Пример #1
0
void ofxGtsSurface::printStats() {
	if(loaded) {
		gts_surface_print_stats (surface, stdout);		
	} else {
		ofLog(OF_LOG_NOTICE, "Gts surface not loaded");
	}

}
Пример #2
0
int main (int argc, char * argv[])
{
  GtsSurface * s;
  GtsBBox * bbox;
  gdouble delta;
  GtsPoint * p1, * p2, * p3;
  guint nt;
  GtsRange cluster_stats;
  GtsClusterGrid * cluster_grid;
  
  if (argc != 2) {
    fprintf (stderr, "usage: oocs DELTA < infile > outfile\n");
    return 1;
  }

  s = gts_surface_new (gts_surface_class (),
		       gts_face_class (),
		       gts_edge_class (),
		       gts_vertex_class ());

  bbox = gts_bbox_new (gts_bbox_class (), s, 0., 0., 0., 0., 0., 0.);
  scanf ("%u", &nt);
  scanf ("%lf %lf %lf", &bbox->x1, &bbox->y1, &bbox->z1);
  scanf ("%lf %lf %lf", &bbox->x2, &bbox->y2, &bbox->z2);
  delta = atof (argv[1])*sqrt (gts_bbox_diagonal2 (bbox));

  cluster_grid = gts_cluster_grid_new (gts_cluster_grid_class (), 
				       gts_cluster_class (), 
				       s, bbox, delta);

  p1 = gts_point_new (gts_point_class (), 0., 0., 0.);
  p2 = gts_point_new (gts_point_class (), 0., 0., 0.);
  p3 = gts_point_new (gts_point_class (), 0., 0., 0.);

  while (scanf ("%lf %lf %lf", &p1->x, &p1->y, &p1->z) == 3 &&
	 scanf ("%lf %lf %lf", &p2->x, &p2->y, &p2->z) == 3 &&
	 scanf ("%lf %lf %lf", &p3->x, &p3->y, &p3->z) == 3)
    gts_cluster_grid_add_triangle (cluster_grid, p1, p2, p3, NULL);
  cluster_stats = gts_cluster_grid_update (cluster_grid);

  gts_object_destroy (GTS_OBJECT (p1));
  gts_object_destroy (GTS_OBJECT (p2));
  gts_object_destroy (GTS_OBJECT (p3));
  gts_object_destroy (GTS_OBJECT (cluster_grid));

  fprintf (stderr, "Initial number of triangles: %u\n", nt);
  fprintf (stderr, "%d clusters of size: min: %g avg: %.1f|%.1f max: %g\n",
	   cluster_stats.n,
	   cluster_stats.min, 
	   cluster_stats.mean, cluster_stats.stddev, 
	   cluster_stats.max);
  gts_surface_print_stats (s, stderr);
  gts_surface_write (s, stdout);

  return 0;
}
Пример #3
0
int main (int argc, char * argv[])
{
  int c = 0;
  gboolean verbose = FALSE;
  GtsSurface * s;
  CostFunc cost_func = (CostFunc) height_cost;
  gpointer cost_data = NULL;
  GtsStopFunc stop_func = NULL;
  gpointer stop_data = NULL;
  StopOptions stop = NUMBER;
  guint number = 0;
  gdouble cmin = 0.0;
  gboolean logcost = FALSE;
  gboolean flat = FALSE;
  gdouble relative = 0.;
  gboolean keep_enclosing = FALSE;
  gboolean closed = FALSE;

  if (!setlocale (LC_ALL, "POSIX"))
    g_warning ("cannot set locale to POSIX");

  while (c != EOF) {
#ifdef HAVE_GETOPT_LONG
    static struct option long_options[] = {
      {"closed", no_argument, NULL, 'C'},
      {"keep", no_argument, NULL, 'k'},
      {"relative", required_argument, NULL, 'r'},
      {"flat", no_argument, NULL, 'f'},
      {"log", no_argument, NULL, 'l'},
      {"number", required_argument, NULL, 'n'},
      {"cost", required_argument, NULL, 'c'},
      {"help", no_argument, NULL, 'h'},
      {"verbose", no_argument, NULL, 'v'},
      { NULL }
    };
    int option_index = 0;
    switch ((c = getopt_long (argc, argv, "hvn:c:lfr:kC",
			      long_options, &option_index))) {
#else /* not HAVE_GETOPT_LONG */
    switch ((c = getopt (argc, argv, "hvn:c:lfr:kC"))) {
#endif /* not HAVE_GETOPT_LONG */
    case 'C': /* closed */
      closed = TRUE;
      keep_enclosing = TRUE;
      break;
    case 'k': /* keep */
      keep_enclosing = TRUE;
      break;
    case 'r': /* relative */
      cost_func = (CostFunc) relative_height_cost;
      relative = strtod (optarg, NULL);
      cost_data = &relative;
      if (relative <= 0.) {
	fprintf (stderr, "happrox: argument for -r option must be strictly positive\n");
	return 1;
      }
      break;
    case 'f': /* flat file */
      flat = TRUE;
      break;
    case 'l': /* log cost */
      logcost = TRUE;
      break;
    case 'n': /* stop by number */
      stop = NUMBER;
      number = strtol (optarg, NULL, 0);
      break;
    case 'c': /* stop by cost */
      stop = COST;
      cmin = strtod (optarg, NULL);
      break;
    case 'h': /* help */
      fprintf (stderr,
	       "Usage: happrox [OPTION]... < [input.pgm|input] > output.gts\n"
	       "Returns a simplified triangulation of a set of points using\n"
	       "algorithm III of Garland and Heckbert (1995).\n"
	       "\n"
	       "  -n N, --number=N    stop the refinement process if the number of\n"
	       "                      vertices is larger than N\n"
	       "  -c C, --cost=C      stop the refinement process if the cost of insertion\n"
	       "                      of a vertex is smaller than C\n"
	       "  -f    --flat        input is a flat file with three x,y,z columns\n"
	       "                        (default is PGM file)\n"
               "  -r Z  --relative=Z  use relative height cost for all heights larger than Z\n"
	       "  -k    --keep        keep enclosing triangle\n"
	       "  -C    --closed      close the surface\n"
	       "  -l    --log         log evolution of cost\n" 
	       "  -v,   --verbose     display surface statistics\n"
	       "  -h,   --help        display this help and exit\n"
	       "\n"
	       "Report bugs to %s\n",
	       GTS_MAINTAINER);
      return 0;
      break;
    case 'v':
      verbose = TRUE;
      break;
    case '?': /* wrong options */
      fprintf (stderr, "Try `happrox --help' for more information.\n");
      return 1;
    }
  }

