int act_parse_police(struct action_util *a,int *argc_p, char ***argv_p, int tca_id, struct nlmsghdr *n) { int argc = *argc_p; char **argv = *argv_p; int res = -1; int ok=0; struct tc_police p; __u32 rtab[256]; __u32 ptab[256]; __u32 avrate = 0; int presult = 0; unsigned buffer=0, mtu=0, mpu=0; unsigned short overhead=0; unsigned int linklayer = LINKLAYER_ETHERNET; /* Assume ethernet */ int Rcell_log=-1, Pcell_log = -1; struct rtattr *tail; memset(&p, 0, sizeof(p)); p.action = TC_POLICE_RECLASSIFY; if (a) /* new way of doing things */ NEXT_ARG(); if (argc <= 0) return -1; while (argc > 0) { if (matches(*argv, "index") == 0) { NEXT_ARG(); if (get_u32(&p.index, *argv, 10)) { fprintf(stderr, "Illegal \"index\"\n"); return -1; } } else if (matches(*argv, "burst") == 0 || strcmp(*argv, "buffer") == 0 || strcmp(*argv, "maxburst") == 0) { NEXT_ARG(); if (buffer) { fprintf(stderr, "Double \"buffer/burst\" spec\n"); return -1; } if (get_size_and_cell(&buffer, &Rcell_log, *argv) < 0) { explain1("buffer"); return -1; } } else if (strcmp(*argv, "mtu") == 0 || strcmp(*argv, "minburst") == 0) { NEXT_ARG(); if (mtu) { fprintf(stderr, "Double \"mtu/minburst\" spec\n"); return -1; } if (get_size_and_cell(&mtu, &Pcell_log, *argv) < 0) { explain1("mtu"); return -1; } } else if (strcmp(*argv, "mpu") == 0) { NEXT_ARG(); if (mpu) { fprintf(stderr, "Double \"mpu\" spec\n"); return -1; } if (get_size(&mpu, *argv)) { explain1("mpu"); return -1; } } else if (strcmp(*argv, "rate") == 0) { NEXT_ARG(); if (p.rate.rate) { fprintf(stderr, "Double \"rate\" spec\n"); return -1; } if (get_rate(&p.rate.rate, *argv)) { explain1("rate"); return -1; } } else if (strcmp(*argv, "avrate") == 0) { NEXT_ARG(); if (avrate) { fprintf(stderr, "Double \"avrate\" spec\n"); return -1; } if (get_rate(&avrate, *argv)) { explain1("avrate"); return -1; } } else if (matches(*argv, "peakrate") == 0) { NEXT_ARG(); if (p.peakrate.rate) { fprintf(stderr, "Double \"peakrate\" spec\n"); return -1; } if (get_rate(&p.peakrate.rate, *argv)) { explain1("peakrate"); return -1; } } else if (matches(*argv, "reclassify") == 0) { p.action = TC_POLICE_RECLASSIFY; } else if (matches(*argv, "drop") == 0 || matches(*argv, "shot") == 0) { p.action = TC_POLICE_SHOT; } else if (matches(*argv, "continue") == 0) { p.action = TC_POLICE_UNSPEC; } else if (matches(*argv, "pass") == 0) { p.action = TC_POLICE_OK; } else if (matches(*argv, "pipe") == 0) { p.action = TC_POLICE_PIPE; } else if (strcmp(*argv, "action") == 0 || strcmp(*argv, "conform-exceed") == 0) { NEXT_ARG(); if (get_police_result(&p.action, &presult, *argv)) { fprintf(stderr, "Illegal \"action\"\n"); return -1; } } else if (matches(*argv, "overhead") == 0) { NEXT_ARG(); if (get_u16(&overhead, *argv, 10)) { explain1("overhead"); return -1; } } else if (matches(*argv, "linklayer") == 0) { NEXT_ARG(); if (get_linklayer(&linklayer, *argv)) { explain1("linklayer"); return -1; } } else if (strcmp(*argv, "help") == 0) { usage(); } else { break; } ok++; argc--; argv++; } if (!ok) return -1; if (p.rate.rate && !buffer) { fprintf(stderr, "\"burst\" requires \"rate\".