr, 0); return 1; } sciErr = getVarType(pvApiCtx, piAddrl2, &iTypel2); if (sciErr.iErr) { printError(&sciErr, 0); return 1; } // y can be a matrix of doubles or other // If y is not a matrix of doubles, call overload if (iTypel2 == sci_matrix) { // Retrieve a matrix of double at position 1 + iskip. sciErr = getMatrixOfDouble(pvApiCtx, piAddrl2, &m2, &n2, &l2); if (sciErr.iErr) { printError(&sciErr, 0); Scierror(202, _("%s: Wrong type for argument #%d: A real expected.\n"), fname, 2 + iskip); return 1; } } else { OverLoad(2); return 0; } test = (m1 * n1 == 0) || ((m1 == 1 || n1 == 1) && (m2 == 1 || n2 == 1) && (m1 * n1 == m2 * n2)) || ((m1 == m2) && (n1 == n2)) || ((m1 == 1 && n1 == m2) || (n1 == 1 && m1 == m2)); //CheckDimProp if (!test) { Scierror(999, _("%s: Wrong size for input arguments: Incompatible sizes.\n"), fname); return 1; } if (m1 * n1 == 0) { /* default x=1:n */ sciErr = allocMatrixOfDouble(pvApiCtx, nbInputArgument(pvApiCtx) + 1, m2, n2, <); if (sciErr.iErr) { printError(&sciErr, 0); Scierror(999, _("%s: Memory allocation error.\n"), fname); return 1; } if (m2 == 1 && n2 > 1) { m2 = n2; n2 = 1; } for (i = 0; i < m2 ; ++i) { for (j = 0 ; j < n2 ; ++j) { *(lt + i + m2 * j) = (double) i + 1; } } m1 = m2; n1 = n2; l1 = lt; } else if ((m1 == 1 || n1 == 1) && (m2 != 1 && n2 != 1)) { /* a single x vector for mutiple columns for y */ sciErr = allocMatrixOfDouble(pvApiCtx, nbInputArgument(pvApiCtx) + 1, m2, n2, <); if (sciErr.iErr) { printError(&sciErr, 0); Scierror(999, _("%s: Memory allocation error.\n"), fname); return 1; } for (i = 0; i < m2 ; ++i) { for (j = 0 ; j < n2 ; ++j) { *(lt + i + m2 * j) = *(l1 + i); } } m1 = m2; n1 = n2; l1 = lt; } else if ((m1 == 1 && n1 == 1) && (n2 != 1)) { /* a single y row vector for a single x */ sciErr = allocMatrixOfDouble(pvApiCtx, nbInputArgument(pvApiCtx) + 1, m1, n2, <); if (sciErr.iErr) { printError(&sciErr, 0); Scierror(999, _("%s: Memory allocation error.\n"), fname); return 1; } for (j = 0 ; j < n2 ; ++j) { lt[j] = *l1; } n1 = n2; l1 = lt; } else { if (m2 == 1 && n2 > 1) { m2 = n2; n2 = 1; } if (m1 == 1 && n1 > 1) { m1 = n1; n1 = 1; } } } else { Scierror(999, _("%s: Wrong number of mandatory input arguments. At least %d expected.\n"), fname, 1); return 0; } if (n1 == -1 || n2 == -1 || m1 == -1 || m2 == -1) { Scierror(999, _("%s: Wrong size for input arguments #%d and #%d.\n"), fname, 1, 2); /* @TODO : detail error */ return 0; } sciGetStyle(pvApiCtx, fname, 3 + iskip, n1, opts, &style); GetStrf(pvApiCtx, fname, 4 + iskip, opts, &strf); GetLegend(pvApiCtx, fname, 5 + iskip, opts, &legend); GetRect(pvApiCtx, fname, 6 + iskip, opts, &rect); GetNax(pvApiCtx, 7 + iskip, opts, &nax, &flagNax); if (iskip == 0) { GetLogflags(pvApiCtx, fname, 8, opts, &logFlags); } freeStrf = !isDefStrf(strf); // Check strf [0-1][0-8][0-5] if (!isDefStrf(strf) && (strlen(strf) != 3 || strf[0] < '0' || strf[0] > '1' || strf[1] < '0' || strf[1] > '8' || strf[2] < '0' || strf[2] > '5')) { Scierror(999, _("%s: Wrong value for strf option: %s.\n"), fname, strf); if (freeStrf) { freeAllocatedSingleString(strf); } return -1; } if (isDefStrf(strf)) { strcpy(strfl, DEFSTRFN); strf = strfl; if (!isDefRect(rect)) { strfl[1] = '7'; } if (!isDefLegend(legend)) { strfl[0] = '1'; } GetOptionalIntArg(pvApiCtx, fname, 9, "frameflag", &frame, 1, opts); if (frame != &frame_def) { if (*frame >= 0 && *frame <= 8) { strfl[1] = (char)(*frame + 48); } else { Scierror(999, _("%s: Wrong value for frameflag option.\n"), fname); if (freeStrf) { freeAllocatedSingleString(strf); } return -1; } } GetOptionalIntArg(pvApiCtx, fname, 9, "axesflag", &axes, 1, opts); if (axes != &axes_def) { if ((*axes >= 0 && *axes <= 5) || *axes == 9) { strfl[2] = (char)(*axes + 48); } else { Scierror(999, _("%s: Wrong value for axesflag option.\n"), fname); if (freeStrf) { freeAllocatedSingleString(strf); } return -1; } } } /* Make a test on log. mode : available or not depending on the bounds set by Rect arg. or xmin/xmax : Rect case : - if the min bound is strictly posivite, we can use log. mode - if not, send error message x/y min/max case: - we find the first strictly positive min bound in Plo2dn.c ?? */ switch (strf[1]) { case '0': /* no computation, the plot use the previous (or default) scale */ break; case '1' : case '3' : case '5' : case '7': /* based on Rect arg */ if (rect[0] > rect[2] || rect[1] > rect[3]) { if (freeStrf) { freeAllocatedSingleString(strf); } Scierror(999, _("%s: Impossible status min > max in x or y rect data.