  switch (stop) {
  case NUMBER:
    if (verbose)
      stop_func = (GtsStopFunc) stop_number_verbose;
    else
      stop_func = (GtsStopFunc) stop_number;
    if (logcost)
      stop_func = (GtsStopFunc) stop_number_log_cost;
    stop_data = &number;
    break;
  case COST:
    if (verbose)
      stop_func = (GtsStopFunc) stop_cost_verbose;
    else
      stop_func = (GtsStopFunc) stop_cost; 
    stop_data = &cmin;
    break;
  default:
    g_assert_not_reached ();
  }

  if (flat) {
    GSList * points = NULL;
    guint n = 0;
    gdouble x, y, z;

    while (scanf ("%lf %lf %lf", &x, &y, &z) == 3) {
      points = g_slist_prepend (points, gts_vertex_new (gts_vertex_class (), x, y, z));
      n++;
    }
    if (verbose)
      fprintf (stderr, "happrox: %d vertices\n", n);

    s = happrox_list (points, keep_enclosing, closed, cost_func, cost_data, stop_func, stop_data);
  }
  else {
    gint width, height;
    gray ** g, maxgray;

    g = pgm_readpgm (stdin, &width, &height, &maxgray);
    if (verbose)
      fprintf (stderr, "happrox: width: %d height: %d maxgray: %d\n",
	       width, height, maxgray);
    
    s = happrox (g, width, height, cost_func, cost_data, stop_func, stop_data);
  }

  if (verbose) {
    fputc ('\n', stderr);
    gts_surface_print_stats (s, stderr);
  }
  gts_surface_write (s, stdout);

  return 0;
}
Пример #4
0
int main (int argc, char * argv[])
{
  gboolean verbose = FALSE;
  gboolean triangulate_holes = TRUE;
  gboolean write_holes = FALSE;
  int c = 0;
  CartesianGrid * grid;
  guint line = 0;
  GtsSurface * s;
  GTimer * timer;

  if (!setlocale (LC_ALL, "POSIX"))
    g_warning ("cannot set locale to POSIX");

  /* parse options using getopt */
  while (c != EOF) {
#ifdef HAVE_GETOPT_LONG
    static struct option long_options[] = {
      {"holes", no_argument, NULL, 'H'},
      {"keep", no_argument, NULL, 'k'},
      {"help", no_argument, NULL, 'h'},
      {"verbose", no_argument, NULL, 'v'},
      { NULL }
    };
    int option_index = 0;
    switch ((c = getopt_long (argc, argv, "hvHk", 
			      long_options, &option_index))) {
#else /* not HAVE_GETOPT_LONG */
    switch ((c = getopt (argc, argv, "hvHk"))) {
#endif /* not HAVE_GETOPT_LONG */
    case 'H': /* holes */
      write_holes = TRUE;
      break;
    case 'k': /* keep */
      triangulate_holes = FALSE;
      break;
    case 'v': /* verbose */
      verbose = TRUE;
      break;
    case 'h': /* help */
      fprintf (stderr,
             "Usage: cartesian [OPTION] < FILE\n"
	     "Triangulates vertices of a regular cartesian mesh\n"
	     "(possibly containing holes)\n"
	     "\n"
	     "  -k    --keep     keep holes\n"
	     "  -H    --holes    write holes only\n"
	     "  -v    --verbose  print statistics about the surface\n"
	     "  -h    --help     display this help and exit\n"
	       "\n"
	     "Reports bugs to %s\n",
	       GTS_MAINTAINER);
      return 0; /* success */
      break;
    case '?': /* wrong options */
      fprintf (stderr, "Try `cartesian --help' for more information.\n");
      return 1; /* failure */
    }
  }
  
  grid = cartesian_grid_read (gts_vertex_class (), &line);
  if (grid == NULL) {
    fprintf (stderr, 
	   "cartesian: file on standard input is not a valid cartesian grid\n"
	   "error at line %u\n", line);
    return 1;
  }

  timer = g_timer_new ();
  g_timer_start (timer);
  s = gts_surface_new (gts_surface_class (), 
		       gts_face_class (), 
		       gts_edge_class (), 
		       gts_vertex_class ());
  cartesian_grid_triangulate (grid, s);
  if (triangulate_holes) {    
    GtsSurface * holes = cartesian_grid_triangulate_holes (grid, s);
    if (write_holes) {
      gts_object_destroy (GTS_OBJECT (s));
      s = holes;
    }
    else
      gts_surface_merge (s, holes);
  }
  g_timer_stop (timer);
  
  if (verbose) {
    gts_surface_print_stats (s, stderr);
    fprintf (stderr, "# Triangulation time: %g s speed: %.0f vertex/s\n", 
	     g_timer_elapsed (timer, NULL),
	     gts_surface_vertex_number (s)/g_timer_elapsed (timer, NULL));
  }

  gts_surface_write (s, stdout);

  return 0; /* success */
}
Пример #5
0
int main (int argc, char * argv[])
{
  GtsSurface * s;
  GtsFile * fp;
  GtsMatrix * m;
  int c = 0;
  gboolean verbose = FALSE;
  gboolean revert = FALSE;
  gboolean normalize = FALSE;

  if (!setlocale (LC_ALL, "POSIX"))
    g_warning ("cannot set locale to POSIX");

  m = gts_matrix_identity (NULL);

