void update_layer(layer l, network net) { int update_batch = net.batch*net.subdivisions; float rate = get_current_rate(net); l.t = get_current_batch(net); if(l.update_gpu){ l.update_gpu(l, update_batch, rate*l.learning_rate_scale, net.momentum, net.decay); } }
void train_char_rnn(char *cfgfile, char *weightfile, char *filename) { FILE *fp = fopen(filename, "r"); //FILE *fp = fopen("data/ab.txt", "r"); //FILE *fp = fopen("data/grrm/asoiaf.txt", "r"); fseek(fp, 0, SEEK_END); size_t size = ftell(fp); fseek(fp, 0, SEEK_SET); char *text = calloc(size, sizeof(char)); fread(text, 1, size, fp); fclose(fp); char *backup_directory = "/home/pjreddie/backup/"; srand(time(0)); data_seed = time(0); char *base = basecfg(cfgfile); printf("%s\n", base); float avg_loss = -1; network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int batch = net.batch; int steps = net.time_steps; int i = (*net.seen)/net.batch; clock_t time; while(get_current_batch(net) < net.max_batches){ i += 1; time=clock(); float_pair p = get_rnn_data(text, size, batch/steps, steps); float loss = train_network_datum(net, p.x, p.y) / (batch); free(p.x); free(p.y); if (avg_loss < 0) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; printf("%d: %f, %f avg, %f rate, %lf seconds\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time)); if(i%100==0){ char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(net, buff); } if(i%10==0){ char buff[256]; sprintf(buff, "%s/%s.backup", backup_directory, base); save_weights(net, buff); } } char buff[256]; sprintf(buff, "%s/%s_final.weights", backup_directory, base); save_weights(net, buff); }
void update_network(network net) { int i; int update_batch = net.batch*net.subdivisions; float rate = get_current_rate(net); for(i = 0; i < net.n; ++i){ layer l = net.layers[i]; if(l.update){ l.update(l, update_batch, rate, net.momentum, net.decay); } } }
void update_network_gpu(network net) { cuda_set_device(net.gpu_index); int i; int update_batch = net.batch*net.subdivisions; float rate = get_current_rate(net); for(i = 0; i < net.n; ++i){ layer l = net.layers[i]; l.t = get_current_batch(net); if(l.update_gpu){ l.update_gpu(l, update_batch, rate*l.learning_rate_scale, net.momentum, net.decay); } } }
void update_network(network net) { int i; int update_batch = net.batch*net.subdivisions; float rate = get_current_rate(net); for(i = 0; i < net.n; ++i){ layer l = net.layers[i]; if(l.type == CONVOLUTIONAL){ update_convolutional_layer(l, update_batch, rate, net.momentum, net.decay); } else if(l.type == DECONVOLUTIONAL){ update_deconvolutional_layer(l, rate, net.momentum, net.decay); } else if(l.type == CONNECTED){ update_connected_layer(l, update_batch, rate, net.momentum, net.decay); } } }
void update_network(network net) { int i; update_args a = {0}; a.batch = net.batch*net.subdivisions; a.learning_rate = get_current_rate(net); a.momentum = net.momentum; a.decay = net.decay; a.adam = net.adam; a.B1 = net.B1; a.B2 = net.B2; a.eps = net.eps; ++*net.t; a.t = *net.t; for(i = 0; i < net.n; ++i){ layer l = net.layers[i]; if(l.update){ l.update(l, a); } } }
void train_prog(char *cfg, char *weight, char *acfg, char *aweight, int clear, int display, char *train_images, int maxbatch) { #ifdef GPU char *backup_directory = "/home/kunle12/backup/"; srand(time(0)); char *base = basecfg(cfg); char *abase = basecfg(acfg); printf("%s\n", base); network *gnet = load_network(cfg, weight, clear); network *anet = load_network(acfg, aweight, clear); int i, j, k; layer imlayer = gnet->layers[gnet->n-1]; printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", gnet->learning_rate, gnet->momentum, gnet->decay); int imgs = gnet->batch*gnet->subdivisions; i = *gnet->seen/imgs; data train, buffer; list *plist = get_paths(train_images); char **paths = (char **)list_to_array(plist); load_args args= get_base_args(anet); args.paths = paths; args.n = imgs; args.m = plist->size; args.d = &buffer; args.type = CLASSIFICATION_DATA; args.threads=16; args.classes = 1; char *ls[2] = {"imagenet", "zzzzzzzz"}; args.labels = ls; pthread_t load_thread = load_data_in_thread(args); clock_t time; gnet->train = 1; anet->train = 1; int x_size = gnet->inputs*gnet->batch; int y_size = gnet->truths*gnet->batch; float *imerror = cuda_make_array(0, y_size); float aloss_avg = -1; if (maxbatch == 0) maxbatch = gnet->max_batches; while (get_current_batch(gnet) < maxbatch) { { int cb = get_current_batch(gnet); float alpha = (float) cb / (maxbatch/2); if(alpha > 1) alpha = 1; float beta = 1 - alpha; printf("%f %f\n", alpha, beta); set_network_alpha_beta(gnet, alpha, beta); set_network_alpha_beta(anet, beta, alpha); } i += 1; time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data_in_thread(args); printf("Loaded: %lf seconds\n", sec(clock()-time)); data gen = copy_data(train); for (j = 0; j < imgs; ++j) { train.y.vals[j][0] = 1; gen.y.vals[j][0] = 0; } time=clock(); for (j = 0; j < gnet->subdivisions; ++j) { get_next_batch(train, gnet->batch, j*gnet->batch, gnet->truth, 0); int z; for(z = 0; z < x_size; ++z){ gnet->input[z] = rand_normal(); } /* for(z = 0; z < gnet->batch; ++z){ float mag = mag_array(gnet->input + z*gnet->inputs, gnet->inputs); scale_array(gnet->input + z*gnet->inputs, gnet->inputs, 1./mag); } */ *gnet->seen += gnet->batch; forward_network(gnet); fill_gpu(imlayer.outputs*imlayer.batch, 0, imerror, 1); fill_cpu(anet->truths*anet->batch, 1, anet->truth, 1); copy_cpu(anet->inputs*anet->batch, imlayer.output, 1, anet->input, 1); anet->delta_gpu = imerror; forward_network(anet); backward_network(anet); //float genaloss = *anet->cost / anet->batch; scal_gpu(imlayer.outputs*imlayer.batch, 1, imerror, 1); scal_gpu(imlayer.outputs*imlayer.batch, 0, gnet->layers[gnet->n-1].delta_gpu, 1); axpy_gpu(imlayer.outputs*imlayer.batch, 1, imerror, 1, gnet->layers[gnet->n-1].delta_gpu, 1); backward_network(gnet); for(k = 0; k < gnet->batch; ++k){ int index = j*gnet->batch + k; copy_cpu(gnet->outputs, gnet->output + k*gnet->outputs, 1, gen.X.vals[index], 1); } } harmless_update_network_gpu(anet); data merge = concat_data(train, gen); float aloss = train_network(anet, merge); #ifdef OPENCV if(display){ image im = float_to_image(anet->w, anet->h, anet->c, gen.X.vals[0]); image im2 = float_to_image(anet->w, anet->h, anet->c, train.X.vals[0]); show_image(im, "gen", 1); show_image(im2, "train", 1); save_image(im, "gen"); save_image(im2, "train"); } #endif update_network_gpu(gnet); free_data(merge); free_data(train); free_data(gen); if (aloss_avg < 0) aloss_avg = aloss; aloss_avg = aloss_avg*.9 + aloss*.1; printf("%d: adv: %f | adv_avg: %f, %f rate, %lf seconds, %d images\n", i, aloss, aloss_avg, get_current_rate(gnet), sec(clock()-time), i*imgs); if(i%10000==0){ char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(gnet, buff); sprintf(buff, "%s/%s_%d.weights", backup_directory, abase, i); save_weights(anet, buff); } if(i%1000==0){ char buff[256]; sprintf(buff, "%s/%s.backup", backup_directory, base); save_weights(gnet, buff); sprintf(buff, "%s/%s.backup", backup_directory, abase); save_weights(anet, buff); } } char buff[256]; sprintf(buff, "%s/%s_final.weights", backup_directory, base); save_weights(gnet, buff); #endif free_network( gnet ); free_network( anet ); }
void train_imagenet(char *cfgfile, char *weightfile) { data_seed = time(0); srand(time(0)); float avg_loss = -1; char *base = basecfg(cfgfile); char *backup_directory = "/home/pjreddie/backup/"; printf("%s\n", base); network net = parse_network_cfg(cfgfile, 1); if(weightfile){ load_weights(&net, weightfile); } printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int imgs = 1024; char **labels = get_labels("data/inet.labels.list"); list *plist = get_paths("data/inet.train.list"); char **paths = (char **)list_to_array(plist); printf("%d\n", plist->size); int N = plist->size; clock_t time; pthread_t load_thread; data train; data buffer; load_args args = {0}; args.w = net.w; args.h = net.h; args.paths = paths; args.classes = 1000; args.n = imgs; args.m = N; args.labels = labels; args.d = &buffer; args.type = CLASSIFICATION_DATA; load_thread = load_data_in_thread(args); int epoch = (*net.seen)/N; while(get_current_batch(net) < net.max_batches || net.max_batches == 0){ time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data_in_thread(args); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); float loss = train_network(net, train); if(avg_loss == -1) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen); free_data(train); if(*net.seen/N > epoch){ epoch = *net.seen/N; char buff[256]; sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); save_weights(net, buff); } if(*net.seen%1000 == 0){ char buff[256]; sprintf(buff, "%s/%s.backup",backup_directory,base); save_weights(net, buff); } } char buff[256]; sprintf(buff, "%s/%s.weights", backup_directory, base); save_weights(net, buff); pthread_join(load_thread, 0); free_data(buffer); free_network(net); free_ptrs((void**)labels, 1000); free_ptrs((void**)paths, plist->size); free_list(plist); free(base); }