\n"), fname); return -1; } if (rect[0] <= 0. && logFlags[1] == 'l') /* xmin */ { if (freeStrf) { freeAllocatedSingleString(strf); } Scierror(999, _("%s: Bounds on x axis must be strictly positive to use logarithmic mode.\n"), fname); return -1; } if (rect[1] <= 0. && logFlags[2] == 'l') /* ymin */ { if (freeStrf) { freeAllocatedSingleString(strf); } Scierror(999, _("%s: Bounds on y axis must be strictly positive to use logarithmic mode.\n"), fname); return -1; } break; case '2' : case '4' : case '6' : case '8': case '9': /* computed from the x/y min/max */ if ((int)strlen(logFlags) < 1) { dataflag = 'g'; } else { dataflag = logFlags[0]; } switch (dataflag) { case 'e' : size_x = (m1 != 0) ? 2 : 0; break; case 'o' : size_x = m1; break; case 'g' : default : size_x = (n1 * m1); break; } if (size_x != 0) { if (logFlags[1] == 'l' && sciFindStPosMin((l1), size_x) <= 0.0) { if (freeStrf) { freeAllocatedSingleString(strf); } Scierror(999, _("%s: At least one x data must be strictly positive to compute the bounds and use logarithmic mode.\n"), fname); return -1; } } size_y = (n1 * m1); if (size_y != 0) { if (logFlags[2] == 'l' && sciFindStPosMin((l2), size_y) <= 0.0) { if (freeStrf) { freeAllocatedSingleString(strf); } Scierror(999, _("%s: At least one y data must be strictly positive to compute the bounds and use logarithmic mode\n"), fname); return -1; } } break; } // open a figure if none already exists getOrCreateDefaultSubwin(); Objplot2d (1, logFlags, (l1), (l2), &n1, &m1, style, strf, legend, rect, nax, flagNax); // Allocated by sciGetStyle (get_style_arg function in GetCommandArg.c) FREE(style); if (freeStrf) { freeAllocatedSingleString(strf); } AssignOutputVariable(pvApiCtx, 1) = 0; ReturnArguments(pvApiCtx); return 0; }
/*--------------------------------------------------------------------------*/ int sci_xtitle(char * fname, unsigned long fname_len) { SciErr sciErr; int* piAddr4 = NULL; int* boxPtr = NULL; int* piAddrStr = NULL; int narg = 0; int nbLabels = 0; /* number of modified labels */ int box = 0; BOOL isBoxSpecified = FALSE; int iSubwinUID = 0; static rhs_opts opts[] = { { -1, "boxed", -1, 0, 0, NULL}, { -1, NULL, -1, 0, 0, NULL} }; if (nbInputArgument(pvApiCtx) <= 0) { sci_demo(fname, fname_len); return 0; } CheckInputArgument(pvApiCtx, 1, 5); nbLabels = nbInputArgument(pvApiCtx); /* get the given options from the name in opts */ if (!getOptionals(pvApiCtx, fname, opts)) { /* error */ return 0; } /* compatibility with previous version in which box was put */ /* at the fourth position */ if (nbInputArgument(pvApiCtx) == 4) { int type = getInputArgumentType(pvApiCtx, 4); if (type == 1 || type == 8)/* double or int */ { int n = 0, m = 0; sciErr = getVarAddressFromPosition(pvApiCtx, 4, &piAddr4); if (sciErr.iErr) { printError(&sciErr, 0); return 1; } // Retrieve a matrix of double at position 4. sciErr = getMatrixOfDoubleAsInteger(pvApiCtx, piAddr4, &m, &n, &boxPtr); if (sciErr.iErr) { printError(&sciErr, 0); Scierror(202, _("%s: Wrong type for argument #%d: A real expected.\n"), fname, 4); return 1; } //CheckScalar if (m != 1 || n != 1) { Scierror(999, _("%s: Wrong size for input argument #%d: A real scalar expected.\n"), fname, 4); return 1; } box = *boxPtr; nbLabels--; /* it is not a label text */ isBoxSpecified = TRUE; } } if (opts[0].iPos != -1 && !isBoxSpecified) { /* check if "box" is in the options */ getScalarBoolean(pvApiCtx, opts[0].piAddr, &box); if (opts[0].iRows != 1 || opts[0].iCols != 1) { /* check size */ Scierror(999, _("%s: Wrong type for input argument: Scalar expected.\n"), fname); return 1; } nbLabels--; /* it is not a label text */ } iSubwinUID = getOrCreateDefaultSubwin(); for (narg = 1 ; narg <= nbLabels ; narg++) { int m = 0, n = 0; char **Str = NULL; int iModifiedLabel = 0; int* piModifiedLabel = &iModifiedLabel; sciErr = getVarAddressFromPosition(pvApiCtx, narg, &piAddrStr); if (sciErr.iErr) { printError(&sciErr, 0); return 1; } // Retrieve a matrix of string at position narg. if (getAllocatedMatrixOfString(pvApiCtx, piAddrStr, &m, &n, &Str)) { Scierror(202, _("%s: Wrong type for argument #%d: String matrix expected.\n"), fname, narg); return 1; } if (m * n == 0) { continue; } switch (narg) { case 1: getGraphicObjectProperty(iSubwinUID, __GO_TITLE__, jni_int, (void **)&piModifiedLabel); break; case 2: getGraphicObjectProperty(iSubwinUID, __GO_X_AXIS_LABEL__, jni_int, (void **)&piModifiedLabel); break; case 3: getGraphicObjectProperty(iSubwinUID, __GO_Y_AXIS_LABEL__, jni_int, (void **)&piModifiedLabel); break; case 4: getGraphicObjectProperty(iSubwinUID, __GO_Z_AXIS_LABEL__, jni_int, (void **)&piModifiedLabel); break; default: break; } #if 0 startFigureDataWriting(pFigure); #endif sciSetText(iModifiedLabel, Str, m, n); setGraphicObjectProperty(iModifiedLabel, __GO_FILL_MODE__, &box, jni_bool, 1); #if 0 endFigureDataWriting(pFigure); #endif freeArrayOfString(Str, m * n); } setCurrentObject(iSubwinUID); #if 0 sciDrawObj(pFigure); #endif AssignOutputVariable(pvApiCtx, 1) = 0; ReturnArguments(pvApiCtx); return 0; }