  /* parse options using getopt */
  while (c != EOF) {
#ifdef HAVE_GETOPT_LONG
    static struct option long_options[] = {
      {"rx", required_argument, NULL, 'r'},
      {"ry", required_argument, NULL, 'm'},
      {"rz", required_argument, NULL, 'n'},
      {"scale", required_argument, NULL, 's'},
      {"sx", required_argument, NULL, 'R'},
      {"sy", required_argument, NULL, 'M'},
      {"sz", required_argument, NULL, 'N'},
      {"tx", required_argument, NULL, 't'},
      {"ty", required_argument, NULL, 'u'},
      {"tz", required_argument, NULL, 'w'},
      {"revert", no_argument, NULL, 'i'},
      {"normalize", no_argument, NULL, 'o'},
      {"help", no_argument, NULL, 'h'},
      {"verbose", no_argument, NULL, 'v'},
      { NULL }
    };
    int option_index = 0;
    switch ((c = getopt_long (argc, argv, "hvr:m:n:s:R:M:N:it:u:w:o",
			      long_options, &option_index))) {
#else /* not HAVE_GETOPT_LONG */
    switch ((c = getopt (argc, argv, "hvr:m:n:s:R:M:N:it:u:w:o"))) {
#endif /* not HAVE_GETOPT_LONG */
    case 'o': /* normalize */
      normalize = TRUE;
      break;
    case 'r': { /* rotate around x-axis */
      gdouble angle, cosa, sina;
      GtsMatrix * rot, * p;
      
      rot = gts_matrix_identity (NULL);
      angle = atof (optarg)*PI/180.;
      cosa = cos (angle);
      sina = sin (angle);
      rot[1][1] = cosa; rot[1][2] = -sina;
      rot[2][1] = sina; rot[2][2] = cosa;
      p = gts_matrix_product (m, rot);
      gts_matrix_destroy (rot);
      gts_matrix_destroy (m);
      m = p;
      break;
    }
    case 'm': { /* rotate around y-axis */
      gdouble angle, cosa, sina;
      GtsMatrix * rot, * p;
      
      rot = gts_matrix_identity (NULL);
      angle = atof (optarg)*PI/180.;
      cosa = cos (angle);
      sina = sin (angle);
      rot[0][0] = cosa; rot[0][2] = sina;
      rot[2][0] = -sina; rot[2][2] = cosa;
      p = gts_matrix_product (m, rot);
      gts_matrix_destroy (rot);
      gts_matrix_destroy (m);
      m = p;
      break;
    }
    case 'n': { /* rotate around z-axis */
      gdouble angle, cosa, sina;
      GtsMatrix * rot, * p;
      
      rot = gts_matrix_identity (NULL);
      angle = atof (optarg)*PI/180.;
      cosa = cos (angle);
      sina = sin (angle);
      rot[0][0] = cosa; rot[0][1] = -sina;
      rot[1][0] = sina; rot[1][1] = cosa;
      p = gts_matrix_product (m, rot);
      gts_matrix_destroy (rot);
      gts_matrix_destroy (m);
      m = p;
      break;
    }
    case 's': { /* scale */
      GtsMatrix * scale, * p;
      gdouble s = atof (optarg);

      scale = gts_matrix_identity (NULL);
      scale[0][0] = scale[1][1] = scale[2][2] = s;
      p = gts_matrix_product (m, scale);
      gts_matrix_destroy (scale);
      gts_matrix_destroy (m);
      m = p;
      break;
    }
    case 'R': { /* sx */
      GtsMatrix * scale, * p;
      gdouble s = atof (optarg);

      scale = gts_matrix_identity (NULL);
      scale[0][0] = s;
      p = gts_matrix_product (m, scale);
      gts_matrix_destroy (scale);
      gts_matrix_destroy (m);
      m = p;
      break;
    }
    case 'M': { /* sy */
      GtsMatrix * scale, * p;
      gdouble s = atof (optarg);

      scale = gts_matrix_identity (NULL);
      scale[1][1] = s;
      p = gts_matrix_product (m, scale);
      gts_matrix_destroy (scale);
      gts_matrix_destroy (m);
      m = p;
      break;
    }
    case 'N': { /* sz */
      GtsMatrix * scale, * p;
      gdouble s = atof (optarg);

      scale = gts_matrix_identity (NULL);
      scale[2][2] = s;
      p = gts_matrix_product (m, scale);
      gts_matrix_destroy (scale);
      gts_matrix_destroy (m);
      m = p;
      break;
    }
    case 't': /* tx */
      m[0][3] += atof (optarg);
      break;
    case 'u': /* ty */
      m[1][3] += atof (optarg);
      break;
    case 'w': /* tz */
      m[2][3] += atof (optarg);
      break;
    case 'i': /* revert */
      revert = TRUE;
      break;
    case 'v': /* verbose */
      verbose = TRUE;
      break;
    case 'h': /* help */
      fprintf (stderr,
             "Usage: transform [OPTION] < file.gts\n"
	     "Apply geometric transformations to the input.\n"
	     "\n"
	     "  -r ANGLE  --rx=ANGLE      rotate around x-axis (angle in degrees)\n"
	     "  -m ANGLE  --ry=ANGLE      rotate around y-axis\n"
	     "  -n ANGLE  --rz=ANGLE      rotate around z-axis\n"
	     "  -s FACTOR --scale=FACTOR  scale by FACTOR\n"
	     "  -R FACTOR --sx=FACTOR     scale x-axis by FACTOR\n"
	     "  -M FACTOR --sy=FACTOR     scale y-axis by FACTOR\n"
	     "  -N FACTOR --sz=FACTOR     scale z-axis by FACTOR\n"
             "  -t V      --tx=V          translate of V along x-axis\n"
             "  -u V      --ty=V          translate of V along y-axis\n"
             "  -w V      --tz=V          translate of V along z-axis\n"
	     "  -i        --revert        turn surface inside out\n"
             "  -o        --normalize     fit the resulting surface in a cube of\n"
	     "                            size 1 centered at the origin\n"
	     "  -v        --verbose       print statistics about the surface\n"
	     "  -h        --help          display this help and exit\n"
	     "\n"
	     "Reports bugs to %s\n",
	     GTS_MAINTAINER);
      return 0; /* success */
      break;
    case '?': /* wrong options */
      fprintf (stderr, "Try `transform --help' for more information.\n");
      return 1; /* failure */
    }
  }