void train_lsd2(char *cfgfile, char *weightfile, char *acfgfile, char *aweightfile, int clear) { #ifdef GPU char *train_images = "/home/pjreddie/data/coco/trainvalno5k.txt"; char *backup_directory = "/home/pjreddie/backup/"; srand(time(0)); char *base = basecfg(cfgfile); printf("%s\n", base); network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } if(clear) *net.seen = 0; char *abase = basecfg(acfgfile); network anet = parse_network_cfg(acfgfile); if(aweightfile){ load_weights(&anet, aweightfile); } if(clear) *anet.seen = 0; int i, j, k; layer imlayer = {}; for (i = 0; i < net.n; ++i) { if (net.layers[i].out_c == 3) { imlayer = net.layers[i]; break; } } printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int imgs = net.batch*net.subdivisions; i = *net.seen/imgs; data train, buffer; list *plist = get_paths(train_images); //int N = plist->size; char **paths = (char **)list_to_array(plist); load_args args = {}; args.w = net.w; args.h = net.h; args.paths = paths; args.n = imgs; args.m = plist->size; args.d = &buffer; args.min = net.min_crop; args.max = net.max_crop; args.angle = net.angle; args.aspect = net.aspect; args.exposure = net.exposure; args.saturation = net.saturation; args.hue = net.hue; args.size = net.w; args.type = CLASSIFICATION_DATA; args.classes = 1; char *ls[1] = {"coco"}; args.labels = ls; pthread_t load_thread = load_data_in_thread(args); clock_t time; network_state gstate = {}; gstate.index = 0; gstate.net = net; int x_size = get_network_input_size(net)*net.batch; int y_size = 1*net.batch; gstate.input = cuda_make_array(0, x_size); gstate.truth = 0; gstate.delta = 0; gstate.train = 1; float *X = (float*)calloc(x_size, sizeof(float)); float *y = (float*)calloc(y_size, sizeof(float)); network_state astate = {}; astate.index = 0; astate.net = anet; int ay_size = get_network_output_size(anet)*anet.batch; astate.input = 0; astate.truth = 0; astate.delta = 0; astate.train = 1; float *imerror = cuda_make_array(0, imlayer.outputs); float *ones_gpu = cuda_make_array(0, ay_size); fill_ongpu(ay_size, 1, ones_gpu, 1); float aloss_avg = -1; float gloss_avg = -1; //data generated = copy_data(train); while (get_current_batch(net) < net.max_batches) { i += 1; time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data_in_thread(args); printf("Loaded: %lf seconds\n", sec(clock()-time)); data generated = copy_data(train); time=clock(); float gloss = 0; for(j = 0; j < net.subdivisions; ++j){ get_next_batch(train, net.batch, j*net.batch, X, y); cuda_push_array(gstate.input, X, x_size); *net.seen += net.batch; forward_network_gpu(net, gstate); fill_ongpu(imlayer.outputs, 0, imerror, 1); astate.input = imlayer.output_gpu; astate.delta = imerror; astate.truth = ones_gpu; forward_network_gpu(anet, astate); backward_network_gpu(anet, astate); scal_ongpu(imlayer.outputs, 1, imerror, 1); axpy_ongpu(imlayer.outputs, 1, imerror, 1, imlayer.delta_gpu, 1); backward_network_gpu(net, gstate); printf("features %f\n", cuda_mag_array(imlayer.delta_gpu, imlayer.outputs)); printf("realness %f\n", cuda_mag_array(imerror, imlayer.outputs)); gloss += get_network_cost(net) /(net.subdivisions*net.batch); cuda_pull_array(imlayer.output_gpu, imlayer.output, x_size); for(k = 0; k < net.batch; ++k){ int index = j*net.batch + k; copy_cpu(imlayer.outputs, imlayer.output + k*imlayer.outputs, 1, generated.X.vals[index], 1); generated.y.vals[index][0] = 0; } } harmless_update_network_gpu(anet); data merge = concat_data(train, generated); randomize_data(merge); float aloss = train_network(anet, merge); update_network_gpu(net); update_network_gpu(anet); free_data(merge); free_data(train); free_data(generated); if (aloss_avg < 0) aloss_avg = aloss; aloss_avg = aloss_avg*.9 + aloss*.1; gloss_avg = gloss_avg*.9 + gloss*.1; printf("%d: gen: %f, adv: %f | gen_avg: %f, adv_avg: %f, %f rate, %lf seconds, %d images\n", i, gloss, aloss, gloss_avg, aloss_avg, get_current_rate(net), sec(clock()-time), i*imgs); if(i%1000==0){ char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(net, buff); sprintf(buff, "%s/%s_%d.weights", backup_directory, abase, i); save_weights(anet, buff); } if(i%100==0){ char buff[256]; sprintf(buff, "%s/%s.backup", backup_directory, base); save_weights(net, buff); sprintf(buff, "%s/%s.backup", backup_directory, abase); save_weights(anet, buff); } } char buff[256]; sprintf(buff, "%s/%s_final.weights", backup_directory, base); save_weights(net, buff); #endif }
void train_yolo(char *datacfg, char *cfgfile, char *weightfile) { list *options = read_data_cfg(datacfg); char *train_list = option_find_str(options, "train", "data/train_list.txt"); //char *test_list = option_find_str(options, "test", "data/test_list.txt"); //char *valid_list = option_find_str(options, "valid", "data/valid_list.txt"); char *backup_directory = option_find_str(options, "backup", "/backup/"); //char *label_list = option_find_str(options, "labels", "data/labels_list.txt"); //int classes = option_find_int(options, "classes", 2); srand(time(0)); data_seed = time(0); char *base = basecfg(cfgfile); printf("%s\n", base); float avg_loss = -1; network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int imgs = net.batch*net.subdivisions; int i = *net.seen/imgs; data train, buffer; layer l = net.layers[net.n - 1]; int side = l.side; int classes = l.classes; float jitter = l.jitter; list *plist = get_paths(train_list); //int N = plist->size; char **paths = (char **)list_to_array(plist); load_args args = {0}; args.w = net.w; args.h = net.h; args.paths = paths; args.n = imgs; args.m = plist->size; args.classes = classes; args.jitter = jitter; args.num_boxes = side; args.d = &buffer; args.type = REGION_DATA; pthread_t load_thread = load_data_in_thread(args); clock_t time; //while(i*imgs < N*120){ while(get_current_batch(net) < net.max_batches){ i += 1; time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data_in_thread(args); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); float loss = train_network(net, train); if (avg_loss < 0) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); if(i%1000==0 || (i < 1000 && i%100 == 0)){ char buff[256]; sprintf(buff, "%s/%s_%06d.weights", backup_directory, base, i); save_weights(net, buff); } free_data(train); } char buff[256]; sprintf(buff, "%s/%s_final.weights", backup_directory, base); save_weights(net, buff); }
