Пример #1
0
static int __kprobes kprobe_handler(struct pt_regs *regs)
{
	struct kprobe *p;
	void *addr = (void *)regs->pc;
	int ret = 0;

	pr_debug("kprobe_handler: kprobe_running=%p\n",
		 kprobe_running());

	/*
	 * We don't want to be preempted for the entire
	 * duration of kprobe processing
	 */
	preempt_disable();

	/* Check that we're not recursing */
	if (kprobe_running()) {
		p = get_kprobe(addr);
		if (p) {
			if (kprobe_status == KPROBE_HIT_SS) {
				printk("FIXME: kprobe hit while single-stepping!\n");
				goto no_kprobe;
			}

			printk("FIXME: kprobe hit while handling another kprobe\n");
			goto no_kprobe;
		} else {
			p = kprobe_running();
			if (p->break_handler && p->break_handler(p, regs))
				goto ss_probe;
		}
		/* If it's not ours, can't be delete race, (we hold lock). */
		goto no_kprobe;
	}

	p = get_kprobe(addr);
	if (!p)
		goto no_kprobe;

	kprobe_status = KPROBE_HIT_ACTIVE;
	set_current_kprobe(p);
	if (p->pre_handler && p->pre_handler(p, regs))
		/* handler has already set things up, so skip ss setup */
		return 1;

ss_probe:
	prepare_singlestep(p, regs);
	kprobe_status = KPROBE_HIT_SS;
	return 1;

no_kprobe:
	preempt_enable_no_resched();
	return ret;
}
Пример #2
0
static int __kprobes kprobe_handler(struct pt_regs *regs)
{
	struct kprobe *p;
	void *addr = (void *)regs->pc;
	int ret = 0;

	pr_debug("kprobe_handler: kprobe_running=%p\n",
		 kprobe_running());

	preempt_disable();

	
	if (kprobe_running()) {
		p = get_kprobe(addr);
		if (p) {
			if (kprobe_status == KPROBE_HIT_SS) {
				printk("FIXME: kprobe hit while single-stepping!\n");
				goto no_kprobe;
			}

			printk("FIXME: kprobe hit while handling another kprobe\n");
			goto no_kprobe;
		} else {
			p = kprobe_running();
			if (p->break_handler && p->break_handler(p, regs))
				goto ss_probe;
		}
		
		goto no_kprobe;
	}

	p = get_kprobe(addr);
	if (!p)
		goto no_kprobe;

	kprobe_status = KPROBE_HIT_ACTIVE;
	set_current_kprobe(p);
	if (p->pre_handler && p->pre_handler(p, regs))
		
		return 1;

ss_probe:
	prepare_singlestep(p, regs);
	kprobe_status = KPROBE_HIT_SS;
	return 1;

no_kprobe:
	preempt_enable_no_resched();
	return ret;
}
Пример #3
0
/* Ftrace callback handler for kprobes */
void __kprobes kprobe_ftrace_handler(unsigned long ip, unsigned long parent_ip,
				     struct ftrace_ops *ops, struct pt_regs *regs)
{
	struct kprobe *p;
	struct kprobe_ctlblk *kcb;
	unsigned long flags;

	/* Disable irq for emulating a breakpoint and avoiding preempt */
	local_irq_save(flags);

	p = get_kprobe((kprobe_opcode_t *)ip);
	if (unlikely(!p) || kprobe_disabled(p))
		goto end;

	kcb = get_kprobe_ctlblk();
	if (kprobe_running()) {
		kprobes_inc_nmissed_count(p);
	} else {
		/* Kprobe handler expects regs->ip = ip + 1 as breakpoint hit */
		regs->ip = ip + sizeof(kprobe_opcode_t);

		__this_cpu_write(current_kprobe, p);
		kcb->kprobe_status = KPROBE_HIT_ACTIVE;
		if (!p->pre_handler || !p->pre_handler(p, regs))
			__skip_singlestep(p, regs, kcb);
		/*
		 * If pre_handler returns !0, it sets regs->ip and
		 * resets current kprobe.
		 */
	}
end:
	local_irq_restore(flags);
}
Пример #4
0
static unsigned long __recover_probed_insn(kprobe_opcode_t *buf,
					   unsigned long addr)
{
	struct kprobe *kp;

	kp = get_kprobe((void *)addr);
	/* There is no probe, return original address */
	if (!kp)
		return addr;