  s = gts_surface_new (gts_surface_class (),
		       gts_face_class (),
		       gts_edge_class (),
		       gts_vertex_class ());
  fp = gts_file_new (stdin);
  if (gts_surface_read (s, fp)) {
    fputs ("transform: file on standard input is not a valid GTS file\n", 
	   stderr);
    fprintf (stderr, "stdin:%d:%d: %s\n", fp->line, fp->pos, fp->error);
    return 1; /* failure */
  }

  if (verbose)
    gts_surface_print_stats (s, stderr);

  if (revert)
    gts_surface_foreach_face (s, (GtsFunc) gts_triangle_revert, NULL);
  gts_surface_foreach_vertex (s, (GtsFunc) gts_point_transform, m);
  if (normalize) {
    GtsBBox * bb = gts_bbox_surface (gts_bbox_class (), s);
    gdouble scale = bb->x2 - bb->x1;
    GtsMatrix * sc;

    if (bb->y2 - bb->y1 > scale) scale = bb->y2 - bb->y1;
    if (bb->z2 - bb->z1 > scale) scale = bb->z2 - bb->z1;
    if (scale > 0.) scale = 1./scale;
    else scale = 1.;
    sc = gts_matrix_identity (NULL);
    sc[0][3] = - (bb->x1 + bb->x2)/2.;
    sc[1][3] = - (bb->y1 + bb->y2)/2.;
    sc[2][3] = - (bb->z1 + bb->z2)/2.;
    gts_surface_foreach_vertex (s, (GtsFunc) gts_point_transform, sc);
    sc[0][0] = sc[1][1] = sc[2][2] = scale;    
    sc[0][3] = sc[1][3] = sc[2][3] = 0.;
    gts_surface_foreach_vertex (s, (GtsFunc) gts_point_transform, sc);
    gts_matrix_destroy (sc);
  }
  gts_surface_write (s, stdout);

  return 0;
}
Пример #6
0
/* stripe - Turns the input surface into triangle strips and outputs a
   Geomview representation of the result. */
int main (int argc, char * argv[])
{
    GtsSurface * s;
    GSList * strips = NULL, * i;
    gboolean verbose = FALSE;
    int c = 0;
    GtsFile * fp;

    /* parse options using getopt */
    while (c != EOF) {
#ifdef HAVE_GETOPT_LONG
        static struct option long_options[] = {
            {"help", no_argument, NULL, 'h'},
            {"verbose", no_argument, NULL, 'v'}
        };
        int option_index = 0;
        switch ((c = getopt_long (argc, argv, "hv",
                                  long_options, &option_index))) {
#else /* not HAVE_GETOPT_LONG */
        switch ((c = getopt (argc, argv, "hv"))) {
#endif /* not HAVE_GETOPT_LONG */
        case 'v': /* verbose */
            verbose = TRUE;
            break;
        case 'h': /* help */
            fprintf (stderr,
                     "Usage: stripe [OPTION] < FILE\n"
                     "Turns the input surface into triangle strips and outputs a\n"
                     "Geomview representation of the result.\n"
                     "\n"
                     "  -v      --verbose  print statistics about the surface and strips\n"
                     "  -h      --help     display this help and exit\n"
                     "\n"
                     "Report bugs to %s\n",
                     GTS_MAINTAINER);
            return 0; /* success */
            break;
        case '?': /* wrong options */
            fprintf (stderr, "Try `stripe --help' for more information.\n");
            return 1; /* failure */
        }
    }

    /* read surface in */
    s = gts_surface_new (gts_surface_class (),
                         gts_face_class (),
                         gts_edge_class (),
                         gts_vertex_class ());
    fp = gts_file_new (stdin);
    if (gts_surface_read (s, fp)) {
        fputs ("stripe: file on standard input is not a valid GTS file\n",
               stderr);
        fprintf (stderr, "stdin:%d:%d: %s\n", fp->line, fp->pos, fp->error);
        return 1; /* failure */
    }
    gts_file_destroy (fp);

    if (verbose)
        gts_surface_print_stats (s, stderr);

    strips = gts_surface_strip (s);

    /* if verbose on print stats */
    if (verbose) {
        GtsRange l;

        gts_range_init (&l);
        i = strips;
        while (i) {
            gts_range_add_value (&l, g_slist_length (i->data));
            i = i->next;
        }
        gts_range_update (&l);
        fprintf (stderr, "# Strips: %d\n#   length : ", l.n);
        gts_range_print (&l, stderr);
        fputc ('\n', stderr);
    }

    puts ("LIST {\n");
    i = strips;
    while (i) {
        GList * j = i->data;
        GtsTriangle * oldt = NULL;
        GtsColor c;

        c.r = rand ()/(gdouble) RAND_MAX;
        c.g = rand ()/(gdouble) RAND_MAX;
        c.b = rand ()/(gdouble) RAND_MAX;
        while (j) {
            GtsTriangle * t = j->data;
            GtsPoint
            * p1 = GTS_POINT (GTS_SEGMENT (t->e1)->v1),
              * p2 = GTS_POINT (GTS_SEGMENT (t->e1)->v2),
                * p3 = GTS_POINT (gts_triangle_vertex (t));

