Пример #1
0
static double f_zinb_reg(const gsl_vector *v, void *params){
  int i, binnum;
  double p, n, m, p0, r, fxy=0;
  ParStr *par = (ParStr *)params;
  p = gsl_vector_get(v, 0);
  n = gsl_vector_get(v, 1);
  m = gsl_vector_get(v, 2);
  printf("zinb_reg p=%f, n=%f, m=%f\n",p, n, m);

  binnum = par->binnum;
  TYPE_WIGARRAY *wig = par->wig;
  TYPE_WIGARRAY *mp = par->mp;
  for(i=0; i<binnum; i++){  /* wig[i]が得られる確率を最大化 */
    if(!mp[i]) p0=1; else p0 = gsl_sf_beta(WIGARRAY2VALUE(mp[i]), m);
    printf("%d p0=%f\n", i, p0);
    if(!wig[i]){
      r = p0 + (1 - p0) * gsl_ran_negative_binomial_pdf(0, p, n);
    }else{
      r = (1 - p0) * gsl_ran_negative_binomial_pdf(WIGARRAY2VALUE(wig[i]), p, n);
    }
    fxy += log(r);
  }
  printf("fxy=%f\n",fxy);
  return fxy;
}
Пример #2
0
double pw_get_zeroinflated_negative_binomial(int k, double p, double n, double p0){
  double r;
  if(!k){
    r = p0 + (1 - p0) * gsl_ran_negative_binomial_pdf(0, p, n);
  }else{
    r = (1 - p0) * gsl_ran_negative_binomial_pdf(k, p, n);
  }
  return r;
}
Пример #3
0
static double f_zinb_const(const gsl_vector *v, void *params){
  int i;
  double p, n, r=0, fxy=0, p0;
  double *par = (double *)params;
  p = gsl_vector_get(v, 0);
  if(p<=0) p=0.01;
  if(p>=1) p=0.99;
  n = gsl_vector_get(v, 1);
  p0 = gsl_vector_get(v, 2);
  if(p0<0) p0=0;
  if(p0>1) p0=1.0;
  LOG("zinb_const p=%f, n=%f, p0=%f\n", p, n, p0);
  
  for(i=0; i<thre; i++){
    double rtemp = r;
    if(!i) r = p0 + (1 - p0) * gsl_ran_negative_binomial_pdf(0, p, n);
    else   r =      (1 - p0) * gsl_ran_negative_binomial_pdf(i, p, n);

    if(isinf(r) || isnan(r)) r = rtemp;
    //    printf("%d: %f - %f\n", i, par[i] , r);
    fxy += (par[i] - r)*(par[i] - r);
  }
  return fxy;
}
Пример #4
0
double
test_negative_binomial_pdf (unsigned int n)
{
  return gsl_ran_negative_binomial_pdf (n, 0.3, 20.0);
}
Пример #5
0
double
gsl_ran_pascal_pdf (const unsigned int k, const double p, unsigned int n)
{
  double P = gsl_ran_negative_binomial_pdf (k, p, (double) n);
  return P;
}
Пример #6
0
double pw_get_negative_binomial(int k, double p, double n){
  return gsl_ran_negative_binomial_pdf(k, p, n);
}
Пример #7
0
int main(int argc, char **argv){
    distlist distribution = Normal;
    char	 msg[10000], c;
    int      pval = 0, qval = 0;
    double   param1 = GSL_NAN, param2 =GSL_NAN, findme = GSL_NAN;
    char     number[1000];
	sprintf(msg, "%s [opts] number_to_lookup\n\n"
    "Look up a probability or p-value for a given standard distribution.\n"
    "[This is still loosely written and counts as beta. Notably, negative numbers are hard to parse.]\n"
    "E.g.:\n"
    "%s -dbin 100 .5 34\n"
    "sets the distribution to a Binomial(100, .5), and find the odds of 34 appearing.\n"
    "%s -p 2     \n"
    "find the area of the Normal(0,1) between -infty and 2.  \n"
    "\n"
    "-pval Find the p-value: integral from -infinity to your value\n"
    "-qval Find the q-value: integral from your value to infinity\n"
    "\n"
    "After giving an optional -p or -q, specify the distribution. \n"
    "Default is Normal(0, 1). Other options:\n"
    "\t\t-binom Binomial(n, p)\n"
    "\t\t-beta Beta(a, b)\n"
    "\t\t-f F distribution(df1, df2)\n"
    "\t\t-norm Normal(mu, sigma)\n"
    "\t\t-negative bin Negative binomial(n, p)\n"
    "\t\t-poisson Poisson(L)\n"
    "\t\t-t t distribution(df)\n"
    "I just need enough letters to distinctly identify a distribution.\n"
, argv[0], argv[0], argv[0]); 