/*--------------------------------------------------------------------------*/ int sci_param3d1(char *fname, void *pvApiCtx) { SciErr sciErr; int izcol = 0, isfac = 0; double *zcol = NULL; static double ebox_def [6] = { 0, 1, 0, 1, 0, 1}; double *ebox = ebox_def; static int iflag_def[3] = {1, 2, 4}; int iflag[3] , *ifl = NULL; double alpha_def = 35.0 , theta_def = 45.0; double *alpha = &alpha_def, *theta = &theta_def; int m1 = 0, n1 = 0, m2 = 0, n2 = 0, m3 = 0, n3 = 0; int m3n = 0, n3n = 0, m3l = 0; static rhs_opts opts[] = { { -1, "alpha", -1, 0, 0, NULL}, { -1, "ebox", -1, 0, 0, NULL}, { -1, "flag", -1, 0, 0, NULL}, { -1, "leg", -1, 0, 0, NULL}, { -1, "theta", -1, 0, 0, NULL}, { -1, NULL, -1, 0, 0, NULL} }; char * labels = NULL; int* piAddr1 = NULL; int* piAddr2 = NULL; int* piAddr3 = NULL; int* piAddr31 = NULL; int* piAddr32 = NULL; double* l1 = NULL; double* l2 = NULL; double* l3 = NULL; double* l3n = NULL; if (nbInputArgument(pvApiCtx) <= 0) { sci_demo(fname, pvApiCtx); return 0; } CheckInputArgument(pvApiCtx, 3, 8); if (getOptionals(pvApiCtx, fname, opts) == 0) { ReturnArguments(pvApiCtx); return 0; } if (FirstOpt(pvApiCtx) < 4) { Scierror(999, _("%s: Misplaced optional argument: #%d must be at position %d.\n"), fname, 1, 4); return (0); } //get variable address sciErr = getVarAddressFromPosition(pvApiCtx, 1, &piAddr1); if (sciErr.iErr) { printError(&sciErr, 0); return 1; } // Retrieve a matrix of double at position 1. sciErr = getMatrixOfDouble(pvApiCtx, piAddr1, &m1, &n1, &l1); /* x */ if (sciErr.iErr) { Scierror(202, _("%s: Wrong type for argument #%d: A real expected.\n"), fname, 1); printError(&sciErr, 0); return 1; } if (m1 == 1 && n1 > 1) { m1 = n1; n1 = 1; } //get variable address sciErr = getVarAddressFromPosition(pvApiCtx, 2, &piAddr2); if (sciErr.iErr) { printError(&sciErr, 0); return 1; } // Retrieve a matrix of double at position 2. sciErr = getMatrixOfDouble(pvApiCtx, piAddr2, &m2, &n2, &l2); /* y */ if (sciErr.iErr) { Scierror(202, _("%s: Wrong type for argument #%d: A real expected.\n"), fname, 2); printError(&sciErr, 0); return 1; } if (m2 == 1 && n2 > 1) { m2 = n2; n2 = 1; } if (m1 * n1 == 0) { AssignOutputVariable(pvApiCtx, 1) = 0; ReturnArguments(pvApiCtx); return 0; } //CheckSameDims if (m1 != m2 || n1 != n2) { Scierror(999, _("%s: Wrong size for input argument #%d: %d-by-%d matrix expected.\n"), fname, 1, m1, n1); return 1; } //get variable address sciErr = getVarAddressFromPosition(pvApiCtx, 3, &piAddr3); if (sciErr.iErr) { printError(&sciErr, 0); return 1; } switch (getInputArgumentType(pvApiCtx, 3)) { case 1 : izcol = 0; // Retrieve a matrix of double at position 3. // YOU MUST REMOVE YOUR VARIABLE DECLARATION "int l3". sciErr = getMatrixOfDouble(pvApiCtx, piAddr3, &m3, &n3, &l3); /* z */ if (sciErr.iErr) { Scierror(202, _("%s: Wrong type for argument #%d: A real expected.\n"), fname, 3); printError(&sciErr, 0); return 1; } break; case 15 : izcol = 1; /* z = list(z,colors) */ sciErr = getListItemNumber(pvApiCtx, piAddr3, &m3l); if (sciErr.iErr) { Scierror(202, _("%s: Wrong type for argument #%d: A real expected.\n"), fname, 3); printError(&sciErr, 0); return 1; } if (m3l != 2) { Scierror(999, _("%s: Wrong size for input argument #%d: List of size %d expected.\n"), fname, 2, m3l, 2); return 0; } sciErr = getListItemAddress(pvApiCtx, piAddr3, 1, &piAddr31); if (sciErr.iErr) { printError(&sciErr, 0); return 1; } sciErr = getMatrixOfDouble(pvApiCtx, piAddr31, &m3, &n3, &l3); /* z */ if (sciErr.iErr) { Scierror(202, _("%s: Wrong type for argument #%d: A real expected.\n"), fname, 3); printError(&sciErr, 0); return 1; } sciErr = getListItemAddress(pvApiCtx, piAddr3, 2, &piAddr32); if (sciErr.iErr) { printError(&sciErr, 0); return 1; } sciErr = getMatrixOfDouble(pvApiCtx, piAddr32, &m3n, &n3n, &l3n); /* z */ if (sciErr.iErr) { Scierror(202, _("%s: Wrong type for argument #%d: A real expected.\n"), fname, 3); printError(&sciErr, 0); return 1; } zcol = (l3n); if (m3n * n3n != n3) { Scierror(999, _("%s: Wrong size for input argument #%d: %d expected.