            printf ("OFF 3 1 3\n%g %g %g\n%g %g %g\n%g %g %g\n3 0 1 2 %g %g %g\n",
                    p1->x, p1->y, p1->z,
                    p2->x, p2->y, p2->z,
                    p3->x, p3->y, p3->z,
                    c.r, c.g, c.b);
            if (oldt) {
                GtsSegment * cs = GTS_SEGMENT (gts_triangles_common_edge (t, oldt));
                GtsPoint
                * op1 = GTS_POINT (GTS_SEGMENT (oldt->e1)->v1),
                  * op2 = GTS_POINT (GTS_SEGMENT (oldt->e1)->v2),
                    * op3 = GTS_POINT (gts_triangle_vertex (oldt));

                printf ("VECT 1 3 0 3 0 %g %g %g %g %g %g %g %g %g\n",
                        (op1->x + op2->x + op3->x)/3.,
                        (op1->y + op2->y + op3->y)/3.,
                        (op1->z + op2->z + op3->z)/3.,
                        (GTS_POINT (cs->v1)->x + GTS_POINT (cs->v2)->x)/2.,
                        (GTS_POINT (cs->v1)->y + GTS_POINT (cs->v2)->y)/2.,
                        (GTS_POINT (cs->v1)->z + GTS_POINT (cs->v2)->z)/2.,
                        (p1->x + p2->x + p3->x)/3.,
                        (p1->y + p2->y + p3->y)/3.,
                        (p1->z + p2->z + p3->z)/3.);
            }
            oldt = t;
            j = j->next;
        }
        i = i->next;
    }
    puts ("}\n");

    return 0; /* success */
}
Пример #7
0
int main (int argc, char * argv[])
{
  GPtrArray * vertices;
  GtsFifo * edges;
  guint i, line;
  GtsTriangle * t;
  GtsVertex * v1, * v2, * v3;
  GtsSurface * surface;
  gboolean keep_hull = TRUE;
  gboolean verbose = FALSE;
  gboolean add_constraints = TRUE;
  gboolean remove_holes = FALSE;
  gboolean check_delaunay = FALSE;
  gboolean conform = FALSE;
  gboolean refine = FALSE;
  gboolean split_constraints = FALSE;
  gboolean randomize = FALSE;
  gboolean remove_duplicates = FALSE;
  gint steiner_max = -1;
  gdouble quality = 0., area = G_MAXDOUBLE;
  int c = 0, status = 0;
  const char * fname = NULL;
  GTimer * timer;

  /* parse options using getopt */
  while (c != EOF) {
#ifdef HAVE_GETOPT_LONG
    static struct option long_options[] = {
      {"duplicates", no_argument, NULL, 'd'},
      {"help", no_argument, NULL, 'h'},
      {"verbose", no_argument, NULL, 'v'},
      {"randomize", no_argument, NULL, 'r'},
      {"hull", no_argument, NULL, 'b'},
      {"noconst", no_argument, NULL, 'e'},
      {"holes", no_argument, NULL, 'H'},
      {"split", no_argument, NULL, 'S'},
      {"check", no_argument, NULL, 'c'},
      {"files", required_argument, NULL, 'f'},
      {"conform", no_argument, NULL, 'o'},
      {"steiner", required_argument, NULL, 's'},
      {"quality", required_argument, NULL, 'q'},
      {"area", required_argument, NULL, 'a'}
    };
    int option_index = 0;
    switch ((c = getopt_long (argc, argv, "hvbecf:os:q:a:HSrd",
			      long_options, &option_index))) {
#else /* not HAVE_GETOPT_LONG */
    switch ((c = getopt (argc, argv, "hvbecf:os:q:a:HSrd"))) {
#endif /* not HAVE_GETOPT_LONG */
    case 'd': /* duplicates */
      remove_duplicates = TRUE;
      break;
    case 'b': /* do not keep convex hull */
      keep_hull = FALSE;
      break;
    case 'e': /* do not add constrained edges */
      add_constraints = FALSE;
      break;
    case 'H': /* remove holes */
      remove_holes = TRUE;
      break;
    case 'S': /* split constraints */
      split_constraints = TRUE;
      break;
    case 'r': /* randomize */
      randomize = TRUE;
      break;
    case 'c': /* check Delaunay property */
      check_delaunay = TRUE;
      break;
    case 'f': /* generates files */
      fname = optarg;
      break;      
    case 'v': /* verbose */
      verbose = TRUE;
      break;
    case 'o': /* conform */
      conform = TRUE;
      break;
    case 's': /* steiner */
      steiner_max = atoi (optarg);
      break;
    case 'q': /* quality */
      conform = TRUE;
      refine = TRUE;
      quality = atof (optarg);
      break;
    case 'a': /* area */
      conform = TRUE;
      refine = TRUE;
      area = atof (optarg);
      break;
    case 'h': /* help */
      fprintf (stderr,
             "Usage: delaunay [OPTION] < file.gts\n"
	     "Construct the constrained Delaunay triangulation of the input\n"
	     "\n"
	     "  -b       --hull         do not keep convex hull\n"
	     "  -e       --noconst      do not add constrained edges\n"
	     "  -S       --split        split constraints (experimental)\n"
	     "  -H       --holes        remove holes from the triangulation\n"
	     "  -d       --duplicates   remove duplicate vertices\n"
	     "  -r       --randomize    shuffle input vertex list\n"
	     "  -c       --check        check Delaunay property\n"
	     "  -f FNAME --files=FNAME  generate evolution files\n"
	     "  -o       --conform      generate conforming triangulation\n"
	     "  -s N     --steiner=N    maximum number of Steiner points for\n"
	     "                          conforming triangulation (default is no limit)\n"
	     "  -q Q     --quality=Q    Set the minimum acceptable face quality\n"
	     "  -a A     --area=A       Set the maximum acceptable face area\n"
	     "  -v       --verbose      print statistics about the triangulation\n"
	     "  -h       --help         display this help and exit\n"
	     "\n"
	     "Reports bugs to %s\n",
	     GTS_MAINTAINER);
      return 0; /* success */
      break;
    case '?': /* wrong options */
      fprintf (stderr, "Try `delaunay --help' for more information.\n");
      return 1; /* failure */
    }
  }