	/*
	 *  Basically, kp->ainsn.insn has an original instruction.
	 *  However, RIP-relative instruction can not do single-stepping
	 *  at different place, __copy_instruction() tweaks the displacement of
	 *  that instruction. In that case, we can't recover the instruction
	 *  from the kp->ainsn.insn.
	 *
	 *  On the other hand, kp->opcode has a copy of the first byte of
	 *  the probed instruction, which is overwritten by int3. And
	 *  the instruction at kp->addr is not modified by kprobes except
	 *  for the first byte, we can recover the original instruction
	 *  from it and kp->opcode.
	 */
	memcpy(buf, kp->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
	buf[0] = kp->opcode;
	return (unsigned long)buf;
}
Пример #5
0
int register_kprobe(struct kprobe *p)
{
	int ret = 0;
	unsigned long flags = 0;

	if ((ret = arch_prepare_kprobe(p)) != 0) {
		goto rm_kprobe;
	}
	spin_lock_irqsave(&kprobe_lock, flags);
	INIT_HLIST_NODE(&p->hlist);
	if (get_kprobe(p->addr)) {
		ret = -EEXIST;
		goto out;
	}
	arch_copy_kprobe(p);

	hlist_add_head(&p->hlist,
		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);

	p->opcode = *p->addr;
	*p->addr = BREAKPOINT_INSTRUCTION;
	flush_icache_range((unsigned long) p->addr,
			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
out:
	spin_unlock_irqrestore(&kprobe_lock, flags);
rm_kprobe:
	if (ret == -EEXIST)
		arch_remove_kprobe(p);
	return ret;
}
Пример #6
0
/**
 * If an illegal slot instruction exception occurs for an address
 * containing a kprobe, remove the probe.
 *
 * Returns 0 if the exception was handled successfully, 1 otherwise.
 */
int __kprobes kprobe_handle_illslot(unsigned long pc)
{
	struct kprobe *p = get_kprobe((kprobe_opcode_t *) pc + 1);

	if (p != NULL) {
		printk("Warning: removing kprobe from delay slot: 0x%.8x\n",
		       (unsigned int)pc + 2);
		unregister_kprobe(p);
		return 0;
	}

	return 1;
}
Пример #7
0
static unsigned long
__recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
{
	struct kprobe *kp;
	unsigned long faddr;

	kp = get_kprobe((void *)addr);
	faddr = ftrace_location(addr);
	/*
	 * Addresses inside the ftrace location are refused by
	 * arch_check_ftrace_location(). Something went terribly wrong
	 * if such an address is checked here.
	 */
	if (WARN_ON(faddr && faddr != addr))
		return 0UL;
	/*
	 * Use the current code if it is not modified by Kprobe
	 * and it cannot be modified by ftrace.
	 */
	if (!kp && !faddr)
		return addr;

	/*
	 * Basically, kp->ainsn.insn has an original instruction.
	 * However, RIP-relative instruction can not do single-stepping
	 * at different place, __copy_instruction() tweaks the displacement of
	 * that instruction. In that case, we can't recover the instruction
	 * from the kp->ainsn.insn.
	 *
	 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
	 * of the first byte of the probed instruction, which is overwritten
	 * by int3. And the instruction at kp->addr is not modified by kprobes
	 * except for the first byte, we can recover the original instruction
	 * from it and kp->opcode.
	 *
	 * In case of Kprobes using ftrace, we do not have a copy of
	 * the original instruction. In fact, the ftrace location might
	 * be modified at anytime and even could be in an inconsistent state.
	 * Fortunately, we know that the original code is the ideal 5-byte
	 * long NOP.
	 */
	if (probe_kernel_read(buf, (void *)addr,
		MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
		return 0UL;

	if (faddr)
		memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
	else
		buf[0] = kp->opcode;
	return (unsigned long)buf;
}
Пример #8
0
unsigned long __recover_optprobed_insn(kprobe_opcode_t *buf, unsigned long addr)
{
	struct optimized_kprobe *op;
	struct kprobe *kp;
	long offs;
	int i;

	for (i = 0; i < RELATIVEJUMP_SIZE; i++) {
		kp = get_kprobe((void *)addr - i);
		/* This function only handles jump-optimized kprobe */
		if (kp && kprobe_optimized(kp)) {
			op = container_of(kp, struct optimized_kprobe, kp);
			/* If op->list is not empty, op is under optimizing */
			if (list_empty(&op->list))
				goto found;
		}
	}
Пример #9
0
/* Ftrace callback handler for kprobes */
void kprobe_ftrace_handler(unsigned long nip, unsigned long parent_nip,
			   struct ftrace_ops *ops, struct pt_regs *regs)
{
	struct kprobe *p;
	struct kprobe_ctlblk *kcb;

	preempt_disable();

	p = get_kprobe((kprobe_opcode_t *)nip);
	if (unlikely(!p) || kprobe_disabled(p))
		goto end;

	kcb = get_kprobe_ctlblk();
	if (kprobe_running()) {
		kprobes_inc_nmissed_count(p);
	} else {
		unsigned long orig_nip = regs->nip;