\n"); return -1; } if (p.peakrate.rate) { if (!p.rate.rate) { fprintf(stderr, "\"peakrate\" requires \"rate\".\n"); return -1; } if (!mtu) { fprintf(stderr, "\"mtu\" is required, if \"peakrate\" is requested.\n"); return -1; } } if (p.rate.rate) { p.rate.mpu = mpu; p.rate.overhead = overhead; if (tc_calc_rtable(&p.rate, rtab, Rcell_log, mtu, linklayer) < 0) { fprintf(stderr, "TBF: failed to calculate rate table.\n"); return -1; } p.burst = tc_calc_xmittime(p.rate.rate, buffer); } p.mtu = mtu; if (p.peakrate.rate) { p.peakrate.mpu = mpu; p.peakrate.overhead = overhead; if (tc_calc_rtable(&p.peakrate, ptab, Pcell_log, mtu, linklayer) < 0) { fprintf(stderr, "POLICE: failed to calculate peak rate table.\n"); return -1; } } tail = NLMSG_TAIL(n); addattr_l(n, MAX_MSG, tca_id, NULL, 0); addattr_l(n, MAX_MSG, TCA_POLICE_TBF, &p, sizeof(p)); if (p.rate.rate) addattr_l(n, MAX_MSG, TCA_POLICE_RATE, rtab, 1024); if (p.peakrate.rate) addattr_l(n, MAX_MSG, TCA_POLICE_PEAKRATE, ptab, 1024); if (avrate) addattr32(n, MAX_MSG, TCA_POLICE_AVRATE, avrate); if (presult) addattr32(n, MAX_MSG, TCA_POLICE_RESULT, presult); tail->rta_len = (void *) NLMSG_TAIL(n) - (void *) tail; res = 0; *argc_p = argc; *argv_p = argv; return res; }
static int tbf_parse_opt(struct qdisc_util *qu, int argc, char **argv, struct nlmsghdr *n) { int ok=0; struct tc_tbf_qopt opt; __u32 rtab[256]; __u32 ptab[256]; unsigned buffer=0, mtu=0, mpu=0, latency=0; int Rcell_log=-1, Pcell_log = -1; struct rtattr *tail; memset(&opt, 0, sizeof(opt)); while (argc > 0) { if (matches(*argv, "limit") == 0) { NEXT_ARG(); if (opt.limit || latency) { fprintf(stderr, "Double \"limit/latency\" spec\n"); return -1; } if (get_size(&opt.limit, *argv)) { explain1("limit"); return -1; } ok++; } else if (matches(*argv, "latency") == 0) { NEXT_ARG(); if (opt.limit || latency) { fprintf(stderr, "Double \"limit/latency\" spec\n"); return -1; } if (get_usecs(&latency, *argv)) { explain1("latency"); return -1; } ok++; } else if (matches(*argv, "burst") == 0 || strcmp(*argv, "buffer") == 0 || strcmp(*argv, "maxburst") == 0) { NEXT_ARG(); if (buffer) { fprintf(stderr, "Double \"buffer/burst\" spec\n"); return -1; } if (get_size_and_cell(&buffer, &Rcell_log, *argv) < 0) { explain1("buffer"); return -1; } ok++; } else if (strcmp(*argv, "mtu") == 0 || strcmp(*argv, "minburst") == 0) { NEXT_ARG(); if (mtu) { fprintf(stderr, "Double \"mtu/minburst\" spec\n"); return -1; } if (get_size_and_cell(&mtu, &Pcell_log, *argv) < 0) { explain1("mtu"); return -1; } ok++; } else if (strcmp(*argv, "mpu") == 0) { NEXT_ARG(); if (mpu) { fprintf(stderr, "Double \"mpu\" spec\n"); return -1; } if (get_size(&mpu, *argv)) { explain1("mpu"); return -1; } ok++; } else if (strcmp(*argv, "rate") == 0) { NEXT_ARG(); if (opt.rate.rate) { fprintf(stderr, "Double \"rate\" spec\n"); return -1; } if (get_rate(&opt.rate.rate, *argv)) { explain1("rate"); return -1; } ok++; } else if (matches(*argv, "peakrate") == 0) { NEXT_ARG(); if (opt.peakrate.rate) { fprintf(stderr, "Double \"peakrate\" spec\n"); return -1; } if (get_rate(&opt.peakrate.rate, *argv)) { explain1("peakrate"); return -1; } ok++; } else if (strcmp(*argv, "help") == 0) { explain(); return -1; } else { fprintf(stderr, "What is \"%s\"?\n", *argv); explain(); return -1; } argc--; argv++; } if (!ok) return 0; if (opt.rate.rate == 0 || !buffer) { fprintf(stderr, "Both \"rate\" and \"burst\" are required.\n"); return -1; } if (opt.peakrate.rate) { if (!mtu) { fprintf(stderr, "\"mtu\" is required, if \"peakrate\" is requested.\n"); return -1; } } if (opt.limit == 0 && latency == 0) { fprintf(stderr, "Either \"limit\" or \"latency\" are required.\n"); return -1; } if (opt.limit == 0) { double lim = opt.rate.rate*(double)latency/1000000 + buffer; if (opt.peakrate.rate) { double lim2 = opt.peakrate.rate*(double)latency/1000000 + mtu; if (lim2 < lim) lim = lim2; } opt.limit = lim; } if ((Rcell_log = tc_calc_rtable(opt.rate.rate, rtab, Rcell_log, mtu, mpu)) < 0) { fprintf(stderr, "TBF: failed to calculate rate table.\n"); return -1; } opt.buffer = tc_calc_xmittime(opt.rate.rate, buffer); opt.rate.cell_log = Rcell_log; opt.rate.mpu = mpu; if (opt.peakrate.rate) { if ((Pcell_log = tc_calc_rtable(opt.peakrate.rate, ptab, Pcell_log, mtu, mpu)) < 0) { fprintf(stderr, "TBF: failed to calculate peak rate table.\n"); return -1; } opt.mtu = tc_calc_xmittime(opt.peakrate.rate, mtu); opt.peakrate.cell_log = Pcell_log; opt.peakrate.mpu = mpu; } tail = (struct rtattr*)(((void*)n)+NLMSG_ALIGN(n->nlmsg_len)); addattr_l(n, 1024, TCA_OPTIONS, NULL, 0); addattr_l(n, 2024, TCA_TBF_PARMS, &opt, sizeof(opt)); addattr_l(n, 3024, TCA_TBF_RTAB, rtab, 1024); if (opt.peakrate.rate) addattr_l(n, 4096, TCA_TBF_PTAB, ptab, 1024); tail->rta_len = (((void*)n)+NLMSG_ALIGN(n->nlmsg_len)) - (void*)tail; return 0; }
static int htb_parse_class_opt(struct qdisc_util *qu, int argc, char **argv, struct nlmsghdr *n) { int ok=0; struct tc_htb_opt opt; __u32 rtab[256],ctab[256]; unsigned buffer=0,cbuffer=0; int cell_log=-1,ccell_log = -1; unsigned mtu, mpu; unsigned char mpu8 = 0, overhead = 0; struct rtattr *tail; memset(&opt, 0, sizeof(opt)); mtu = 1600; /* eth packet len */ while (argc > 0) { if (matches(*argv, "prio") == 0) { NEXT_ARG(); if (get_u32(&opt.prio, *argv, 10)) { explain1("prio"); return -1; } ok++; } else if (matches(*argv, "mtu") == 0) { NEXT_ARG(); if (get_u32(&mtu, *argv, 