    opterr=0;
	if(argc==1){
		printf("%s", msg);
		return 0;
	}
	while ((c = getopt (argc, argv, "B:b:F:f:N:n:pqT:t:")) != -1){
		switch (c){
		  case 'B':
		  case 'b':
              if (optarg[0]=='i')
                  distribution = Binomial;
              else if (optarg[0]=='e')
                  distribution = Beta;
            else {
                printf("I can't parse the option -b%s\n", optarg);
                exit(0);
            }
              param1 = atof(argv[optind]);
              param2 = atof(argv[optind+1]);
              findme =  atof(argv[optind+2]);
			  break;
          case 'F':
          case 'f':
            distribution = F;
            param1 = atof(argv[optind]);
            findme =  atof(argv[optind+1]);
            break;
          case 'H':
		  case 'h':
			printf("%s", msg);
			return 0;
          case 'n':
          case 'N':
            if (optarg[0]=='o'){ //normal
                  param1 = atof(argv[optind]);
                  param2 = atof(argv[optind+1]);
                  findme =  atof(argv[optind+2]);
            } else if (optarg[0]=='e'){
                  distribution = Negbinom;
                  param1 = atof(argv[optind]);
                  param2 = atof(argv[optind+1]);
                  findme =  atof(argv[optind+2]);
            } else {
                printf("I can't parse the option -n%s\n", optarg);
                exit(0);
            }
			  break;
          case 'p':
            if (!optarg || optarg[0] == 'v')
                pval++;
            else if (optarg[0] == 'o'){
                distribution = Poisson;
                param1 = atof(argv[optind]);
                findme =  atof(argv[optind+1]);
            } else {
                printf("I can't parse the option -p%s\n", optarg);
                exit(0);
            }
            break;
          case 'q':
            qval++;
            break;
          case 'T':
          case 't':
            distribution = T;
            param1 = atof(argv[optind]);
            findme =  atof(argv[optind+1]);
            break;
          case '?'://probably a negative number
            if (optarg)
                 snprintf(number, 1000, "%c%s", optopt, optarg);
            else snprintf(number, 1000, "%c", optopt);
            if (gsl_isnan(param1)) param1 = -atof(number);
            else if (gsl_isnan(param2)) param2 = -atof(number);
            else if (gsl_isnan(findme)) findme = -atof(number);
		}
	}
    if (gsl_isnan(findme)) findme =  atof(argv[optind]);
    //defaults, as promised
    if (gsl_isnan(param1)) param1 = 0;
    if (gsl_isnan(param2)) param2 = 1;
    if (!pval && !qval){
        double val =
        distribution == Beta ? gsl_ran_beta_pdf(findme, param1, param2)
        : distribution == Binomial ? gsl_ran_binomial_pdf(findme, param2, param1)
        : distribution == F ? gsl_ran_fdist_pdf(findme, param1, param2) 
        : distribution == Negbinom ? gsl_ran_negative_binomial_pdf(findme, param2, param1)
        : distribution == Normal ? gsl_ran_gaussian_pdf(findme, param2)+param1
        : distribution == Poisson ? gsl_ran_poisson_pdf(findme, param1) 
        : distribution == T ? gsl_ran_tdist_pdf(findme, param1) : GSL_NAN;
        printf("%g\n", val); 
        return 0;
    }
    if (distribution == Binomial){
        printf("Sorry, the GSL doesn't have a Binomial CDF.\n");
        return 0; }
    if (distribution == Negbinom){
        printf("Sorry, the GSL doesn't have a Negative Binomial CDF.\n");
        return 0; }
    if (distribution == Poisson){
        printf("Sorry, the GSL doesn't have a Poisson CDF.\n");
        return 0; }
    if (pval){
        double val =
        distribution == Beta ? gsl_cdf_beta_P(findme, param1, param2)
        : distribution == F ? gsl_cdf_fdist_P(findme, param1, param2) 
        : distribution == Normal ? gsl_cdf_gaussian_P(findme-param1, param2)
        : distribution == T ? gsl_cdf_tdist_P(findme, param1) : GSL_NAN;
        printf("%g\n", val); 
        return 0;
    }
    if (qval){
        double val =
        distribution == Beta ? gsl_cdf_beta_Q(findme, param1, param2)
        : distribution == F ? gsl_cdf_fdist_Q(findme, param1, param2) 
        : distribution == Normal ? gsl_cdf_gaussian_Q(findme-param1, param2)
        : distribution == T ? gsl_cdf_tdist_Q(findme, param1) : GSL_NAN;
        printf("%g\n", val); 
    }
}