		/*
		 * On powerpc, NIP is *before* this instruction for the
		 * pre handler
		 */
		regs->nip -= MCOUNT_INSN_SIZE;

		__this_cpu_write(current_kprobe, p);
		kcb->kprobe_status = KPROBE_HIT_ACTIVE;
		if (!p->pre_handler || !p->pre_handler(p, regs))
			__skip_singlestep(p, regs, kcb, orig_nip);
		else {
			/*
			 * If pre_handler returns !0, it sets regs->nip and
			 * resets current kprobe. In this case, we should not
			 * re-enable preemption.
			 */
			return;
		}
	}
end:
	preempt_enable_no_resched();
}
Пример #10
0
static int __kprobes kprobe_handler(struct pt_regs *regs)
{
	struct kprobe *p;
	void *addr = (void *) regs->tpc;
	int ret = 0;
	struct kprobe_ctlblk *kcb;

	/*
	 * We don't want to be preempted for the entire
	 * duration of kprobe processing
	 */
	preempt_disable();
	kcb = get_kprobe_ctlblk();

	if (kprobe_running()) {
		p = get_kprobe(addr);
		if (p) {
			if (kcb->kprobe_status == KPROBE_HIT_SS) {
				regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
					kcb->kprobe_orig_tstate_pil);
				goto no_kprobe;
			}
			/* We have reentered the kprobe_handler(), since
			 * another probe was hit while within the handler.
			 * We here save the original kprobes variables and
			 * just single step on the instruction of the new probe
			 * without calling any user handlers.
			 */
			save_previous_kprobe(kcb);
			set_current_kprobe(p, regs, kcb);
			kprobes_inc_nmissed_count(p);
			kcb->kprobe_status = KPROBE_REENTER;
			prepare_singlestep(p, regs, kcb);
			return 1;
		} else {
			if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
			/* The breakpoint instruction was removed by
			 * another cpu right after we hit, no further
			 * handling of this interrupt is appropriate
			 */
				ret = 1;
				goto no_kprobe;
			}
			p = __get_cpu_var(current_kprobe);
			if (p->break_handler && p->break_handler(p, regs))
				goto ss_probe;
		}
		goto no_kprobe;
	}

	p = get_kprobe(addr);
	if (!p) {
		if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
			/*
			 * The breakpoint instruction was removed right
			 * after we hit it.  Another cpu has removed
			 * either a probepoint or a debugger breakpoint
			 * at this address.  In either case, no further
			 * handling of this interrupt is appropriate.
			 */
			ret = 1;
		}
		/* Not one of ours: let kernel handle it */
		goto no_kprobe;
	}

	set_current_kprobe(p, regs, kcb);
	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
	if (p->pre_handler && p->pre_handler(p, regs))
		return 1;

ss_probe:
	prepare_singlestep(p, regs, kcb);
	kcb->kprobe_status = KPROBE_HIT_SS;
	return 1;

no_kprobe:
	preempt_enable_no_resched();
	return ret;
}
Пример #11
0
/*
 * Called with IRQs disabled. IRQs must remain disabled from that point
 * all the way until processing this kprobe is complete.  The current
 * kprobes implementation cannot process more than one nested level of
 * kprobe, and that level is reserved for user kprobe handlers, so we can't
 * risk encountering a new kprobe in an interrupt handler.
 */
void __kprobes kprobe_handler(struct pt_regs *regs)
{
	struct kprobe *p, *cur;
	struct kprobe_ctlblk *kcb;

	kcb = get_kprobe_ctlblk();
	cur = kprobe_running();

#ifdef CONFIG_THUMB2_KERNEL
	/*
	 * First look for a probe which was registered using an address with
	 * bit 0 set, this is the usual situation for pointers to Thumb code.
	 * If not found, fallback to looking for one with bit 0 clear.
	 */
	p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1));
	if (!p)
		p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);

#else /* ! CONFIG_THUMB2_KERNEL */
	p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
#endif

	if (p) {
		if (cur) {
			/* Kprobe is pending, so we're recursing. */
			switch (kcb->kprobe_status) {
			case KPROBE_HIT_ACTIVE:
			case KPROBE_HIT_SSDONE:
				/* A pre- or post-handler probe got us here. */
				kprobes_inc_nmissed_count(p);
				save_previous_kprobe(kcb);
				set_current_kprobe(p);
				kcb->kprobe_status = KPROBE_REENTER;
				singlestep(p, regs, kcb);
				restore_previous_kprobe(kcb);
				break;
			default:
				/* impossible cases */
				BUG();
			}
		} else if (p->ainsn.insn_check_cc(regs->ARM_cpsr)) {
			/* Probe hit and conditional execution check ok. */
			set_current_kprobe(p);
			kcb->kprobe_status = KPROBE_HIT_ACTIVE;

