Пример #1
0
void
gsl_complex_arccos (complex_t const *a, complex_t *res)
{                               /* z = arccos(a) */
        gnm_float R = GSL_REAL (a), I = GSL_IMAG (a);

	if (I == 0) {
	        gsl_complex_arccos_real (R, res);
	} else {
	        gnm_float x = gnm_abs (R);
		gnm_float y = gnm_abs (I);
		gnm_float r = gnm_hypot (x + 1, y);
		gnm_float s = gnm_hypot (x - 1, y);
		gnm_float A = 0.5 * (r + s);
		gnm_float B = x / A;
		gnm_float y2 = y * y;

		gnm_float real, imag;

		const gnm_float A_crossover = 1.5;
		const gnm_float B_crossover = 0.6417;

		if (B <= B_crossover) {
		        real = gnm_acos (B);
		} else {
		        if (x <= 1) {
			        gnm_float D = 0.5 * (A + x) *
				        (y2 / (r + x + 1) + (s + (1 - x)));
				real = gnm_atan (gnm_sqrt (D) / x);
			} else {
			        gnm_float Apx = A + x;
				gnm_float D = 0.5 * (Apx / (r + x + 1) + Apx /
						      (s + (x - 1)));
				real = gnm_atan ((y * gnm_sqrt (D)) / x);
			}
		}
		if (A <= A_crossover) {
		        gnm_float Am1;

			if (x < 1) {
			        Am1 = 0.5 * (y2 / (r + (x + 1)) + y2 /
					     (s + (1 - x)));
			} else {
			        Am1 = 0.5 * (y2 / (r + (x + 1)) +
					     (s + (x - 1)));
			}

			imag = gnm_log1p (Am1 + gnm_sqrt (Am1 * (A + 1)));
		} else {
		        imag = gnm_log (A + gnm_sqrt (A * A - 1));
		}

		complex_init (res, (R >= 0) ? real : M_PIgnum - real, (I >= 0) ?
			      -imag : imag);
	}
}
Пример #2
0
static void
gsl_complex_arccos_real (gnm_float a, complex_t *res)
{                               /* z = arccos(a) */
        if (gnm_abs (a) <= 1.0) {
	        complex_init (res, gnm_acos (a), 0);
	} else {
	        if (a < 0.0) {
		        complex_init (res, M_PIgnum, -gnm_acosh (-a));
		} else {
		        complex_init (res, 0, gnm_acosh (a));
		}
	}
}
Пример #3
0
gnm_float
pst (gnm_float x, gnm_float n, gnm_float shape, gboolean lower_tail, gboolean log_p)
{
	gnm_float p;

	if (n <= 0 || gnm_isnan (x) || gnm_isnan (n) || gnm_isnan (shape))
		return gnm_nan;

	if (shape == 0.)
		return pt (x, n, lower_tail, log_p);

	if (n > 100) {
		/* Approximation */
		return psnorm (x, shape, 0.0, 1.0, lower_tail, log_p);
	}

	/* Flip to a lower-tail problem.  */
	if (!lower_tail) {
		x = -x;
		shape = -shape;
		lower_tail = !lower_tail;
	}

	/* Generic fallback.  */
	if (log_p)
		gnm_log (pst (x, n, shape, TRUE, FALSE));

	if (n != gnm_floor (n)) {
		/* We would need numerical integration for this.  */
		return gnm_nan;
	}

	/*
	 * Use recurrence formula from "Recurrent relations for
	 * distributions of a skew-t and a linear combination of order
	 * statistics form a bivariate-t", Computational Statistics
	 * and Data Analysis volume 52, 2009 by Jamallizadeh,
	 * Khosravi, Balakrishnan.
	 *
	 * This brings us down to n==1 or n==2 for which explicit formulas
	 * are available.
	 */

	p = 0;
	while (n > 2) {
		double a, lb, c, d, pv, v = n - 1;

		d = v == 2
			? M_LN2gnum - gnm_log (M_PIgnum) + gnm_log (3) / 2
			: (0.5 + M_LN2gnum / 2 - gnm_log (M_PIgnum) / 2 +
			   v / 2 * (gnm_log1p (-1 / (v - 1)) + gnm_log (v + 1)) -
			   0.5 * (gnm_log (v - 2) + gnm_log (v + 1)) +
			   stirlerr (v / 2 - 1) -
			   stirlerr ((v - 1) / 2));

		a = v + 1 + x * x;
		lb = (d - gnm_log (a) * v / 2);
		c = pt (gnm_sqrt (v) * shape * x / gnm_sqrt (a), v, TRUE, FALSE);
		pv = x * gnm_exp (lb) * c;
		p += pv;

		n -= 2;
		x *= gnm_sqrt ((v - 1) / (v + 1));
	}

	g_return_val_if_fail (n == 1 || n == 2, gnm_nan);
	if (n == 1) {
		gnm_float p1;

		p1 = (gnm_atan (x) + gnm_acos (shape / gnm_sqrt ((1 + shape * shape) * (1 + x * x)))) / M_PIgnum;
		p += p1;
	} else if (n == 2) {
		gnm_float p2, f;

		f = x / gnm_sqrt (2 + x * x);

		p2 = (gnm_atan_mpihalf (shape) + f * gnm_atan_mpihalf (-shape * f)) / -M_PIgnum;

		p += p2;
	} else {
		return gnm_nan;
	}

	/*
	 * Negatives can occur due to rounding errors and hopefully for no
	 * other reason.
	 */
	p = CLAMP (p, 0.0, 1.0);

	return p;
}