int gsl_sf_erf_Q_e(double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ { gsl_sf_result result_erfc; int stat = gsl_sf_erfc_e(x / M_SQRT2, &result_erfc); result->val = 0.5 * result_erfc.val; result->err = 0.5 * result_erfc.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat; } }
/* Uniform asymptotic for x near a, a and x large. * See [Temme, p. 285] */ static int gamma_inc_Q_asymp_unif(const double a, const double x, gsl_sf_result * result) { const double rta = sqrt(a); const double eps = (x-a)/a; gsl_sf_result ln_term; const int stat_ln = gsl_sf_log_1plusx_mx_e(eps, &ln_term); /* log(1+eps) - eps */ const double eta = GSL_SIGN(eps) * sqrt(-2.0*ln_term.val); gsl_sf_result erfc; double R; double c0, c1; /* This used to say erfc(eta*M_SQRT2*rta), which is wrong. * The sqrt(2) is in the denominator. Oops. * Fixed: [GJ] Mon Nov 15 13:25:32 MST 2004 */ gsl_sf_erfc_e(eta*rta/M_SQRT2, &erfc); if(fabs(eps) < GSL_ROOT5_DBL_EPSILON) { c0 = -1.0/3.0 + eps*(1.0/12.0 - eps*(23.0/540.0 - eps*(353.0/12960.0 - eps*589.0/30240.0))); c1 = -1.0/540.0 - eps/288.0; } else { const double rt_term = sqrt(-2.0 * ln_term.val/(eps*eps)); const double lam = x/a; c0 = (1.0 - 1.0/rt_term)/eps; c1 = -(eta*eta*eta * (lam*lam + 10.0*lam + 1.0) - 12.0 * eps*eps*eps) / (12.0 * eta*eta*eta*eps*eps*eps); } R = exp(-0.5*a*eta*eta)/(M_SQRT2*M_SQRTPI*rta) * (c0 + c1/a); result->val = 0.5 * erfc.val + R; result->err = GSL_DBL_EPSILON * fabs(R * 0.5 * a*eta*eta) + 0.5 * erfc.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_ln; }
/* Uniform asymptotic for x near a, a and x large. * See [Temme, p. 285] * FIXME: need c1 coefficient */ static int gamma_inc_Q_asymp_unif(const double a, const double x, gsl_sf_result * result) { const double rta = sqrt(a); const double eps = (x-a)/a; gsl_sf_result ln_term; const int stat_ln = gsl_sf_log_1plusx_mx_e(eps, &ln_term); /* log(1+eps) - eps */ const double eta = eps * sqrt(-2.0*ln_term.val/(eps*eps)); gsl_sf_result erfc; double R; double c0, c1; gsl_sf_erfc_e(eta*M_SQRT2*rta, &erfc); if(fabs(eps) < GSL_ROOT5_DBL_EPSILON) { c0 = -1.0/3.0 + eps*(1.0/12.0 - eps*(23.0/540.0 - eps*(353.0/12960.0 - eps*589.0/30240.0))); c1 = 0.0; } else { double rt_term; rt_term = sqrt(-2.0 * ln_term.val/(eps*eps)); c0 = (1.0 - 1.0/rt_term)/eps; c1 = 0.0; } R = exp(-0.5*a*eta*eta)/(M_SQRT2*M_SQRTPI*rta) * (c0 + c1/a); result->val = 0.5 * erfc.val + R; result->err = GSL_DBL_EPSILON * fabs(R * 0.5 * a*eta*eta) + 0.5 * erfc.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_ln; }
static VALUE Error_erfc_e(VALUE self, VALUE x) { int ret; gsl_sf_result r; ret = gsl_sf_erfc_e(NUM2DBL(x), &r); return RESULT(&r); }
double gsl_sf_erfc (double x) { EVAL_RESULT (gsl_sf_erfc_e (x, &result)); }