void train_char_rnn(char *cfgfile, char *weightfile, char *filename, int clear, int tokenized) { srand(time(0)); data_seed = time(0); unsigned char *text = 0; int *tokens = 0; size_t size; if(tokenized){ tokens = read_tokenized_data(filename, &size); } else { FILE *fp = fopen(filename, "rb"); fseek(fp, 0, SEEK_END); size = ftell(fp); fseek(fp, 0, SEEK_SET); text = calloc(size+1, sizeof(char)); fread(text, 1, size, fp); fclose(fp); } char *backup_directory = "/home/pjreddie/backup/"; char *base = basecfg(cfgfile); fprintf(stderr, "%s\n", base); float avg_loss = -1; network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } int inputs = get_network_input_size(net); fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int batch = net.batch; int steps = net.time_steps; if(clear) *net.seen = 0; int i = (*net.seen)/net.batch; int streams = batch/steps; size_t *offsets = calloc(streams, sizeof(size_t)); int j; for(j = 0; j < streams; ++j){ offsets[j] = rand_size_t()%size; } clock_t time; while(get_current_batch(net) < net.max_batches){ i += 1; time=clock(); float_pair p; if(tokenized){ p = get_rnn_token_data(tokens, offsets, inputs, size, streams, steps); }else{ p = get_rnn_data(text, offsets, inputs, size, streams, steps); } float loss = train_network_datum(net, p.x, p.y) / (batch); free(p.x); free(p.y); if (avg_loss < 0) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; int chars = get_current_batch(net)*batch; fprintf(stderr, "%d: %f, %f avg, %f rate, %lf seconds, %f epochs\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), (float) chars/size); for(j = 0; j < streams; ++j){ //printf("%d\n", j); if(rand()%10 == 0){ //fprintf(stderr, "Reset\n"); offsets[j] = rand_size_t()%size; reset_rnn_state(net, j); } } if(i%1000==0){ char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(net, buff); } if(i%10==0){ char buff[256]; sprintf(buff, "%s/%s.backup", backup_directory, base); save_weights(net, buff); } } char buff[256]; sprintf(buff, "%s/%s_final.weights", backup_directory, base); save_weights(net, buff); }
void train_yolo(char *cfgfile, char *weightfile) { char *train_images = "/data/voc/train.txt"; char *backup_directory = "/home/kunle12/backup/"; srand(time(0)); char *base = basecfg(cfgfile); printf("%s\n", base); float avg_loss = -1; network * net = load_network(cfgfile, weightfile, 0); printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay); int imgs = net->batch*net->subdivisions; int i = *net->seen/imgs; data train, buffer; layer l = net->layers[net->n - 1]; int side = l.side; int classes = l.classes; float jitter = l.jitter; list *plist = get_paths(train_images); //int N = plist->size; char **paths = (char **)list_to_array(plist); load_args args = {0}; args.w = net->w; args.h = net->h; args.paths = paths; args.n = imgs; args.m = plist->size; args.classes = classes; args.jitter = jitter; args.num_boxes = side; args.d = &buffer; args.type = REGION_DATA; args.angle = net->angle; args.exposure = net->exposure; args.saturation = net->saturation; args.hue = net->hue; pthread_t load_thread = load_data_in_thread(args); clock_t time; //while(i*imgs < N*120){ while(get_current_batch(net) < net->max_batches){ i += 1; time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data_in_thread(args); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); float loss = train_network(net, train); if (avg_loss < 0) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); if(i%1000==0 || (i < 1000 && i%100 == 0)){ char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(net, buff); } free_data(train); } char buff[256]; sprintf(buff, "%s/%s_final.weights", backup_directory, base); save_weights(net, buff); free_network( net ); }
void train_regressor(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear) { int i; float avg_loss = -1; char *base = basecfg(cfgfile); printf("%s\n", base); printf("%d\n", ngpus); network **nets = calloc(ngpus, sizeof(network*)); srand(time(0)); int seed = rand(); for(i = 0; i < ngpus; ++i){ srand(seed); #ifdef GPU cuda_set_device(gpus[i]); #endif nets[i] = load_network(cfgfile, weightfile, clear); nets[i]->learning_rate *= ngpus; } srand(time(0)); network *net = nets[0]; int imgs = net->batch * net->subdivisions * ngpus; printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay); list *options = read_data_cfg(datacfg); char *backup_directory = option_find_str(options, "backup", "/backup/"); char *train_list = option_find_str(options, "train", "data/train.list"); int classes = option_find_int(options, "classes", 1); list *plist = get_paths(train_list); char **paths = (char **)list_to_array(plist); printf("%d\n", plist->size); int N = plist->size; clock_t time; load_args args = {0}; args.w = net->w; args.h = net->h; args.threads = 32; args.classes = classes; args.min = net->min_ratio*net->w; args.max = net->max_ratio*net->w; args.angle = net->angle; args.aspect = net->aspect; args.exposure = net->exposure; args.saturation = net->saturation; args.hue = net->hue; args.size = net->w; args.paths = paths; args.n = imgs; args.m = N; args.type = REGRESSION_DATA; data train; data buffer; pthread_t load_thread; args.d = &buffer; load_thread = load_data(args); int epoch = (*net->seen)/N; while(get_current_batch(net) < net->max_batches || net->max_batches == 0){ time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data(args); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); float loss = 0; #ifdef GPU if(ngpus == 1){ loss = train_network(net, train); } else { loss = train_networks(nets, ngpus, train, 4); } #else loss = train_network(net, train); #endif if(avg_loss == -1) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net->seen); free_data(train); if(*net->seen/N > epoch){ epoch = *net->seen/N; char buff[256]; sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); save_weights(net, buff); } if(get_current_batch(net)%100 == 0){ char buff[256]; sprintf(buff, "%s/%s.backup",backup_directory,base); save_weights(net, buff); } } char buff[256]; sprintf(buff, "%s/%s.weights", backup_directory, base); save_weights(net, buff); for(i = 0; i < ngpus; ++i){ free_network(nets[i]); } free(nets); free_ptrs((void**)paths, plist->size); free_list(plist); free(base); }
void train_char_rnn(char *cfgfile, char *weightfile, char *filename, int clear, int tokenized) { srand(time(0)); unsigned char *text = 0; int *tokens = 0; size_t size; if (tokenized) { tokens = read_tokenized_data(filename, &size); } else { text = read_file(filename); size = strlen((const char*) text); } char *backup_directory = "/home/pjreddie/backup/"; char *base = basecfg(cfgfile); fprintf(stderr, "%s\n", base); real_t avg_loss = -1; network *net = load_network(cfgfile, weightfile, clear); int inputs = net->inputs; fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g, Inputs: %d %d %d\n", net->learning_rate, net->momentum, net->decay, inputs, net->batch, net->time_steps); int batch = net->batch; int steps = net->time_steps; if (clear) *net->seen = 0; int i = (*net->seen) / net->batch; int streams = batch / steps; size_t *offsets = calloc(streams, sizeof(size_t)); int j; for (j = 0; j < streams; ++j) { offsets[j] = rand_size_t() % size; } clock_t time; while (get_current_batch(net) < net->max_batches) { i += 1; time = clock(); real_t_pair p; if (tokenized) { p = get_rnn_token_data(tokens, offsets, inputs, size, streams, steps); } else { p = get_rnn_data(text, offsets, inputs, size, streams, steps); } copy_cpu(net->inputs * net->batch, p.x, 1, net->input, 1); copy_cpu(net->truths * net->batch, p.y, 1, net->truth, 1); real_t loss = train_network_datum(net) / (batch); free(p.x); free(p.y); if (avg_loss < 0) avg_loss = loss; avg_loss = avg_loss * .9 + loss * .1; size_t chars = get_current_batch(net) * batch; fprintf(stderr, "%d: %f, %f avg, %f rate, %lf seconds, %f epochs\n", i, loss, avg_loss, get_current_rate(net), sec(clock() - time), (real_t) chars / size); for (j = 0; j < streams; ++j) { //printf("%d\n", j); if (rand() % 64 == 0) { //fprintf(stderr, "Reset\n"); offsets[j] = rand_size_t() % size; reset_network_state(net, j); } } if (i % 10000 == 0) { char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(net, buff); } if (i % 100 == 0) { char buff[256]; sprintf(buff, "%s/%s.backup", backup_directory, base); save_weights(net, buff); } } char buff[256]; sprintf(buff, "%s/%s_final.weights", backup_directory, base); save_weights(net, buff); }
void train_mnist_distill(char *cfgfile, char *weightfile) { data_seed = time(0); srand(time(0)); float avg_loss = -1; char *base = basecfg(cfgfile); printf("%s\n", base); network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); char *backup_directory = "backup"; int classes = 10; int N = 50000; int epoch = (*net.seen)/N; data train;// = load_all_mnist10(); matrix soft = csv_to_matrix("results/ensemble.csv"); float weight = .9; scale_matrix(soft, weight); scale_matrix(train.y, 1. - weight); matrix_add_matrix(soft, train.y); while(get_current_batch(net) < net.max_batches || net.max_batches == 0){ clock_t time=clock(); float loss = train_network_sgd(net, train, 1); if(avg_loss == -1) avg_loss = loss; avg_loss = avg_loss*.95 + loss*.05; if(get_current_batch(net)%100 == 0) { printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen); } if(*net.seen/N > epoch){ epoch = *net.seen/N; char buff[256]; sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); save_weights(net, buff); } if(get_current_batch(net)%100 == 0){ char buff[256]; sprintf(buff, "%s/%s.backup",backup_directory,base); save_weights(net, buff); } } char buff[256]; sprintf(buff, "%s/%s.weights", backup_directory, base); save_weights(net, buff); free_network(net); free(base); free_data(train); }