\n"), fname, 3, n3); return 0; } break; default : OverLoad(3); return 0; } if (m3 == 1 && n3 > 1) { m3 = n3; n3 = 1; } //CheckSameDims if (m1 != m3 || n1 != n3) { Scierror(999, _("%s: Wrong size for input argument #%d: %d-by-%d matrix expected.\n"), fname, 1, m1, n1); return 1; } GetOptionalDoubleArg(pvApiCtx, fname, 4, "theta", &theta, 1, opts); GetOptionalDoubleArg(pvApiCtx, fname, 5, "alpha", &alpha, 1, opts); GetLabels(pvApiCtx, fname, 6, opts, &labels); iflag_def[1] = 8; ifl = &(iflag_def[1]); GetOptionalIntArg(pvApiCtx, fname, 7, "flag", &ifl, 2, opts); iflag[0] = iflag_def[0]; iflag[1] = ifl[0]; iflag[2] = ifl[1]; GetOptionalDoubleArg(pvApiCtx, fname, 8, "ebox", &ebox, 6, opts); if (m1 == 1 && n1 > 1) { m1 = n1; n1 = 1; } getOrCreateDefaultSubwin(); /* NG beg */ isfac = -1; Objplot3d (fname, &isfac, &izcol, (l1), (l2), (l3), zcol, &m1, &n1, theta, alpha, labels, iflag, ebox, &m1, &n1, &m2, &n2, &m3, &n3, &m3n, &n3n); /*Adding F.Leray 12.03.04*/ AssignOutputVariable(pvApiCtx, 1) = 0; ReturnArguments(pvApiCtx); return 0; }
int sci_optional_args(char* fname, void *pvApiCtx) { char* pstName = NULL; int iAge = 0; int iDrivingLicense = 0; char stOutput[100]; static rhs_opts opts[] = { { -1, "name", -1, 0, 0, NULL}, { -1, "age", -1, 0, 0, NULL}, { -1, "driving_license", -1, 0, 0, NULL}, { -1, NULL, -1, 0, 0, NULL} }; CheckInputArgument(pvApiCtx, 0, 3); CheckOutputArgument(pvApiCtx, 0, 1); if (getOptionals(pvApiCtx, fname, opts) == 0) { Scierror(999, "foo: error occured in getOptionals()."); return 1; } // name if (opts[0].iPos != -1) { getAllocatedSingleString(pvApiCtx, opts[0].piAddr, &pstName); } else { pstName = strdup("John Doe"); } // age if (opts[1].iPos != -1) { double dblAge = 0; getScalarDouble(pvApiCtx, opts[1].piAddr, &dblAge); iAge = (int)dblAge; } else { iAge = 77; } // driving license if (opts[2].iPos != -1) { getScalarBoolean(pvApiCtx, opts[2].piAddr, &iDrivingLicense); } else { iDrivingLicense = 0; } sprintf(stOutput, "%s, %d years old, %s a driving license.", pstName, iAge, iDrivingLicense ? "has" : "does not have"); if (createSingleString(pvApiCtx, nbInputArgument(pvApiCtx) + 1, stOutput)) { return 1; } AssignOutputVariable(pvApiCtx, 1) = nbInputArgument(pvApiCtx) + 1; return 0; }
/*--------------------------------------------------------------------------*/ int sci_plot3d(char * fname, unsigned long fname_len) { SciErr sciErr; static double ebox_def [6] = { 0, 1, 0, 1, 0, 1}; double *ebox = ebox_def; static int iflag_def[3] = {2, 2, 4}; int *iflag = iflag_def; double alpha_def = 35.0 , theta_def = 45.0; double *alpha = &alpha_def, *theta = &theta_def; int m1 = 0, n1 = 0, m2 = 0, n2 = 0, m3 = 0, n3 = 0; int m3n = 0, n3n = 0, m3l = 0; int izcol = 0, isfac = 0; double *zcol = NULL; static rhs_opts opts[] = { { -1, "alpha", -1, 0, 0, NULL}, { -1, "ebox", -1, 0, 0, NULL}, { -1, "flag", -1, 0, 0, NULL}, { -1, "leg", -1, 0, 0, NULL}, { -1, "theta", -1, 0, 0, NULL}, { -1, NULL, -1, 0, 0, NULL} }; char * legend = NULL; int* piAddr1 = NULL; int* piAddr2 = NULL; int* piAddr3 = NULL; int* piAddr31 = NULL; int* piAddr32 = NULL; double* l1 = NULL; double* l2 = NULL; double* l3 = NULL; double* l3n = NULL; /* ** This overload the function to call demo script ** the demo script is called %_<fname> */ if (nbInputArgument(pvApiCtx) <= 0) { sci_demo(fname, fname_len); return 0; } CheckInputArgument(pvApiCtx, 3, 8); if (getOptionals(pvApiCtx, fname, opts) == 0) { ReturnArguments(pvApiCtx); return 0; } if (FirstOpt() < 4) { Scierror(999, _("%s: Misplaced optional argument: #%d must be at position %d.\n"), fname, 1, 4); return -1; } //get variable address sciErr = getVarAddressFromPosition(pvApiCtx, 1, &piAddr1); if (sciErr.iErr) { printError(&sciErr, 0); return 1; } // Retrieve a matrix of double at position 1. sciErr = getMatrixOfDouble(pvApiCtx, piAddr1, &m1, &n1, &l1); if (sciErr.iErr) { Scierror(202, _("%s: Wrong type for argument %d: A real expected.\n"), fname, 1); printError(&sciErr, 0); return 1; } //get variable address sciErr = getVarAddressFromPosition(pvApiCtx, 2, &piAddr2); if (sciErr.iErr) { printError(&sciErr, 0); return 1; } // Retrieve a matrix of double at position 2. sciErr = getMatrixOfDouble(pvApiCtx, piAddr2, &m2, &n2, &l2); if (sciErr.iErr) { Scierror(202, _("%s: Wrong type for argument %d: A real expected.