10)) { explain1("mtu"); return -1; } } else if (matches(*argv, "mpu") == 0) { NEXT_ARG(); if (get_u8(&mpu8, *argv, 10)) { explain1("mpu"); return -1; } } else if (matches(*argv, "overhead") == 0) { NEXT_ARG(); if (get_u8(&overhead, *argv, 10)) { explain1("overhead"); return -1; } } else if (matches(*argv, "quantum") == 0) { NEXT_ARG(); if (get_u32(&opt.quantum, *argv, 10)) { explain1("quantum"); return -1; } } else if (matches(*argv, "burst") == 0 || strcmp(*argv, "buffer") == 0 || strcmp(*argv, "maxburst") == 0) { NEXT_ARG(); if (get_size_and_cell(&buffer, &cell_log, *argv) < 0) { explain1("buffer"); return -1; } ok++; } else if (matches(*argv, "cburst") == 0 || strcmp(*argv, "cbuffer") == 0 || strcmp(*argv, "cmaxburst") == 0) { NEXT_ARG(); if (get_size_and_cell(&cbuffer, &ccell_log, *argv) < 0) { explain1("cbuffer"); return -1; } ok++; } else if (strcmp(*argv, "ceil") == 0) { NEXT_ARG(); if (opt.ceil.rate) { // fprintf(stderr, "Double \"ceil\" spec\n"); return -1; } if (get_rate(&opt.ceil.rate, *argv)) { explain1("ceil"); return -1; } ok++; } else if (strcmp(*argv, "rate") == 0) { NEXT_ARG(); if (opt.rate.rate) { // fprintf(stderr, "Double \"rate\" spec\n"); return -1; } if (get_rate(&opt.rate.rate, *argv)) { explain1("rate"); return -1; } ok++; } else if (strcmp(*argv, "help") == 0) { explain(); return -1; } else { // fprintf(stderr, "What is \"%s\"?\n", *argv); explain(); return -1; } argc--; argv++; } /* if (!ok) return 0;*/ if (opt.rate.rate == 0) { // fprintf(stderr, "\"rate\" is required.\n"); return -1; } /* if ceil params are missing, use the same as rate */ if (!opt.ceil.rate) opt.ceil = opt.rate; /* compute minimal allowed burst from rate; mtu is added here to make sute that buffer is larger than mtu and to have some safeguard space */ if (!buffer) buffer = opt.rate.rate / HZ + mtu; if (!cbuffer) cbuffer = opt.ceil.rate / HZ + mtu; /* encode overhead and mpu, 8 bits each, into lower 16 bits */ mpu = (unsigned)mpu8 | (unsigned)overhead << 8; opt.ceil.mpu = mpu; opt.rate.mpu = mpu; if ((cell_log = tc_calc_rtable(opt.rate.rate, rtab, cell_log, mtu, mpu)) < 0) { // fprintf(stderr, "htb: failed to calculate rate table.\n"); return -1; } opt.buffer = tc_calc_xmittime(opt.rate.rate, buffer); opt.rate.cell_log = cell_log; if ((ccell_log = tc_calc_rtable(opt.ceil.rate, ctab, cell_log, mtu, mpu)) < 0) { // fprintf(stderr, "htb: failed to calculate ceil rate table.\n"); return -1; } opt.cbuffer = tc_calc_xmittime(opt.ceil.rate, cbuffer); opt.ceil.cell_log = ccell_log; tail = (struct rtattr*)(((void*)n)+NLMSG_ALIGN(n->nlmsg_len)); addattr_l(n, 1024, TCA_OPTIONS, NULL, 0); addattr_l(n, 2024, TCA_HTB_PARMS, &opt, sizeof(opt)); addattr_l(n, 3024, TCA_HTB_RTAB, rtab, 1024); addattr_l(n, 4024, TCA_HTB_CTAB, ctab, 1024); tail->rta_len = (((void*)n)+NLMSG_ALIGN(n->nlmsg_len)) - (void*)tail; return 0; }