void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear) { int i; float avg_loss = -1; char *base = basecfg(cfgfile); printf("%s\n", base); printf("%d\n", ngpus); network **nets = calloc(ngpus, sizeof(network*)); srand(time(0)); int seed = rand(); for(i = 0; i < ngpus; ++i){ srand(seed); #ifdef GPU cuda_set_device(gpus[i]); #endif nets[i] = load_network(cfgfile, weightfile, clear); nets[i]->learning_rate *= ngpus; } srand(time(0)); network *net = nets[0]; int imgs = net->batch * net->subdivisions * ngpus; printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay); list *options = read_data_cfg(datacfg); char *backup_directory = option_find_str(options, "backup", "/backup/"); char *label_list = option_find_str(options, "labels", "data/labels.list"); char *train_list = option_find_str(options, "train", "data/train.list"); int classes = option_find_int(options, "classes", 2); char **labels = get_labels(label_list); list *plist = get_paths(train_list); char **paths = (char **)list_to_array(plist); printf("%d\n", plist->size); int N = plist->size; double time; load_args args = {0}; args.w = net->w; args.h = net->h; args.threads = 32; args.hierarchy = net->hierarchy; args.min = net->min_ratio*net->w; args.max = net->max_ratio*net->w; printf("%d %d\n", args.min, args.max); args.angle = net->angle; args.aspect = net->aspect; args.exposure = net->exposure; args.saturation = net->saturation; args.hue = net->hue; args.size = net->w; args.paths = paths; args.classes = classes; args.n = imgs; args.m = N; args.labels = labels; args.type = CLASSIFICATION_DATA; data train; data buffer; pthread_t load_thread; args.d = &buffer; load_thread = load_data(args); int count = 0; int epoch = (*net->seen)/N; while(get_current_batch(net) < net->max_batches || net->max_batches == 0){ if(net->random && count++%40 == 0){ printf("Resizing\n"); int dim = (rand() % 11 + 4) * 32; //if (get_current_batch(net)+200 > net->max_batches) dim = 608; //int dim = (rand() % 4 + 16) * 32; printf("%d\n", dim); args.w = dim; args.h = dim; args.size = dim; args.min = net->min_ratio*dim; args.max = net->max_ratio*dim; printf("%d %d\n", args.min, args.max); pthread_join(load_thread, 0); train = buffer; free_data(train); load_thread = load_data(args); for(i = 0; i < ngpus; ++i){ resize_network(nets[i], dim, dim); } net = nets[0]; } time = what_time_is_it_now(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data(args); printf("Loaded: %lf seconds\n", what_time_is_it_now()-time); time = what_time_is_it_now(); float loss = 0; #ifdef GPU if(ngpus == 1){ loss = train_network(net, train); } else { loss = train_networks(nets, ngpus, train, 4); } #else loss = train_network(net, train); #endif if(avg_loss == -1) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), what_time_is_it_now()-time, *net->seen); free_data(train); if(*net->seen/N > epoch){ epoch = *net->seen/N; char buff[256]; sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); save_weights(net, buff); } if(get_current_batch(net)%1000 == 0){ char buff[256]; sprintf(buff, "%s/%s.backup",backup_directory,base); save_weights(net, buff); } } char buff[256]; sprintf(buff, "%s/%s.weights", backup_directory, base); save_weights(net, buff); pthread_join(load_thread, 0); free_network(net); free_ptrs((void**)labels, classes); free_ptrs((void**)paths, plist->size); free_list(plist); free(base); }
void train_classifier(char *datacfg, char *cfgfile, char *weightfile) { data_seed = time(0); srand(time(0)); float avg_loss = -1; char *base = basecfg(cfgfile); printf("%s\n", base); network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int imgs = 1024; list *options = read_data_cfg(datacfg); char *backup_directory = option_find_str(options, "backup", "/backup/"); char *label_list = option_find_str(options, "labels", "data/labels.list"); char *train_list = option_find_str(options, "train", "data/train.list"); int classes = option_find_int(options, "classes", 2); char **labels = get_labels(label_list); list *plist = get_paths(train_list); char **paths = (char **)list_to_array(plist); printf("%d\n", plist->size); int N = plist->size; clock_t time; pthread_t load_thread; data train; data buffer; load_args args = {0}; args.w = net.w; args.h = net.h; args.min = net.w; args.max = net.max_crop; args.size = net.w; args.paths = paths; args.classes = classes; args.n = imgs; args.m = N; args.labels = labels; args.d = &buffer; args.type = CLASSIFICATION_DATA; load_thread = load_data_in_thread(args); int epoch = (*net.seen)/N; while(get_current_batch(net) < net.max_batches || net.max_batches == 0){ time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data_in_thread(args); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); /* int u; for(u = 0; u < net.batch; ++u){ image im = float_to_image(net.w, net.h, 3, train.X.vals[u]); show_image(im, "loaded"); cvWaitKey(0); } */ float loss = train_network(net, train); if(avg_loss == -1) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen); free_data(train); if(*net.seen/N > epoch){ epoch = *net.seen/N; char buff[256]; sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); save_weights(net, buff); } if(*net.seen%100 == 0){ char buff[256]; sprintf(buff, "%s/%s.backup",backup_directory,base); save_weights(net, buff); } } char buff[256]; sprintf(buff, "%s/%s.weights", backup_directory, base); save_weights(net, buff); pthread_join(load_thread, 0); free_data(buffer); free_network(net); free_ptrs((void**)labels, classes); free_ptrs((void**)paths, plist->size); free_list(plist); free(base); }
void train_super(char *cfgfile, char *weightfile, int clear) { char *train_images = "/data/imagenet/imagenet1k.train.list"; char *backup_directory = "/home/pjreddie/backup/"; srand(time(0)); char *base = basecfg(cfgfile); printf("%s\n", base); float avg_loss = -1; network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } if(clear) *net.seen = 0; printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int imgs = net.batch*net.subdivisions; int i = *net.seen/imgs; data train, buffer; list *plist = get_paths(train_images); //int N = plist->size; char **paths = (char **)list_to_array(plist); load_args args = {0}; args.w = net.w; args.h = net.h; args.scale = 4; args.paths = paths; args.n = imgs; args.m = plist->size; args.d = &buffer; args.type = SUPER_DATA; #ifdef __linux__ pthread_t load_thread = load_data_in_thread(args); #endif clock_t time; //while(i*imgs < N*120){ while(get_current_batch(net) < net.max_batches){ i += 1; time=clock(); #ifdef __linux__ pthread_join(load_thread, 0); #endif train = buffer; #ifdef __linux__ load_thread = load_data_in_thread(args); #endif printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); float loss = train_network(net, train); if (avg_loss < 0) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); if(i%1000==0){ char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(net, buff); } if(i%100==0){ char buff[256]; sprintf(buff, "%s/%s.backup", backup_directory, base); save_weights(net, buff); } free_data(train); } char buff[256]; sprintf(buff, "%s/%s_final.weights", backup_directory, base); save_weights(net, buff); }