\n"), fname, 2); printError(&sciErr, 0); return 1; } if (m1 * n1 == 0) { AssignOutputVariable(pvApiCtx, 1) = 0; ReturnArguments(pvApiCtx); return 0; } if (nbInputArgument(pvApiCtx) >= 3) { /* third argument can be a matrix z or a list list(z,zcol) */ sciErr = getVarAddressFromPosition(pvApiCtx, 3, &piAddr3); if (sciErr.iErr) { printError(&sciErr, 0); return 1; } switch (getInputArgumentType(pvApiCtx, 3)) { case sci_matrix : //get variable address sciErr = getVarAddressFromPosition(pvApiCtx, 3, &piAddr3); if (sciErr.iErr) { printError(&sciErr, 0); return 1; } // Retrieve a matrix of double at position 3. sciErr = getMatrixOfDouble(pvApiCtx, piAddr3, &m3, &n3, &l3); if (sciErr.iErr) { Scierror(202, _("%s: Wrong type for argument %d: A real expected.\n"), fname, 3); printError(&sciErr, 0); return 1; } izcol = 0; break; case sci_list : izcol = 1; /* z = list(z,colors) */ sciErr = getListItemNumber(pvApiCtx, piAddr3, &m3l); if (sciErr.iErr) { Scierror(202, _("%s: Wrong type for argument %d: A real expected.\n"), fname, 3); printError(&sciErr, 0); return 1; } if (m3l != 2) { Scierror(999, _("%s: Wrong size for input argument #%d: List of size %d expected.\n"), fname, 2, m3l, 2); return 1; } sciErr = getListItemAddress(pvApiCtx, piAddr3, 1, &piAddr31); if (sciErr.iErr) { printError(&sciErr, 0); return 1; } sciErr = getMatrixOfDouble(pvApiCtx, piAddr31, &m3, &n3, &l3); /* z */ if (sciErr.iErr) { Scierror(202, _("%s: Wrong type for argument %d: A real expected.\n"), fname, 3); printError(&sciErr, 0); return 1; } sciErr = getListItemAddress(pvApiCtx, piAddr3, 2, &piAddr32); if (sciErr.iErr) { printError(&sciErr, 0); return 1; } sciErr = getMatrixOfDouble(pvApiCtx, piAddr32, &m3n, &n3n, &l3n); /* z */ if (sciErr.iErr) { Scierror(202, _("%s: Wrong type for argument %d: A real expected.\n"), fname, 3); printError(&sciErr, 0); return 1; } zcol = (l3n); if (m3n * n3n != n3 && m3n * n3n != m3 * n3) { Scierror(999, _("%s: Wrong size for input argument #%d: %d or %d expected.\n"), fname, 3, n3, m3 * n3); return 1; } /* * Added by E Segre 4/5/2000. In the case where zcol is a * matrix of the same size as z, we set izcol to 2. This * value is later transmitted to the C2F(fac3dg) routine, * which has been modified to do the interpolated shading * (see the file SCI/modules/graphics/src/c/Plo3d.c */ if (m3n * n3n == m3 * n3) { izcol = 2 ; } break; default : OverLoad(3); return 0; } } iflag_def[1] = 8; GetOptionalDoubleArg(pvApiCtx, fname, 4, "theta", &theta, 1, opts); GetOptionalDoubleArg(pvApiCtx, fname, 5, "alpha", &alpha, 1, opts); GetLabels(pvApiCtx, fname, 6, opts, &legend); GetOptionalIntArg(pvApiCtx, fname, 7, "flag", &iflag, 3, opts); GetOptionalDoubleArg(pvApiCtx, fname, 8, "ebox", &ebox, 6, opts); if (m1 * n1 == m3 * n3 && m1 * n1 == m2 * n2 && m1 * n1 != 1) { if (! (m1 == m2 && m2 == m3 && n1 == n2 && n2 == n3)) { Scierror(999, _("%s: Wrong value for input arguments #%d, #%d and #%d: Incompatible length.\n"), fname, 1, 2, 3); return 1; } } else { if (m2 * n2 != n3) { Scierror(999, _("%s: Wrong value for input arguments #%d and #%d: Incompatible length.\n"), fname, 2, 3); return 1; } if (m1 * n1 != m3) { Scierror(999, _("%s: Wrong value for input arguments #%d and #%d: Incompatible length.\n"), fname, 1, 3); return 1; } if (m1 * n1 <= 1 || m2 * n2 <= 1) { Scierror(999, _("%s: Wrong size for input arguments #%d and #%d: %s expected.\n"), fname, 2, 3, ">= 2"); return 1; } } if (m1 * n1 == 0 || m2 * n2 == 0 || m3 * n3 == 0) { AssignOutputVariable(pvApiCtx, 1) = 0; ReturnArguments(pvApiCtx); return 0; } getOrCreateDefaultSubwin(); /******************** 24/05/2002 ********************/ if (m1 * n1 == m3 * n3 && m1 * n1 == m2 * n2 && m1 * n1 != 1) /* NG beg */ { isfac = 1; } else { isfac = 0; } Objplot3d (fname, &isfac, &izcol, (l1), (l2), (l3), zcol, &m3, &n3, theta, alpha, legend, iflag, ebox, &m1, &n1, &m2, &n2, &m3, &n3, &m3n, &n3n); /*Adding F.Leray 12.03.04 and 19.03.04*/ AssignOutputVariable(pvApiCtx, 1) = 0; ReturnArguments(pvApiCtx); return 0; }
/*------------------------------------------------------------------------*/ int sci_param3d(char * fname, void *pvApiCtx) { SciErr sciErr; int izcol = 0, isfac = 0; static double ebox_def[6] = { 0, 1, 0, 1, 0, 1}; double *ebox = ebox_def; static int iflag_def[3] = {1, 2, 4}; int iflag[3], *ifl = NULL, ix1 = 0, one = 1; double alpha_def = 35.0 , theta_def = 45.0; double *alpha = &alpha_def, *theta = &theta_def; int m1 = 0, n1 = 0, m2 = 0, n2 = 0, m3 = 0, n3 = 0; int m3n = 0, n3n = 0; /* F.Leray 19.03.04*/ static rhs_opts opts[] = { { -1, "alpha", -1, 0, 0, NULL}, { -1, "ebox", -1, 0, 0, NULL}, { -1, "flag", -1, 0, 0, NULL}, { -1, "leg", -1, 0, 0, NULL}, { -1, "theta", -1, 0, 0, NULL}, { -1, NULL, -1, 0, 0, NULL} }; char * labels = NULL; int* piAddr1 = NULL; int* piAddr2 = NULL; int* piAddr3 = NULL; double* l1 = NULL; double* l2 = NULL; double* l3 = NULL; if (nbInputArgument(pvApiCtx) <= 0) { sci_demo(fname, pvApiCtx); return 0; } CheckInputArgument(pvApiCtx, 3, 8); if (getOptionals(pvApiCtx, fname, opts) == 0) { ReturnArguments(pvApiCtx); return 0; } if (FirstOpt(pvApiCtx) < 4) { Scierror(999, _("%s: Misplaced optional argument: #%d must be at position %d.