  /* read file => two lists: vertices and constraints */

  edges = gts_fifo_new ();
  vertices = g_ptr_array_new ();
  if (add_constraints) /* the edge class is a GtsConstraintClass */
    line = read_list (vertices, edges, 
		      GTS_EDGE_CLASS (gts_constraint_class ()),
		      stdin);
  else /* the edge class is a "normal" edge: GtsEdgeClass */
    line = read_list (vertices, edges, 
		      gts_edge_class (), 
		      stdin);

  if (line > 0) {
    fprintf (stderr, "delaunay: error in input file at line %u\n", line);
    return 1;
  }

  timer = g_timer_new ();
  g_timer_start (timer);

  if (randomize)
    shuffle_array (vertices);

  /* create triangle enclosing all the vertices */
  {
    GSList * list = NULL;
    for (i = 0; i < vertices->len; i++)
      list = g_slist_prepend (list, g_ptr_array_index (vertices, i));
    t = gts_triangle_enclosing (gts_triangle_class (), list, 100.);
    g_slist_free (list);
  }
  gts_triangle_vertices (t, &v1, &v2, &v3);

  /* create surface with one face: the enclosing triangle */
  surface = gts_surface_new (gts_surface_class (),
			     gts_face_class (),
			     gts_edge_class (),
			     gts_vertex_class ());
  gts_surface_add_face (surface, gts_face_new (gts_face_class (),
					       t->e1, t->e2, t->e3));

  /* add vertices */
  for (i = 0; i < vertices->len; i++) {
    GtsVertex * v1 = g_ptr_array_index (vertices, i);
    GtsVertex * v = gts_delaunay_add_vertex (surface, v1, NULL);

    g_assert (v != v1);
    if (v != NULL) {
      if (!remove_duplicates) {
	fprintf (stderr, "delaunay: duplicate vertex (%g,%g) in input file\n",
		 GTS_POINT (v)->x, GTS_POINT (v)->y);
	return 1; /* Failure */
      }
      else
	gts_vertex_replace (v1, v);
    }
    if (fname) {
      static guint nf = 1;
      char s[80];
      FILE * fp;

      g_snprintf (s, 80, "%s.%u", fname, nf++);
      fp = fopen (s, "wt");
      gts_surface_write_oogl (surface, fp);
      fclose (fp);

      if (check_delaunay && gts_delaunay_check (surface)) {
	fprintf (stderr, "delaunay: triangulation is not Delaunay\n");
	return 1;
      }
    }
  }
  g_ptr_array_free (vertices, TRUE);

  /* add remaining constraints */
  if (add_constraints)
    gts_fifo_foreach (edges, (GtsFunc) add_constraint, surface);

  /* destroy enclosing triangle */
  gts_allow_floating_vertices = TRUE;
  gts_object_destroy (GTS_OBJECT (v1));
  gts_object_destroy (GTS_OBJECT (v2));
  gts_object_destroy (GTS_OBJECT (v3));
  gts_allow_floating_vertices = FALSE;

  if (!keep_hull)
    gts_delaunay_remove_hull (surface);

  if (remove_holes)
    delaunay_remove_holes (surface);

  if (split_constraints) {
    gpointer data[2];

    data[0] = surface;
    data[1] = edges;
    gts_fifo_foreach (edges, (GtsFunc) split_constraint, data);
  }

  if (conform) {
    guint encroached_number = 
      gts_delaunay_conform (surface, 
			    steiner_max,
			    (GtsEncroachFunc) gts_vertex_encroaches_edge,
			    NULL);
    if (encroached_number == 0 && refine) {
      guint unrefined_number;
      gpointer data[2];
      
      data[0] = &quality;
      data[1] = &area;
      unrefined_number = 
	gts_delaunay_refine (surface, 
			     steiner_max,
			     (GtsEncroachFunc) gts_vertex_encroaches_edge,
			     NULL,
			     (GtsKeyFunc) triangle_cost,
			     data);
      if (verbose && unrefined_number > 0)
	fprintf (stderr, 
		 "delaunay: ran out of Steiner points (max: %d) during refinement\n"
		 "%d unrefined faces left\n",
		 steiner_max, unrefined_number);
    }
    else if (verbose && encroached_number > 0)
      fprintf (stderr, 
	       "delaunay: ran out of Steiner points (max: %d) during conforming\n"
	       "Delaunay triangulation: %d encroached constraints left\n",
	       steiner_max, encroached_number);
  }
  g_timer_stop (timer);

  if (verbose) {
    gts_surface_print_stats (surface, stderr);
    fprintf (stderr, "# Triangulation time: %g s speed: %.0f vertex/s\n", 
	  g_timer_elapsed (timer, NULL),
	  gts_surface_vertex_number (surface)/g_timer_elapsed (timer, NULL));
  }

  if (check_delaunay && gts_delaunay_check (surface)) {
    fprintf (stderr, "delaunay: triangulation is not Delaunay\n");
    status = 1; /* failure */
  }

  /* write triangulation */
  gts_surface_write (surface, stdout);

  return status;
}
Пример #8
0
int main (int argc, char * argv[])
{
  GtsSurface * s;
  GtsFile * fp;
  int c = 0;
  gboolean verbose = FALSE;
  guint n, niter;
  gdouble lambda;
  gpointer data[4];
  gboolean fold = FALSE;
  gdouble maxcosine2 = 0.;
  guint nfold = 1;

  if (!setlocale (LC_ALL, "POSIX"))
    g_warning ("cannot set locale to POSIX");