void train_lsd(char *cfgfile, char *weightfile, int clear) { char *train_images = "/home/pjreddie/data/coco/trainvalno5k.txt"; char *backup_directory = "/home/pjreddie/backup/"; srand(time(0)); char *base = basecfg(cfgfile); printf("%s\n", base); float avg_loss = -1; network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } if(clear) *net.seen = 0; printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int imgs = net.batch*net.subdivisions; int i = *net.seen/imgs; data train, buffer; list *plist = get_paths(train_images); //int N = plist->size; char **paths = (char **)list_to_array(plist); load_args args = {}; args.w = net.w; args.h = net.h; args.paths = paths; args.n = imgs; args.m = plist->size; args.d = &buffer; args.min = net.min_crop; args.max = net.max_crop; args.angle = net.angle; args.aspect = net.aspect; args.exposure = net.exposure; args.saturation = net.saturation; args.hue = net.hue; args.size = net.w; args.type = CLASSIFICATION_DATA; args.classes = 1; char *ls[1] = {"coco"}; args.labels = ls; pthread_t load_thread = load_data_in_thread(args); clock_t time; //while(i*imgs < N*120){ while(get_current_batch(net) < net.max_batches){ i += 1; time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data_in_thread(args); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); float loss = train_network(net, train); if (avg_loss < 0) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); if(i%1000==0){ char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(net, buff); } if(i%100==0){ char buff[256]; sprintf(buff, "%s/%s.backup", backup_directory, base); save_weights(net, buff); } free_data(train); } char buff[256]; sprintf(buff, "%s/%s_final.weights", backup_directory, base); save_weights(net, buff); }
void train_dcgan(char *cfg, char *weight, char *acfg, char *aweight, int clear, int display, char *train_images, int maxbatch) { #ifdef GPU char *backup_directory = "/home/kunle12/backup/"; srand(time(0)); char *base = basecfg(cfg); char *abase = basecfg(acfg); printf("%s\n", base); network *gnet = load_network(cfg, weight, clear); network *anet = load_network(acfg, aweight, clear); //float orig_rate = anet->learning_rate; int i, j, k; layer imlayer = {0}; for (i = 0; i < gnet->n; ++i) { if (gnet->layers[i].out_c == 3) { imlayer = gnet->layers[i]; break; } } printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", gnet->learning_rate, gnet->momentum, gnet->decay); int imgs = gnet->batch*gnet->subdivisions; i = *gnet->seen/imgs; data train, buffer; list *plist = get_paths(train_images); //int N = plist->size; char **paths = (char **)list_to_array(plist); load_args args= get_base_args(anet); args.paths = paths; args.n = imgs; args.m = plist->size; args.d = &buffer; args.type = CLASSIFICATION_DATA; args.threads=16; args.classes = 1; char *ls[2] = {"imagenet", "zzzzzzzz"}; args.labels = ls; pthread_t load_thread = load_data_in_thread(args); clock_t time; gnet->train = 1; anet->train = 1; int x_size = gnet->inputs*gnet->batch; int y_size = gnet->truths*gnet->batch; float *imerror = cuda_make_array(0, y_size); //int ay_size = anet->truths*anet->batch; float aloss_avg = -1; //data generated = copy_data(train); if (maxbatch == 0) maxbatch = gnet->max_batches; while (get_current_batch(gnet) < maxbatch) { i += 1; time=clock(); pthread_join(load_thread, 0); train = buffer; //translate_data_rows(train, -.5); //scale_data_rows(train, 2); load_thread = load_data_in_thread(args); printf("Loaded: %lf seconds\n", sec(clock()-time)); data gen = copy_data(train); for (j = 0; j < imgs; ++j) { train.y.vals[j][0] = 1; gen.y.vals[j][0] = 0; } time=clock(); for(j = 0; j < gnet->subdivisions; ++j){ get_next_batch(train, gnet->batch, j*gnet->batch, gnet->truth, 0); int z; for(z = 0; z < x_size; ++z){ gnet->input[z] = rand_normal(); } for(z = 0; z < gnet->batch; ++z){ float mag = mag_array(gnet->input + z*gnet->inputs, gnet->inputs); scale_array(gnet->input + z*gnet->inputs, gnet->inputs, 1./mag); } /* for(z = 0; z < 100; ++z){ printf("%f, ", gnet->input[z]); } printf("\n"); printf("input: %f %f\n", mean_array(gnet->input, x_size), variance_array(gnet->input, x_size)); */ //cuda_push_array(gnet->input_gpu, gnet->input, x_size); //cuda_push_array(gnet->truth_gpu, gnet->truth, y_size); *gnet->seen += gnet->batch; forward_network(gnet); fill_gpu(imlayer.outputs*imlayer.batch, 0, imerror, 1); fill_cpu(anet->truths*anet->batch, 1, anet->truth, 1); copy_cpu(anet->inputs*anet->batch, imlayer.output, 1, anet->input, 1); anet->delta_gpu = imerror; forward_network(anet); backward_network(anet); //float genaloss = *anet->cost / anet->batch; //printf("%f\n", genaloss); scal_gpu(imlayer.outputs*imlayer.batch, 1, imerror, 1); scal_gpu(imlayer.outputs*imlayer.batch, 0, gnet->layers[gnet->n-1].delta_gpu, 1); //printf("realness %f\n", cuda_mag_array(imerror, imlayer.outputs*imlayer.batch)); //printf("features %f\n", cuda_mag_array(gnet->layers[gnet->n-1].delta_gpu, imlayer.outputs*imlayer.batch)); axpy_gpu(imlayer.outputs*imlayer.batch, 1, imerror, 1, gnet->layers[gnet->n-1].delta_gpu, 1); backward_network(gnet); /* for(k = 0; k < gnet->n; ++k){ layer l = gnet->layers[k]; cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch); printf("%d: %f %f\n", k, mean_array(l.output, l.outputs*l.batch), variance_array(l.output, l.outputs*l.batch)); } */ for(k = 0; k < gnet->batch; ++k){ int index = j*gnet->batch + k; copy_cpu(gnet->outputs, gnet->output + k*gnet->outputs, 1, gen.X.vals[index], 1); } } harmless_update_network_gpu(anet); data merge = concat_data(train, gen); //randomize_data(merge); float aloss = train_network(anet, merge); //translate_image(im, 1); //scale_image(im, .5); //translate_image(im2, 1); //scale_image(im2, .5); #ifdef OPENCV if(display){ image im = float_to_image(anet->w, anet->h, anet->c, gen.X.vals[0]); image im2 = float_to_image(anet->w, anet->h, anet->c, train.X.vals[0]); show_image(im, "gen", 1); show_image(im2, "train", 1); save_image(im, "gen"); save_image(im2, "train"); } #endif /* if(aloss < .1){ anet->learning_rate = 0; } else if (aloss > .3){ anet->learning_rate = orig_rate; } */ update_network_gpu(gnet); free_data(merge); free_data(train); free_data(gen); if (aloss_avg < 0) aloss_avg = aloss; aloss_avg = aloss_avg*.9 + aloss*.1; printf("%d: adv: %f | adv_avg: %f, %f rate, %lf seconds, %d images\n", i, aloss, aloss_avg, get_current_rate(gnet), sec(clock()-time), i*imgs); if(i%10000==0){ char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(gnet, buff); sprintf(buff, "%s/%s_%d.weights", backup_directory, abase, i); save_weights(anet, buff); } if(i%1000==0){ char buff[256]; sprintf(buff, "%s/%s.backup", backup_directory, base); save_weights(gnet, buff); sprintf(buff, "%s/%s.backup", backup_directory, abase); save_weights(anet, buff); } } char buff[256]; sprintf(buff, "%s/%s_final.weights", backup_directory, base); save_weights(gnet, buff); #endif free_network(gnet); free_network(anet); }
void train_colorizer(char *cfg, char *weight, char *acfg, char *aweight, int clear, int display) { #ifdef GPU //char *train_images = "/home/kunle12/data/coco/train1.txt"; //char *train_images = "/home/kunle12/data/coco/trainvalno5k.txt"; char *train_images = "/home/kunle12/data/imagenet/imagenet1k.train.list"; char *backup_directory = "/home/kunle12/backup/"; srand(time(0)); char *base = basecfg(cfg); char *abase = basecfg(acfg); printf("%s\n", base); network *net = load_network(cfg, weight, clear); network *anet = load_network(acfg, aweight, clear); int i, j, k; layer imlayer = {0}; for (i = 0; i < net->n; ++i) { if (net->layers[i].out_c == 3) { imlayer = net->layers[i]; break; } } printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay); int imgs = net->batch*net->subdivisions; i = *net->seen/imgs; data train, buffer; list *plist = get_paths(train_images); //int N = plist->size; char **paths = (char **)list_to_array(plist); load_args args= get_base_args(net); args.paths = paths; args.n = imgs; args.m = plist->size; args.d = &buffer; args.type = CLASSIFICATION_DATA; args.classes = 1; char *ls[2] = {"imagenet"}; args.labels = ls; pthread_t load_thread = load_data_in_thread(args); clock_t time; int x_size = net->inputs*net->batch; //int y_size = x_size; net->delta = 0; net->train = 1; float *pixs = calloc(x_size, sizeof(float)); float *graypixs = calloc(x_size, sizeof(float)); //float *y = calloc(y_size, sizeof(float)); //int ay_size = anet->outputs*anet->batch; anet->delta = 0; anet->train = 1; float *imerror = cuda_make_array(0, imlayer.outputs*imlayer.batch); float aloss_avg = -1; float gloss_avg = -1; //data generated = copy_data(train); while (get_current_batch(net) < net->max_batches) { i += 