			/*
			 * If we have no pre-handler or it returned 0, we
			 * continue with normal processing.  If we have a
			 * pre-handler and it returned non-zero, it prepped
			 * for calling the break_handler below on re-entry,
			 * so get out doing nothing more here.
			 */
			if (!p->pre_handler || !p->pre_handler(p, regs)) {
				kcb->kprobe_status = KPROBE_HIT_SS;
				singlestep(p, regs, kcb);
				if (p->post_handler) {
					kcb->kprobe_status = KPROBE_HIT_SSDONE;
					p->post_handler(p, regs, 0);
				}
				reset_current_kprobe();
			}
		} else {
			/*
			 * Probe hit but conditional execution check failed,
			 * so just skip the instruction and continue as if
			 * nothing had happened.
			 */
			singlestep_skip(p, regs);
		}
	} else if (cur) {
		/* We probably hit a jprobe.  Call its break handler. */
		if (cur->break_handler && cur->break_handler(cur, regs)) {
			kcb->kprobe_status = KPROBE_HIT_SS;
			singlestep(cur, regs, kcb);
			if (cur->post_handler) {
				kcb->kprobe_status = KPROBE_HIT_SSDONE;
				cur->post_handler(cur, regs, 0);
			}
		}
		reset_current_kprobe();
	} else {
		/*
		 * The probe was removed and a race is in progress.
		 * There is nothing we can do about it.  Let's restart
		 * the instruction.  By the time we can restart, the
		 * real instruction will be there.
		 */
	}
}
Пример #12
0
static int __kprobes kprobe_handler(struct pt_regs *regs)
{
	struct kprobe *p;
	void *addr = (void *) regs->tpc;
	int ret = 0;

	preempt_disable();

	if (kprobe_running()) {
		/* We *are* holding lock here, so this is safe.
		 * Disarm the probe we just hit, and ignore it.
		 */
		p = get_kprobe(addr);
		if (p) {
			if (kprobe_status == KPROBE_HIT_SS) {
				regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
					current_kprobe_orig_tstate_pil);
				unlock_kprobes();
				goto no_kprobe;
			}
			/* We have reentered the kprobe_handler(), since
			 * another probe was hit while within the handler.
			 * We here save the original kprobes variables and
			 * just single step on the instruction of the new probe
			 * without calling any user handlers.
			 */
			save_previous_kprobe();
			set_current_kprobe(p, regs);
			p->nmissed++;
			kprobe_status = KPROBE_REENTER;
			prepare_singlestep(p, regs);
			return 1;
		} else {
			p = current_kprobe;
			if (p->break_handler && p->break_handler(p, regs))
				goto ss_probe;
		}
		/* If it's not ours, can't be delete race, (we hold lock). */
		goto no_kprobe;
	}

	lock_kprobes();
	p = get_kprobe(addr);
	if (!p) {
		unlock_kprobes();
		if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
			/*
			 * The breakpoint instruction was removed right
			 * after we hit it.  Another cpu has removed
			 * either a probepoint or a debugger breakpoint
			 * at this address.  In either case, no further
			 * handling of this interrupt is appropriate.
			 */
			ret = 1;
		}
		/* Not one of ours: let kernel handle it */
		goto no_kprobe;
	}

	set_current_kprobe(p, regs);
	kprobe_status = KPROBE_HIT_ACTIVE;
	if (p->pre_handler && p->pre_handler(p, regs))
		return 1;

ss_probe:
	prepare_singlestep(p, regs);
	kprobe_status = KPROBE_HIT_SS;
	return 1;

no_kprobe:
	preempt_enable_no_resched();
	return ret;
}
Пример #13
0
/*
 * Called with IRQs disabled. IRQs must remain disabled from that point
 * all the way until processing this kprobe is complete.  The current
 * kprobes implementation cannot process more than one nested level of
 * kprobe, and that level is reserved for user kprobe handlers, so we can't
 * risk encountering a new kprobe in an interrupt handler.
 */
void __kprobes kprobe_handler(struct pt_regs *regs)
{
	struct kprobe *p, *cur;
	struct kprobe_ctlblk *kcb;
	kprobe_opcode_t	*addr = (kprobe_opcode_t *)regs->ARM_pc;