  /* parse options using getopt */
  while (c != EOF) {
#ifdef HAVE_GETOPT_LONG
    static struct option long_options[] = {
      {"fold", required_argument, NULL, 'f'},
      {"help", no_argument, NULL, 'h'},
      {"verbose", no_argument, NULL, 'v'}
    };
    int option_index = 0;
    switch ((c = getopt_long (argc, argv, "hvf:", 
			      long_options, &option_index))) {
#else /* not HAVE_GETOPT_LONG */
    switch ((c = getopt (argc, argv, "hvf:"))) {
#endif /* not HAVE_GETOPT_LONG */
    case 'f': /* fold */
      fold = TRUE;
      maxcosine2 = cos (atof (optarg)*3.14159265359/180.);
      maxcosine2 *= maxcosine2;
      break;
    case 'v': /* verbose */
      verbose = TRUE;
      break;
    case 'h': /* help */
      fprintf (stderr,
             "Usage: smooth [OPTION] LAMBDA NITER < file.gts > smooth.gts\n"
	     "Smooth a GTS file by applying NITER iterations of a Laplacian filter\n"
	     "of parameter LAMBDA.\n"
	     "\n"
	     "  -f VAL  --fold=VAL   smooth only folds\n"
	     "  -v      --verbose    print statistics about the surface\n"
	     "  -h      --help       display this help and exit\n"
	     "\n"
	     "Reports bugs to %s\n",
	     GTS_MAINTAINER);
      return 0; /* success */
      break;
    case '?': /* wrong options */
      fprintf (stderr, "Try `smooth --help' for more information.\n");
      return 1; /* failure */
    }
  }

  if (optind >= argc) { /* missing lambda */
    fprintf (stderr, 
	     "smooth: missing LAMBDA\n"
	     "Try `smooth --help' for more information.\n");
    return 1; /* failure */
  }
  lambda = atof (argv[optind++]);

  if (optind >= argc) { /* missing niter */
    fprintf (stderr, 
	     "smooth: missing NITER\n"
	     "Try `smooth --help' for more information.\n");
    return 1; /* failure */
  }
  niter = atoi (argv[optind++]);

  s = gts_surface_new (gts_surface_class (),
		       gts_face_class (),
		       gts_edge_class (),
		       gts_vertex_class ());
  fp = gts_file_new (stdin);
  if (gts_surface_read (s, fp)) {
    fputs ("smooth: file on standard input is not a valid GTS file\n", 
	   stderr);
    fprintf (stderr, "stdin:%d:%d: %s\n", fp->line, fp->pos, fp->error);
    return 1; /* failure */
  }

  if (verbose)
    gts_surface_print_stats (s, stderr);

  data[0] = s;
  data[1] = &lambda;
  data[2] = &maxcosine2;
  data[3] = &nfold;

  for (n = 1; n <= niter && (!fold || nfold > 0); n++) {
    if (fold) {
      nfold = 0;
      gts_surface_foreach_vertex (s, (GtsFunc) smooth_fold, data);
    }
    else
      gts_surface_foreach_vertex (s, (GtsFunc) smooth_vertex, data);
    if (verbose)
      fprintf (stderr, "\rIteration: %10u %3.0f%% ",
	       n,
	       100.*n/niter);
  }

  if (verbose) {
    fputc ('\n', stderr);
    gts_surface_print_stats (s, stderr);
  }

  gts_surface_write (s, stdout);

  return 0;
}
Пример #9
0
/* coarsen - produce a coarsened version of the input */
int main (int argc, char * argv[])
{
  GtsSurface * s;
  GtsPSurface * ps = NULL;
  gboolean verbose = FALSE;
  gboolean progressive = FALSE;
  gboolean log_cost = FALSE;
  guint number = 0;
  gdouble cmax = 0.0;
  StopOptions stop = NUMBER;
  CostOptions cost = COST_OPTIMIZED;
  MidvertexOptions mid = OPTIMIZED;
  GtsKeyFunc cost_func = NULL;
  GtsCoarsenFunc coarsen_func = NULL;
  GtsStopFunc stop_func = NULL;
  gpointer stop_data = NULL;
  int c = 0;
  GtsFile * fp;
  gdouble fold = PI/180.;
  GtsVolumeOptimizedParams params = { 0.5, 0.5, 0. };
  gpointer coarsen_data = NULL, cost_data = NULL;

  if (!setlocale (LC_ALL, "POSIX"))
    g_warning ("cannot set locale to POSIX");