1; time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data_in_thread(args); printf("Loaded: %lf seconds\n", sec(clock()-time)); data gray = copy_data(train); for(j = 0; j < imgs; ++j){ image gim = float_to_image(net->w, net->h, net->c, gray.X.vals[j]); grayscale_image_3c(gim); train.y.vals[j][0] = .95; gray.y.vals[j][0] = .05; } time=clock(); float gloss = 0; for(j = 0; j < net->subdivisions; ++j){ get_next_batch(train, net->batch, j*net->batch, pixs, 0); get_next_batch(gray, net->batch, j*net->batch, graypixs, 0); cuda_push_array(net->input_gpu, graypixs, net->inputs*net->batch); cuda_push_array(net->truth_gpu, pixs, net->truths*net->batch); /* image origi = float_to_image(net->w, net->h, 3, pixs); image grayi = float_to_image(net->w, net->h, 3, graypixs); show_image(grayi, "gray"); show_image(origi, "orig"); cvWaitKey(0); */ *net->seen += net->batch; forward_network_gpu(net); fill_gpu(imlayer.outputs*imlayer.batch, 0, imerror, 1); copy_gpu(anet->inputs*anet->batch, imlayer.output_gpu, 1, anet->input_gpu, 1); fill_gpu(anet->inputs*anet->batch, .95, anet->truth_gpu, 1); anet->delta_gpu = imerror; forward_network_gpu(anet); backward_network_gpu(anet); scal_gpu(imlayer.outputs*imlayer.batch, 1./100., net->layers[net->n-1].delta_gpu, 1); scal_gpu(imlayer.outputs*imlayer.batch, 1, imerror, 1); printf("realness %f\n", cuda_mag_array(imerror, imlayer.outputs*imlayer.batch)); printf("features %f\n", cuda_mag_array(net->layers[net->n-1].delta_gpu, imlayer.outputs*imlayer.batch)); axpy_gpu(imlayer.outputs*imlayer.batch, 1, imerror, 1, net->layers[net->n-1].delta_gpu, 1); backward_network_gpu(net); gloss += *net->cost /(net->subdivisions*net->batch); for(k = 0; k < net->batch; ++k){ int index = j*net->batch + k; copy_cpu(imlayer.outputs, imlayer.output + k*imlayer.outputs, 1, gray.X.vals[index], 1); } } harmless_update_network_gpu(anet); data merge = concat_data(train, gray); //randomize_data(merge); float aloss = train_network(anet, merge); update_network_gpu(net); #ifdef OPENCV if(display){ image im = float_to_image(anet->w, anet->h, anet->c, gray.X.vals[0]); image im2 = float_to_image(anet->w, anet->h, anet->c, train.X.vals[0]); show_image(im, "gen", 1); show_image(im2, "train", 1); } #endif free_data(merge); free_data(train); free_data(gray); if (aloss_avg < 0) aloss_avg = aloss; aloss_avg = aloss_avg*.9 + aloss*.1; gloss_avg = gloss_avg*.9 + gloss*.1; printf("%d: gen: %f, adv: %f | gen_avg: %f, adv_avg: %f, %f rate, %lf seconds, %d images\n", i, gloss, aloss, gloss_avg, aloss_avg, get_current_rate(net), sec(clock()-time), i*imgs); if(i%1000==0){ char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(net, buff); sprintf(buff, "%s/%s_%d.weights", backup_directory, abase, i); save_weights(anet, buff); } if(i%100==0){ char buff[256]; sprintf(buff, "%s/%s.backup", backup_directory, base); save_weights(net, buff); sprintf(buff, "%s/%s.backup", backup_directory, abase); save_weights(anet, buff); } } char buff[256]; sprintf(buff, "%s/%s_final.weights", backup_directory, base); save_weights(net, buff); #endif }
void train_cifar(char *cfgfile, char *weightfile) { srand(time(0)); float avg_loss = -1; char *base = basecfg(cfgfile); printf("%s\n", base); network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); char *backup_directory = "/home/pjreddie/backup/"; int classes = 10; int N = 50000; char **labels = get_labels("data/cifar/labels.txt"); int epoch = (*net.seen)/N; data train = load_all_cifar10(); while(get_current_batch(net) < net.max_batches || net.max_batches == 0){ clock_t time=clock(); float loss = train_network_sgd(net, train, 1); if(avg_loss == -1) avg_loss = loss; avg_loss = avg_loss*.95 + loss*.05; printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen); if(*net.seen/N > epoch){ epoch = *net.seen/N; char buff[256]; sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); save_weights(net, buff); } if(get_current_batch(net)%100 == 0){ char buff[256]; sprintf(buff, "%s/%s.backup",backup_directory,base); save_weights(net, buff); } } char buff[256]; sprintf(buff, "%s/%s.weights", backup_directory, base); save_weights(net, buff); free_network(net); free_ptrs((void**)labels, classes); free(base); free_data(train); }
void train_tag(char *cfgfile, char *weightfile, int clear) { srand(time(0)); real_t avg_loss = -1; char *base = basecfg(cfgfile); char *backup_directory = "/home/pjreddie/backup/"; printf("%s\n", base); network *net = load_network(cfgfile, weightfile, clear); printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay); int imgs = 1024; list *plist = get_paths("/home/pjreddie/tag/train.list"); char **paths = (char **) list_to_array(plist); printf("%d\n", plist->size); int N = plist->size; clock_t time; pthread_t load_thread; data train; data buffer; load_args args = { 0 }; args.w = net->w; args.h = net->h; args.min = net->w; args.max = net->max_crop; args.size = net->w; args.paths = paths; args.classes = net->outputs; args.n = imgs; args.m = N; args.d = &buffer; args.type = TAG_DATA; args.angle = net->angle; args.exposure = net->exposure; args.saturation = net->saturation; args.hue = net->hue; fprintf(stderr, "%d classes\n", net->outputs); load_thread = load_data_in_thread(args); int epoch = (*net->seen) / N; while (get_current_batch(net) < net->max_batches || net->max_batches == 0) { time = clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data_in_thread(args); printf("Loaded: %lf seconds\n", sec(clock() - time)); time = clock(); real_t loss = train_network(net, train); if (avg_loss == -1) avg_loss = loss; avg_loss = avg_loss * .9 + loss * .1; printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (real_t)(*net->seen) / N, loss, avg_loss, get_current_rate(net), sec(clock() - time), *net->seen); free_data(train); if (*net->seen / N > epoch) { epoch = *net->seen / N; char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, epoch); save_weights(net, buff); } if (get_current_batch(net) % 100 == 0) { char buff[256]; sprintf(buff, "%s/%s.backup", backup_directory, base); save_weights(net, buff); } } char buff[256]; sprintf(buff, "%s/%s.weights", backup_directory, base); save_weights(net, buff); pthread_join(load_thread, 0); free_data(buffer); free_network(net); free_ptrs((void**) paths, plist->size); free_list(plist); free(base); }
void train_mnist(char *cfgfile, char *weightfile) { data_seed = time(0); srand(time(0)); float avg_loss = -1; char *base = basecfg(cfgfile); char *backup_directory = "backup"; network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } { char buff[256]; sprintf(buff, "%s/%s.txt", backup_directory, base); freopen(buff, "w", stdout); } fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int N = 60000; data train; data test; train = load_mnist_data("data/mnist/train-images.idx3-ubyte", "data/mnist/train-labels.idx1-ubyte", 60000); test = load_mnist_data("data/mnist/t10k-images.idx3-ubyte", "data/mnist/t10k-labels.idx1-ubyte", 10000); clock_t time=clock(); float a[4]; char backup_net[256]; int nanCount = 0; while(get_current_batch(net) < net.max_batches || net.max_batches == 0){ float loss = train_network_sgd(net, train, 1); if(avg_loss == -1) avg_loss = loss; avg_loss = avg_loss*.95 + loss*.05; if(get_current_batch(net)%100 == 0) { fprintf(stderr, "%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen); fprintf(stdout, "%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen); fflush(stdout); time=clock(); } if (isnan(loss) || isnan(avg_loss)) { // NaN detected!!! fprintf(stderr, "NaN!\n"); free_network(net); load_weights(&net, backup_net); nanCount++; if (nanCount>=5) break; continue; } if(get_current_batch(net)%1000 == 0){ float *acc = network_accuracies(net, test, 2); a[2] = acc[0]; a[3] = acc[1]; float mse1 = acc[2]; float *accT = network_accuracies(net, train, 2); a[0] = accT[0]; a[1] = accT[1]; float mse2 = accT[2]; fprintf(stderr, "Accuracy: train(%f %f %f) test(%f %f %f)\n", a[0], a[1], mse1, a[2], a[3], mse2); fprintf(stdout, "Accuracy: train(%f %f %f) test(%f %f %f)\n", a[0], a[1], mse1, a[2], a[3], mse2); fflush(stdout); char buff[256]; sprintf(buff, "%s/%s_%d.weights",backup_directory,base, get_current_batch(net)); sprintf(backup_net, "%s/%s_%d.weights",backup_directory,base, get_current_batch(net)); save_weights(net, buff); nanCount = 0; } } char buff[256]; sprintf(buff, "%s/%s.weights", backup_directory, base); save_weights(net, buff); free_network(net); free_data(train); }