\n"), fname, 1, 4); return(0); } //get variable address sciErr = getVarAddressFromPosition(pvApiCtx, 1, &piAddr1); if (sciErr.iErr) { printError(&sciErr, 0); return 1; } // Retrieve a matrix of double at position 1. sciErr = getMatrixOfDouble(pvApiCtx, piAddr1, &m1, &n1, &l1); if (sciErr.iErr) { Scierror(202, _("%s: Wrong type for argument #%d: A real expected.\n"), fname, 1); printError(&sciErr, 0); return 1; } if (m1 * n1 == 0) { AssignOutputVariable(pvApiCtx, 1) = 0; ReturnArguments(pvApiCtx); return 0; } //get variable address sciErr = getVarAddressFromPosition(pvApiCtx, 2, &piAddr2); if (sciErr.iErr) { printError(&sciErr, 0); return 1; } // Retrieve a matrix of double at position 2. sciErr = getMatrixOfDouble(pvApiCtx, piAddr2, &m2, &n2, &l2); if (sciErr.iErr) { Scierror(202, _("%s: Wrong type for argument #%d: A real expected.\n"), fname, 2); printError(&sciErr, 0); return 1; } //get variable address sciErr = getVarAddressFromPosition(pvApiCtx, 3, &piAddr3); if (sciErr.iErr) { printError(&sciErr, 0); return 1; } // Retrieve a matrix of double at position 3. sciErr = getMatrixOfDouble(pvApiCtx, piAddr3, &m3, &n3, &l3); if (sciErr.iErr) { Scierror(202, _("%s: Wrong type for argument #%d: A real expected.\n"), fname, 3); printError(&sciErr, 0); return 1; } //CheckSameDims if (m1 != m2 || n1 != n2) { Scierror(999, _("%s: Wrong size for input argument #%d: %d-by-%d matrix expected.\n"), fname, 1, m1, n1); return 1; } //CheckSameDims if (m2 != m3 || n2 != n3) { Scierror(999, _("%s: Wrong size for input argument #%d: %d-by-%d matrix expected.\n"), fname, 2, m2, n2); return 1; } GetOptionalDoubleArg(pvApiCtx, fname, 4, "theta", &theta, 1, opts); GetOptionalDoubleArg(pvApiCtx, fname, 5, "alpha", &alpha, 1, opts); GetLabels(pvApiCtx, fname, 6, opts, &labels); iflag_def[1] = 8; ifl = &(iflag_def[1]); GetOptionalIntArg(pvApiCtx, fname, 7, "flag", &ifl, 2, opts); iflag[0] = iflag_def[0]; iflag[1] = ifl[0]; iflag[2] = ifl[1]; GetOptionalDoubleArg(pvApiCtx, fname, 8, "ebox", &ebox, 6, opts); getOrCreateDefaultSubwin(); ix1 = m1 * n1; /* NG beg */ isfac = -1; izcol = 0; Objplot3d (fname, &isfac, &izcol, (l1), (l2), (l3), (double *) NULL, &ix1, &one, theta, alpha, labels, iflag, ebox, &m1, &n1, &m2, &n2, &m3, &n3, &m3n, &n3n); /*Adding F.Leray 12.03.04 */ /* NG end */ AssignOutputVariable(pvApiCtx, 1) = 0; ReturnArguments(pvApiCtx); return 0; }
/*--------------------------------------------------------------------------*/ int sci_fec(char *fname, void *pvApiCtx) { SciErr sciErr; int m1 = 0, n1 = 0, m2 = 0, n2 = 0, m3 = 0, n3 = 0, m4 = 0, n4 = 0, mn1 = 0; static rhs_opts opts[] = { { -1, "colminmax", -1, 0, 0, NULL}, { -1, "colout", -1, 0, 0, NULL}, { -1, "leg", -1, 0, 0, NULL}, { -1, "mesh", -1, 0, 0, NULL}, { -1, "nax", -1, 0, 0, NULL}, { -1, "rect", -1, 0, 0, NULL}, { -1, "strf", -1, 0, 0, NULL}, { -1, "zminmax", -1, 0, 0, NULL}, { -1, NULL, -1, 0, 0, NULL} }; char* strf = NULL; char strfl[4]; char* legend = NULL; double* rect = NULL; double* zminmax = NULL; int* colminmax = NULL; int* nax = NULL; int* colOut = NULL; BOOL flagNax = FALSE; BOOL withMesh = FALSE; int* piAddr1 = NULL; int* piAddr2 = NULL; int* piAddr3 = NULL; int* piAddr4 = NULL; double* l1 = NULL; double* l2 = NULL; double* l3 = NULL; double* l4 = NULL; if (nbInputArgument(pvApiCtx) <= 0) { sci_demo(fname, pvApiCtx); return 0; } CheckInputArgument(pvApiCtx, 4, 12); if (getOptionals(pvApiCtx, fname, opts) == 0) { ReturnArguments(pvApiCtx); return 0; } if (FirstOpt(pvApiCtx) < 5) { Scierror(999, _("%s: Misplaced optional argument: #%d must be at position %d.\n"), fname, 1, 5); return -1; } //get variable address sciErr = getVarAddressFromPosition(pvApiCtx, 1, &piAddr1); if (sciErr.iErr) { printError(&sciErr, 0); return 1; } // Retrieve a matrix of double at position 1. sciErr = getMatrixOfDouble(pvApiCtx, piAddr1, &m1, &n1, &l1); if (sciErr.iErr) { Scierror(202, _("%s: Wrong type for argument #%d: A real expected.\n"), fname, 1); printError(&sciErr, 0); return 1; } //get variable address sciErr = getVarAddressFromPosition(pvApiCtx, 2, &piAddr2); if (sciErr.iErr) { printError(&sciErr, 0); return 1; } // Retrieve a matrix of double at position 2. sciErr = getMatrixOfDouble(pvApiCtx, piAddr2, &m2, &n2, &l2); if (sciErr.iErr) { Scierror(202, _("%s: Wrong type for argument #%d: A real expected.