	kcb = get_kprobe_ctlblk();
	cur = kprobe_running();
	p = get_kprobe(addr);

	if (p) {
		if (cur) {
			/* Kprobe is pending, so we're recursing. */
			switch (kcb->kprobe_status) {
			case KPROBE_HIT_ACTIVE:
			case KPROBE_HIT_SSDONE:
				/* A pre- or post-handler probe got us here. */
				kprobes_inc_nmissed_count(p);
				save_previous_kprobe(kcb);
				set_current_kprobe(p);
				kcb->kprobe_status = KPROBE_REENTER;
				singlestep(p, regs, kcb);
				restore_previous_kprobe(kcb);
				break;
			default:
				/* impossible cases */
				BUG();
			}
		} else {
			set_current_kprobe(p);
			kcb->kprobe_status = KPROBE_HIT_ACTIVE;

			/*
			 * If we have no pre-handler or it returned 0, we
			 * continue with normal processing.  If we have a
			 * pre-handler and it returned non-zero, it prepped
			 * for calling the break_handler below on re-entry,
			 * so get out doing nothing more here.
			 */
			if (!p->pre_handler || !p->pre_handler(p, regs)) {
				kcb->kprobe_status = KPROBE_HIT_SS;
				singlestep(p, regs, kcb);
				if (p->post_handler) {
					kcb->kprobe_status = KPROBE_HIT_SSDONE;
					p->post_handler(p, regs, 0);
				}
				reset_current_kprobe();
			}
		}
	} else if (cur) {
		/* We probably hit a jprobe.  Call its break handler. */
		if (cur->break_handler && cur->break_handler(cur, regs)) {
			kcb->kprobe_status = KPROBE_HIT_SS;
			singlestep(cur, regs, kcb);
			if (cur->post_handler) {
				kcb->kprobe_status = KPROBE_HIT_SSDONE;
				cur->post_handler(cur, regs, 0);
			}
		}
		reset_current_kprobe();
	} else {
		/*
		 * The probe was removed and a race is in progress.
		 * There is nothing we can do about it.  Let's restart
		 * the instruction.  By the time we can restart, the
		 * real instruction will be there.
		 */
	}
}
Пример #14
0
static inline int kprobe_handler(struct pt_regs *regs)
{
	struct kprobe *p;
	int ret = 0;
	unsigned int *addr = (unsigned int *)regs->nip;

	/* Check we're not actually recursing */
	if (kprobe_running()) {
		/* We *are* holding lock here, so this is safe.
		   Disarm the probe we just hit, and ignore it. */
		p = get_kprobe(addr);
		if (p) {
			if (kprobe_status == KPROBE_HIT_SS) {
				regs->msr &= ~MSR_SE;
				regs->msr |= kprobe_saved_msr;
				unlock_kprobes();
				goto no_kprobe;
			}
			disarm_kprobe(p, regs);
			ret = 1;
		} else {
			p = current_kprobe;
			if (p->break_handler && p->break_handler(p, regs)) {
				goto ss_probe;
			}
		}
		/* If it's not ours, can't be delete race, (we hold lock). */
		goto no_kprobe;
	}

	lock_kprobes();
	p = get_kprobe(addr);
	if (!p) {
		unlock_kprobes();
		if (*addr != BREAKPOINT_INSTRUCTION) {
			/*
			 * PowerPC has multiple variants of the "trap"
			 * instruction. If the current instruction is a
			 * trap variant, it could belong to someone else
			 */
			kprobe_opcode_t cur_insn = *addr;
			if (IS_TW(cur_insn) || IS_TD(cur_insn) ||
					IS_TWI(cur_insn) || IS_TDI(cur_insn))
		       		goto no_kprobe;
			/*
			 * The breakpoint instruction was removed right
			 * after we hit it.  Another cpu has removed
			 * either a probepoint or a debugger breakpoint
			 * at this address.  In either case, no further
			 * handling of this interrupt is appropriate.
			 */
			ret = 1;
		}
		/* Not one of ours: let kernel handle it */
		goto no_kprobe;
	}

	kprobe_status = KPROBE_HIT_ACTIVE;
	current_kprobe = p;
	kprobe_saved_msr = regs->msr;
	if (p->pre_handler && p->pre_handler(p, regs))
		/* handler has already set things up, so skip ss setup */
		return 1;

ss_probe:
	prepare_singlestep(p, regs);
	kprobe_status = KPROBE_HIT_SS;
	/*
	 * This preempt_disable() matches the preempt_enable_no_resched()
	 * in post_kprobe_handler().
	 */
	preempt_disable();
	return 1;

no_kprobe:
	return ret;
}