void train_coco(char *cfgfile, char *weightfile) { //char *train_images = "/home/pjreddie/data/voc/test/train.txt"; //char *train_images = "/home/pjreddie/data/coco/train.txt"; char *train_images = "data/coco.trainval.txt"; char *backup_directory = "/home/pjreddie/backup/"; srand(time(0)); data_seed = time(0); char *base = basecfg(cfgfile); printf("%s\n", base); float avg_loss = -1; network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); int imgs = net.batch*net.subdivisions; int i = *net.seen/imgs; data train, buffer; layer l = net.layers[net.n - 1]; int side = l.side; int classes = l.classes; float jitter = l.jitter; list *plist = get_paths(train_images); //int N = plist->size; char **paths = (char **)list_to_array(plist); load_args args = {0}; args.w = net.w; args.h = net.h; args.paths = paths; args.n = imgs; args.m = plist->size; args.classes = classes; args.jitter = jitter; args.num_boxes = side; args.d = &buffer; args.type = REGION_DATA; pthread_t load_thread = load_data_in_thread(args); clock_t time; //while(i*imgs < N*120){ while(get_current_batch(net) < net.max_batches){ i += 1; time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data_in_thread(args); printf("Loaded: %lf seconds\n", sec(clock()-time)); /* image im = float_to_image(net.w, net.h, 3, train.X.vals[113]); image copy = copy_image(im); draw_coco(copy, train.y.vals[113], 7, "truth"); cvWaitKey(0); free_image(copy); */ time=clock(); float loss = train_network(net, train); if (avg_loss < 0) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); if(i%1000==0 || (i < 1000 && i%100 == 0)){ char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(net, buff); } free_data(train); } char buff[256]; sprintf(buff, "%s/%s_final.weights", backup_directory, base); save_weights(net, buff); }
void train_go(char *cfgfile, char *weightfile) { srand(time(0)); float avg_loss = -1; char *base = basecfg(cfgfile); printf("%s\n", base); network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); char *backup_directory = "/home/pjreddie/backup/"; char buff[256]; float *board = calloc(19*19*net.batch, sizeof(float)); float *move = calloc(19*19*net.batch, sizeof(float)); moves m = load_go_moves("/home/pjreddie/backup/go.train"); //moves m = load_go_moves("games.txt"); int N = m.n; int epoch = (*net.seen)/N; while(get_current_batch(net) < net.max_batches || net.max_batches == 0){ clock_t time=clock(); random_go_moves(m, board, move, net.batch); float loss = train_network_datum(net, board, move) / net.batch; if(avg_loss == -1) avg_loss = loss; avg_loss = avg_loss*.95 + loss*.05; printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen); if(*net.seen/N > epoch){ epoch = *net.seen/N; char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory,base, epoch); save_weights(net, buff); } if(get_current_batch(net)%100 == 0){ char buff[256]; sprintf(buff, "%s/%s.backup",backup_directory,base); save_weights(net, buff); } if(get_current_batch(net)%10000 == 0){ char buff[256]; sprintf(buff, "%s/%s_%d.backup",backup_directory,base,get_current_batch(net)); save_weights(net, buff); } } sprintf(buff, "%s/%s.weights", backup_directory, base); save_weights(net, buff); free_network(net); free(base); }
void train_writing(char *cfgfile, char *weightfile) { char *backup_directory = "/home/kunle12/backup/"; srand(time(0)); float avg_loss = -1; char *base = basecfg(cfgfile); printf("%s\n", base); network * net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(net, weightfile); } printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay); int imgs = net->batch*net->subdivisions; list *plist = get_paths("figures.list"); char **paths = (char **)list_to_array(plist); clock_t time; int N = plist->size; printf("N: %d\n", N); image out = get_network_image(net); data train, buffer; load_args args = {0}; args.w = net->w; args.h = net->h; args.out_w = out.w; args.out_h = out.h; args.paths = paths; args.n = imgs; args.m = N; args.d = &buffer; args.type = WRITING_DATA; pthread_t load_thread = load_data_in_thread(args); int epoch = (*net->seen)/N; while(get_current_batch(net) < net->max_batches || net->max_batches == 0){ time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data_in_thread(args); printf("Loaded %lf seconds\n",sec(clock()-time)); time=clock(); float loss = train_network(net, train); /* image pred = float_to_image(64, 64, 1, out); print_image(pred); */ /* image im = float_to_image(256, 256, 3, train.X.vals[0]); image lab = float_to_image(64, 64, 1, train.y.vals[0]); image pred = float_to_image(64, 64, 1, out); show_image(im, "image"); show_image(lab, "label"); print_image(lab); show_image(pred, "pred"); cvWaitKey(0); */ if(avg_loss == -1) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net->seen); free_data(train); if(get_current_batch(net)%100 == 0){ char buff[256]; sprintf(buff, "%s/%s_batch_%ld.weights", backup_directory, base, get_current_batch(net)); save_weights(net, buff); } if(*net->seen/N > epoch){ epoch = *net->seen/N; char buff[256]; sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); save_weights(net, buff); } } }
void train_go(char *cfgfile, char *weightfile) { data_seed = time(0); srand(time(0)); float avg_loss = -1; char *base = basecfg(cfgfile); printf("%s\n", base); network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); char *backup_directory = "/home/pjreddie/backup/"; char buff[256]; sprintf(buff, "/home/pjreddie/go.train.%02d", rand()%10); data train = load_go(buff); int N = train.X.rows; int epoch = (*net.seen)/N; while(get_current_batch(net) < net.max_batches || net.max_batches == 0){ clock_t time=clock(); data batch = get_random_data(train, net.batch); int i; for(i = 0; i < batch.X.rows; ++i){ int flip = rand()%2; int rotate = rand()%4; image in = float_to_image(19, 19, 1, batch.X.vals[i]); image out = float_to_image(19, 19, 1, batch.y.vals[i]); //show_image_normalized(in, "in"); //show_image_normalized(out, "out"); if(flip){ flip_image(in); flip_image(out); } rotate_image_cw(in, rotate); rotate_image_cw(out, rotate); //show_image_normalized(in, "in2"); //show_image_normalized(out, "out2"); //cvWaitKey(0); } float loss = train_network(net, batch); free_data(batch); if(avg_loss == -1) avg_loss = loss; avg_loss = avg_loss*.95 + loss*.05; printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen); if(*net.seen/N > epoch){ epoch = *net.seen/N; char buff[256]; sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); save_weights(net, buff); free_data(train); sprintf(buff, "/home/pjreddie/go.train.%02d", epoch%10); train = load_go(buff); } if(get_current_batch(net)%100 == 0){ char buff[256]; sprintf(buff, "%s/%s.backup",backup_directory,base); save_weights(net, buff); } } sprintf(buff, "%s/%s.weights", backup_directory, base); save_weights(net, buff); free_network(net); free(base); free_data(train); }