\n"), fname, 2); printError(&sciErr, 0); return 1; } //CheckSameDims if (m1 != m2 || n1 != n2) { Scierror(999, _("%s: Wrong size for input argument #%d: %d-by-%d matrix expected.\n"), fname, 1, m1, n1); return 1; } //get variable address sciErr = getVarAddressFromPosition(pvApiCtx, 3, &piAddr3); if (sciErr.iErr) { printError(&sciErr, 0); return 1; } // Retrieve a matrix of double at position 3. sciErr = getMatrixOfDouble(pvApiCtx, piAddr3, &m3, &n3, &l3); if (sciErr.iErr) { Scierror(202, _("%s: Wrong type for argument #%d: A real expected.\n"), fname, 3); printError(&sciErr, 0); return 1; } if (n3 < 5) { Scierror(999, _("%s: Wrong number of columns for input argument #%d: at least %d expected.\n"), fname, 3, 5); return 0; } // remove number and flag n3 -= 2; //get variable address sciErr = getVarAddressFromPosition(pvApiCtx, 4, &piAddr4); if (sciErr.iErr) { printError(&sciErr, 0); return 1; } // Retrieve a matrix of double at position 4. sciErr = getMatrixOfDouble(pvApiCtx, piAddr4, &m4, &n4, &l4); if (sciErr.iErr) { Scierror(202, _("%s: Wrong type for argument #%d: A real expected.\n"), fname, 4); printError(&sciErr, 0); return 1; } if (m1 * n1 == 0 || m3 == 0) { AssignOutputVariable(pvApiCtx, 1) = 0; ReturnArguments(pvApiCtx); return 0; } GetStrf(pvApiCtx, fname, 5, opts, &strf); GetLegend(pvApiCtx, fname, 6, opts, &legend); GetRect(pvApiCtx, fname, 7, opts, &rect); GetNax(pvApiCtx, 8, opts, &nax, &flagNax); GetZminmax(pvApiCtx, fname, 9, opts, &zminmax); GetColminmax(pvApiCtx, fname, 10, opts, &colminmax); GetColOut(pvApiCtx, fname, 11, opts, &colOut); GetWithMesh(pvApiCtx, fname, 12, opts, &withMesh); getOrCreateDefaultSubwin(); if (isDefStrf (strf)) { strcpy(strfl, DEFSTRFN); strf = strfl; if (!isDefRect(rect)) { strfl[1] = '7'; } if (!isDefLegend(legend)) { strfl[0] = '1'; } } mn1 = m1 * n1; Objfec ((l1), (l2), (l3), (l4), &mn1, &m3, &n3, strf, legend, rect, nax, zminmax, colminmax, colOut, withMesh, flagNax); AssignOutputVariable(pvApiCtx, 1) = 0; ReturnArguments(pvApiCtx); return 0; }
/*--------------------------------------------------------------------------*/ int sci_drawaxis(char *fname, void* pvApiCtx) { /** XXXXX : un point en suspens c'est le "S" ou une adresse est * stockees ds un unsigned long : est ce sufisant ? */ static rhs_opts opts[] = { { -1, "dir", -1, 0, 0, NULL}, { -1, "fontsize", -1, 0, 0, NULL}, { -1, "format_n", -1, 0, 0, NULL}, { -1, "seg", -1, 0, 0, NULL}, { -1, "sub_int", -1, 0, 0, NULL}, { -1, "textcolor", -1, 0, 0, NULL}, { -1, "tics", -1, 0, 0, NULL}, { -1, "ticscolor", -1, 0, 0, NULL}, { -1, "val", -1, 0, 0, NULL}, { -1, "x", -1, 0, 0, NULL}, { -1, "y", -1, 0, 0, NULL}, { -1, NULL, -1, 0, 0, NULL} }; int iSubwinUID = 0; int minrhs = -1, maxrhs = 0, minlhs = 0, maxlhs = 1, nopt = 0; char dir = 'l', *format = NULL, tics = 'v', **val = NULL; int fontsize = -1, sub_int = 2, seg_flag = 1, textcolor = -1, ticscolor = -1; double *x = NULL, *y = NULL; int nx = 0, ny = 0, ntics; int nb_tics_labels = -1; int iRhs = nbInputArgument(pvApiCtx); nopt = NumOpt(pvApiCtx); CheckInputArgument(pvApiCtx, minrhs, maxrhs + nopt); CheckOutputArgument(pvApiCtx, minlhs, maxlhs); if (getOptionals(pvApiCtx, fname, opts) == 0) { /* error */ return 0; } iSubwinUID = getOrCreateDefaultSubwin(); if (opts[0].iPos != -1) { char* pstDir = NULL; //CheckLength if (opts[0].iRows != 1 || opts[0].iCols != 1) { Scierror(999, _("%s: Wrong size for input argument #%d: %d expected.\n"), fname, opts[0].iPos, opts[0].iRows); return 1; } if (getAllocatedSingleString(pvApiCtx, opts[0].piAddr, &pstDir)) { return 1; } dir = pstDir[0]; freeAllocatedSingleString(pstDir); } if (opts[1].iPos != -1) { double dblSize = 0; //CheckScalar if (opts[1].iRows != 1 || opts[1].iCols != 1) { Scierror(999, _("%s: Wrong size for input argument #%d: A real scalar expected.\n"), fname, opts[1].iPos); return 1; } getScalarDouble(pvApiCtx, opts[1].piAddr, &dblSize); fontsize = (int)dblSize; } if (opts[2].iPos != -1) { /* verfier ce que l'on recoit avec "" XXX */ if (getAllocatedSingleString(pvApiCtx, opts[2].piAddr, &format)) { return 1; } } if (opts[3].iPos != -1) { double dblSeq = 0; //CheckScalar if (opts[3].iRows != 1 || opts[3].iCols != 1) { Scierror(999, _("%s: Wrong size for input argument #%d: A real scalar expected.