void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear) { list *options = read_data_cfg(datacfg); char *train_images = option_find_str(options, "train", "data/train.list"); char *backup_directory = option_find_str(options, "backup", "/backup/"); srand(time(0)); char *base = basecfg(cfgfile); printf("%s\n", base); float avg_loss = -1; network *nets = calloc(ngpus, sizeof(network)); srand(time(0)); int seed = rand(); int i; for(i = 0; i < ngpus; ++i){ srand(seed); #ifdef GPU cuda_set_device(gpus[i]); #endif nets[i] = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&nets[i], weightfile); } if(clear) *nets[i].seen = 0; nets[i].learning_rate *= ngpus; } srand(time(0)); network net = nets[0]; int imgs = net.batch * net.subdivisions * ngpus; printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); data train, buffer; layer l = net.layers[net.n - 1]; int classes = l.classes; float jitter = l.jitter; list *plist = get_paths(train_images); //int N = plist->size; char **paths = (char **)list_to_array(plist); load_args args = {0}; args.w = net.w; args.h = net.h; args.paths = paths; args.n = imgs; args.m = plist->size; args.classes = classes; args.jitter = jitter; args.num_boxes = l.max_boxes; args.d = &buffer; args.type = DETECTION_DATA; args.threads = 8; args.angle = net.angle; args.exposure = net.exposure; args.saturation = net.saturation; args.hue = net.hue; pthread_t load_thread = load_data(args); clock_t time; int count = 0; //while(i*imgs < N*120){ while(get_current_batch(net) < net.max_batches){ if(l.random && count++%10 == 0){ printf("Resizing\n"); //int dim = (rand() % 10 + 10) * 32; //if (get_current_batch(net)+200 > net.max_batches) dim = 608; //int dim = (rand() % 4 + 16) * 32; int dim = (args.w <= args.h ? args.w : args.h); printf("%d\n", dim); args.w = dim; args.h = dim; pthread_join(load_thread, 0); train = buffer; free_data(train); load_thread = load_data(args); for(i = 0; i < ngpus; ++i){ resize_network(nets + i, dim, dim); } net = nets[0]; } time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data(args); /* int k; for(k = 0; k < l.max_boxes; ++k){ box b = float_to_box(train.y.vals[10] + 1 + k*5); if(!b.x) break; printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h); } image im = float_to_image(448, 448, 3, train.X.vals[10]); int k; for(k = 0; k < l.max_boxes; ++k){ box b = float_to_box(train.y.vals[10] + 1 + k*5); printf("%d %d %d %d\n", truth.x, truth.y, truth.w, truth.h); draw_bbox(im, b, 8, 1,0,0); } save_image(im, "truth11"); */ printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); float loss = 0; #ifdef GPU if(ngpus == 1){ loss = train_network(net, train); } else { loss = train_networks(nets, ngpus, train, 4); } #else loss = train_network(net, train); #endif if (avg_loss < 0) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; i = get_current_batch(net); printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); if(i%1000==0 || (i < 1000 && i%100 == 0)){ #ifdef GPU if(ngpus != 1) sync_nets(nets, ngpus, 0); #endif char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(net, buff); } free_data(train); } #ifdef GPU if(ngpus != 1) sync_nets(nets, ngpus, 0); #endif char buff[256]; sprintf(buff, "%s/%s_final.weights", backup_directory, base); save_weights(net, buff); }
void train_lsd3(char *fcfg, char *fweight, char *gcfg, char *gweight, char *acfg, char *aweight, int clear) { #ifdef GPU //char *train_images = "/home/pjreddie/data/coco/trainvalno5k.txt"; char *train_images = "/home/pjreddie/data/imagenet/imagenet1k.train.list"; //char *style_images = "/home/pjreddie/data/coco/trainvalno5k.txt"; char *style_images = "/home/pjreddie/zelda.txt"; char *backup_directory = "/home/pjreddie/backup/"; srand(time(0)); network fnet = load_network(fcfg, fweight, clear); network gnet = load_network(gcfg, gweight, clear); network anet = load_network(acfg, aweight, clear); char *gbase = basecfg(gcfg); char *abase = basecfg(acfg); printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", gnet.learning_rate, gnet.momentum, gnet.decay); int imgs = gnet.batch*gnet.subdivisions; int i = *gnet.seen/imgs; data train, tbuffer; data style, sbuffer; list *slist = get_paths(style_images); char **spaths = (char **)list_to_array(slist); list *tlist = get_paths(train_images); char **tpaths = (char **)list_to_array(tlist); load_args targs= get_base_args(gnet); targs.paths = tpaths; targs.n = imgs; targs.m = tlist->size; targs.d = &tbuffer; targs.type = CLASSIFICATION_DATA; targs.classes = 1; char *ls[1] = {"zelda"}; targs.labels = ls; load_args sargs = get_base_args(gnet); sargs.paths = spaths; sargs.n = imgs; sargs.m = slist->size; sargs.d = &sbuffer; sargs.type = CLASSIFICATION_DATA; sargs.classes = 1; sargs.labels = ls; pthread_t tload_thread = load_data_in_thread(targs); pthread_t sload_thread = load_data_in_thread(sargs); clock_t time; float aloss_avg = -1; float floss_avg = -1; network_state fstate = {}; fstate.index = 0; fstate.net = fnet; int x_size = get_network_input_size(fnet)*fnet.batch; int y_size = get_network_output_size(fnet)*fnet.batch; fstate.input = cuda_make_array(0, x_size); fstate.truth = cuda_make_array(0, y_size); fstate.delta = cuda_make_array(0, x_size); fstate.train = 1; float *X = (float*)calloc(x_size, sizeof(float)); float *y = (float*)calloc(y_size, sizeof(float)); float *ones = cuda_make_array(0, anet.batch); float *zeros = cuda_make_array(0, anet.batch); fill_ongpu(anet.batch, .99, ones, 1); fill_ongpu(anet.batch, .01, zeros, 1); network_state astate = {}; astate.index = 0; astate.net = anet; int ax_size = get_network_input_size(anet)*anet.batch; int ay_size = get_network_output_size(anet)*anet.batch; astate.input = 0; astate.truth = ones; astate.delta = cuda_make_array(0, ax_size); astate.train = 1; network_state gstate = {}; gstate.index = 0; gstate.net = gnet; int gx_size = get_network_input_size(gnet)*gnet.batch; int gy_size = get_network_output_size(gnet)*gnet.batch; gstate.input = cuda_make_array(0, gx_size); gstate.truth = 0; gstate.delta = 0; gstate.train = 1; while (get_current_batch(gnet) < gnet.max_batches) { i += 1; time=clock(); pthread_join(tload_thread, 0); pthread_join(sload_thread, 0); train = tbuffer; style = sbuffer; tload_thread = load_data_in_thread(targs); sload_thread = load_data_in_thread(sargs); printf("Loaded: %lf seconds\n", sec(clock()-time)); data generated = copy_data(train); time=clock(); int j, k; float floss = 0; for(j = 0; j < fnet.subdivisions; ++j){ layer imlayer = gnet.layers[gnet.n - 1]; get_next_batch(train, fnet.batch, j*fnet.batch, X, y); cuda_push_array(fstate.input, X, x_size); cuda_push_array(gstate.input, X, gx_size); *gnet.seen += gnet.batch; forward_network_gpu(fnet, fstate); float *feats = fnet.layers[fnet.n - 2].output_gpu; copy_ongpu(y_size, feats, 1, fstate.truth, 1); forward_network_gpu(gnet, gstate); float *gen = gnet.layers[gnet.n-1].output_gpu; copy_ongpu(x_size, gen, 1, fstate.input, 1); fill_ongpu(x_size, 0, fstate.delta, 1); forward_network_gpu(fnet, fstate); backward_network_gpu(fnet, fstate); //HERE astate.input = gen; fill_ongpu(ax_size, 0, astate.delta, 1); forward_network_gpu(anet, astate); backward_network_gpu(anet, astate); float *delta = imlayer.delta_gpu; fill_ongpu(x_size, 0, delta, 1); scal_ongpu(x_size, 100, astate.delta, 1); scal_ongpu(x_size, .00001, fstate.delta, 1); axpy_ongpu(x_size, 1, fstate.delta, 1, delta, 1); axpy_ongpu(x_size, 1, astate.delta, 1, delta, 1); //fill_ongpu(x_size, 0, delta, 1); //cuda_push_array(delta, X, x_size); //axpy_ongpu(x_size, -1, imlayer.output_gpu, 1, delta, 1); //printf("pix error: %f\n", cuda_mag_array(delta, x_size)); printf("fea error: %f\n", cuda_mag_array(fstate.delta, x_size)); printf("adv error: %f\n", cuda_mag_array(astate.delta, x_size)); //axpy_ongpu(x_size, 1, astate.delta, 1, delta, 1); backward_network_gpu(gnet, gstate); floss += get_network_cost(fnet) /(fnet.subdivisions*fnet.batch); cuda_pull_array(imlayer.output_gpu, imlayer.output, x_size); for(k = 0; k < gnet.batch; ++k){ int index = j*gnet.batch + k; copy_cpu(imlayer.outputs, imlayer.output + k*imlayer.outputs, 1, generated.X.vals[index], 1); generated.y.vals[index][0] = .01; } } /* image sim = float_to_image(anet.w, anet.h, anet.c, style.X.vals[j]); show_image(sim, "style"); cvWaitKey(0); */ harmless_update_network_gpu(anet); data merge = concat_data(style, generated); randomize_data(merge); float aloss = train_network(anet, merge); update_network_gpu(gnet); free_data(merge); free_data(train); free_data(generated); free_data(style); if (aloss_avg < 0) aloss_avg = aloss; if (floss_avg < 0) floss_avg = floss; aloss_avg = aloss_avg*.9 + aloss*.1; floss_avg = floss_avg*.9 + floss*.1; printf("%d: gen: %f, adv: %f | gen_avg: %f, adv_avg: %f, %f rate, %lf seconds, %d images\n", i, floss, aloss, floss_avg, aloss_avg, get_current_rate(gnet), sec(clock()-time), i*imgs); if(i%1000==0){ char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, gbase, i); save_weights(gnet, buff); sprintf(buff, "%s/%s_%d.weights", backup_directory, abase, i); save_weights(anet, buff); } if(i%100==0){ char buff[256]; sprintf(buff, "%s/%s.backup", backup_directory, gbase); save_weights(gnet, buff); sprintf(buff, "%s/%s.backup", backup_directory, abase); save_weights(anet, buff); } } #endif }