\n"), fname, opts[3].iPos); freeAllocatedSingleString(format); return 1; } getScalarDouble(pvApiCtx, opts[3].piAddr, &dblSeq); seg_flag = (int)dblSeq; } if (opts[4].iPos != -1) { double dblSub = 0; //CheckScalar if (opts[4].iRows != 1 || opts[4].iCols != 1) { Scierror(999, _("%s: Wrong size for input argument #%d: A real scalar expected.\n"), fname, opts[4].iPos); freeAllocatedSingleString(format); return 1; } getScalarDouble(pvApiCtx, opts[4].piAddr, &dblSub); sub_int = (int)dblSub; } if (opts[5].iPos != -1) { double dblColor = 0; //CheckScalar if (opts[5].iRows != 1 || opts[5].iCols != 1) { Scierror(999, _("%s: Wrong size for input argument #%d: A real scalar expected.\n"), fname, opts[5].iPos); freeAllocatedSingleString(format); return 1; } getScalarDouble(pvApiCtx, opts[5].piAddr, &dblColor); textcolor = (int)dblColor; } if (opts[6].iPos != -1) { char* pstTics = NULL; //CheckLength if (opts[6].iRows != 1 || opts[6].iCols != 1) { Scierror(999, _("%s: Wrong size for input argument #%d: %d expected.\n"), fname, opts[6].iPos, opts[6].iRows); freeAllocatedSingleString(format); return 1; } if (getAllocatedSingleString(pvApiCtx, opts[6].piAddr, &pstTics)) { return 1; } tics = pstTics[0]; freeAllocatedSingleString(pstTics); } if (opts[7].iPos != -1) { double dblColor = 0; //CheckScalar if (opts[7].iRows != 1 || opts[7].iCols != 1) { Scierror(999, _("%s: Wrong size for input argument #%d: A real scalar expected.\n"), fname, opts[7].iPos); freeAllocatedSingleString(format); return 1; } getScalarDouble(pvApiCtx, opts[7].piAddr, &dblColor); ticscolor = (int)dblColor; } if (opts[8].iPos != -1) { if (getAllocatedMatrixOfString(pvApiCtx, opts[8].piAddr, &opts[8].iRows, &opts[8].iCols, &val)) { return 1; } } if (opts[9].iPos != -1) { getMatrixOfDouble(pvApiCtx, opts[9].piAddr, &opts[9].iRows, &opts[9].iCols, &x); nx = opts[9].iRows * opts[9].iCols; /* F.Leray OK here opts[9].iRows and opts[9].iCols are integers. */ } else { static double x_def[1]; double *bounds; int iCurrentSubwinUID = getCurrentSubWin(); getGraphicObjectProperty(iCurrentSubwinUID, __GO_DATA_BOUNDS__, jni_double_vector, (void **)&bounds); nx = 1; x = x_def; if (dir == 'l') { x_def[0] = bounds[0]; /* xMin */ } else if (dir == 'r') { x_def[0] = bounds[1]; /* xMax */ } } if (opts[10].iPos != -1) { getMatrixOfDouble(pvApiCtx, opts[10].piAddr, &opts[10].iRows, &opts[10].iCols, &y); ny = opts[10].iRows * opts[10].iCols; } else { static double y_def[1]; double *bounds; int iCurrentSubwinUID = getCurrentSubWin(); getGraphicObjectProperty(iCurrentSubwinUID, __GO_DATA_BOUNDS__, jni_double_vector, (void **)&bounds); ny = 1; y = y_def; if (dir == 'd') { y_def[0] = bounds[2]; /* yMin */ } else if (dir == 'u') { y_def[0] = bounds[3]; /* yMax */ } } /* compatibility test */ switch (tics) { case 'r': if (check_xy(fname, dir, 3, opts[9].iPos, opts[9].iRows, opts[9].iCols, x, opts[10].iPos, opts[10].iRows, opts[10].iCols, y, &ntics) == 0) { ReturnArguments(pvApiCtx); freeAllocatedSingleString(format); freeAllocatedMatrixOfString(opts[8].iRows, opts[8].iCols, val); return 0; } break; case 'i': if (check_xy(fname, dir, 4, opts[9].iPos, opts[9].iRows, opts[9].iCols, x, opts[10].iPos, opts[10].iRows, opts[10].iCols, y, &ntics) == 0) { ReturnArguments(pvApiCtx); freeAllocatedSingleString(format); freeAllocatedMatrixOfString(opts[8].iRows, opts[8].iCols, val); return 0; } break; case 'v': if (check_xy(fname, dir, -1, opts[9].iPos, opts[9].iRows, opts[9].iCols, x, opts[10].iPos, opts[10].iRows, opts[10].iCols, y, &ntics) == 0) { ReturnArguments(pvApiCtx); freeAllocatedSingleString(format); freeAllocatedMatrixOfString(opts[8].iRows, opts[8].iCols, val); return 0; } break; default: Scierror(999, _("%: Wrong value for %s '%c': '%s', '%s' and '%s' expected.\n"), fname, "tics", dir, "r", "v", "i"); freeAllocatedSingleString(format); freeAllocatedMatrixOfString(opts[8].iRows, opts[8].iCols, val); return 0; } if (val != NULL) { //CheckLength if (opts[8].iRows * opts[8].iCols != ntics) { Scierror(999, _("%s: Wrong size for input argument #%d: %d expected.\n"), fname, opts[8].iPos, opts[8].iRows * opts[8].iCols); freeAllocatedSingleString(format); freeAllocatedMatrixOfString(opts[8].iRows, opts[8].iCols, val); return 1; } nb_tics_labels = opts[8].iRows * opts[8].iCols; } Objdrawaxis(dir, tics, x, &nx, y, &ny, val, sub_int, format, fontsize, textcolor, ticscolor, 'n', seg_flag, nb_tics_labels); freeAllocatedSingleString(format); if (val != NULL) { freeAllocatedMatrixOfString(opts[8].iRows, opts[8].iCols, val); } createScalarHandle(pvApiCtx, iRhs + 1, getHandle(getCurrentObject())); AssignOutputVariable(pvApiCtx, 1) = iRhs + 1; ReturnArguments(pvApiCtx); return 0; }