  /* parse options using getopt */
  while (c != EOF) {
#ifdef HAVE_GETOPT_LONG
    static struct option long_options[] = {
      {"angle", no_argument, NULL, 'a'},
      {"progressive", no_argument, NULL, 'p'},
      {"help", no_argument, NULL, 'h'},
      {"verbose", no_argument, NULL, 'v'},
      {"number", required_argument, NULL, 'n'},
      {"length", no_argument, NULL, 'l'},
      {"midvertex", no_argument, NULL, 'm'},
      {"cost", required_argument, NULL, 'c'},
      {"fold", required_argument, NULL, 'f'},
      {"vweight", required_argument, NULL, 'w'},
      {"bweight", required_argument, NULL, 'b'},
      {"sweight", required_argument, NULL, 's'},
      {"log", no_argument, NULL, 'L'}
    };
    int option_index = 0;
    switch ((c = getopt_long (argc, argv, "hvmc:n:lpf:w:b:s:La",
			      long_options, &option_index))) {
#else /* not HAVE_GETOPT_LONG */
    switch ((c = getopt (argc, argv, "hvmc:n:lpf:w:b:s:La"))) {
#endif /* not HAVE_GETOPT_LONG */
    case 'a': /* angle */
      cost = COST_ANGLE;
      break;
    case 'L': /* log */
      log_cost = TRUE;
      break;
    case 'p': /* write progressive surface */
      progressive = TRUE;
      break;
    case 'n': /* stop by number */
      stop = NUMBER;
      number = atoi (optarg);
      break;
    case 'c': /* stop by cost */
      stop = COST;
      cmax = atof (optarg);
      break;
    case 'v': /* verbose */
      verbose = TRUE;
      break;
    case 'm': /* midvertex */
      mid = MIDVERTEX;
      break;
    case 'l': /* cost is length */
      cost = COST_LENGTH;
      break;
    case 'f': /* fold angle */
      fold = atof (optarg)*PI/180.;
      break;
    case 'w': /* volume optimized weight */
      params.volume_weight = atof (optarg);
      break;
    case 'b': /* boundary optimized weight */
      params.boundary_weight = atof (optarg);
      break;
    case 's': /* shape optimized weight */
      params.shape_weight = atof (optarg);
      break;
    case 'h': /* help */
      fprintf (stderr,
             "Usage: coarsen [OPTION] < file.gts\n"
	     "Construct a coarsened version of the input.\n"
	     "\n"
	     "  -n N, --number=N    stop the coarsening process if the number of\n"
	     "                      edges was to fall below N\n"
	     "  -c C, --cost=C      stop the coarsening process if the cost of collapsing\n"
	     "                      an edge is larger than C\n"
	     "  -m    --midvertex   use midvertex as replacement vertex\n"
	     "                      default is volume optimized point\n"
	     "  -l    --length      use length^2 as cost function\n"
	     "                      default is optimized point cost\n"
	     "  -f F, --fold=F      set maximum fold angle to F degrees\n"
	     "                      default is one degree\n"
	     "  -w W, --vweight=W   set weight used for volume optimization\n"
	     "                      default is 0.5\n"
	     "  -b W, --bweight=W   set weight used for boundary optimization\n"
	     "                      default is 0.5\n"
	     "  -s W, --sweight=W   set weight used for shape optimization\n"
	     "                      default is 0.0\n"
	     "  -p    --progressive write progressive surface file\n"
	     "  -L    --log         logs the evolution of the cost\n"
	     "  -v    --verbose     print statistics about the surface\n"
	     "  -h    --help        display this help and exit\n"
	     "\n"
	     "Reports bugs to %s\n",
	     GTS_MAINTAINER);
      return 0; /* success */
      break;
    case '?': /* wrong options */
      fprintf (stderr, "Try `coarsen --help' for more information.\n");
      return 1; /* failure */
    }
  }
  
  /* read surface in */
  s = gts_surface_new (gts_surface_class (),
		       gts_face_class (),
		       gts_edge_class (),
		       gts_vertex_class ());
  fp = gts_file_new (stdin);
  if (gts_surface_read (s, fp)) {
    fputs ("coarsen: the file on standard input is not a valid GTS file\n", 
	   stderr);
    fprintf (stderr, "stdin:%d:%d: %s\n", fp->line, fp->pos, fp->error);
    return 1; /* failure */
  }

  /* if verbose on print stats */
  if (verbose) {
    gts_surface_print_stats (s, stderr);
    fprintf (stderr, "# volume: %g area: %g\n", 
	     gts_surface_volume (s), gts_surface_area (s));
  }

  /* select the right coarsening process */
  switch (cost) {
  case COST_OPTIMIZED: 
    cost_func = (GtsKeyFunc) gts_volume_optimized_cost; 
    cost_data = &params;
    break;
  case COST_LENGTH:
    cost_func = NULL; break;
  case COST_ANGLE:
    cost_func = (GtsKeyFunc) cost_angle; break;
  default:
    g_assert_not_reached ();
  }
  switch (mid) {
  case MIDVERTEX:
    coarsen_func = NULL; 
    break;
  case OPTIMIZED:
    coarsen_func = (GtsCoarsenFunc) gts_volume_optimized_vertex; 
    coarsen_data = &params;
    break;
  default:
    g_assert_not_reached ();
  }
  if (log_cost)
    stop_func = (GtsStopFunc) stop_log_cost;
  else {
    switch (stop) {
    case NUMBER:
      if (verbose)
	stop_func = (GtsStopFunc) stop_number_verbose;
      else
	stop_func = (GtsStopFunc) gts_coarsen_stop_number; 
      stop_data = &number;
      break;
    case COST:
      if (verbose)
	stop_func = (GtsStopFunc) stop_cost_verbose;
      else
	stop_func = (GtsStopFunc) gts_coarsen_stop_cost; 
      stop_data = &cmax;
      break;
    default:
      g_assert_not_reached ();
    }
  }
  if (progressive)
    ps = gts_psurface_new (gts_psurface_class (),
			   s, gts_split_class (),
			   cost_func, cost_data,
			   coarsen_func, coarsen_data,
			   stop_func, stop_data, 
			   fold);
  else
    gts_surface_coarsen (s, 
			 cost_func, cost_data, 
			 coarsen_func, coarsen_data, 
			 stop_func, stop_data, fold);

  /* if verbose on print stats */
  if (verbose) {
    fputc ('\n', stderr);
    gts_surface_print_stats (s, stderr);
    fprintf (stderr, "# volume: %g area: %g\n", 
	     gts_surface_volume (s), gts_surface_area (s));
  }

  /* write resulting surface to standard output */
  if (progressive)
    gts_psurface_write (ps, stdout);
  else
    gts_surface_write (s, stdout);

  return 0; /* success */
}
Пример #10
0
int main (int argc, char * argv[])
{
    GtsSurface * s;
    gboolean verbose = FALSE;
    gdouble threshold;
    int c = 0;
    GtsFile * fp;
    GtsRange angle;

    if (!setlocale (LC_ALL, "POSIX"))
        g_warning ("cannot set locale to POSIX");

    /* parse options using getopt */
    while (c != EOF) {
#ifdef HAVE_GETOPT_LONG
        static struct option long_options[] = {
            {"help", no_argument, NULL, 'h'},
            {"verbose", no_argument, NULL, 'v'},
            { NULL }
        };
        int option_index = 0;
        switch ((c = getopt_long (argc, argv, "hv",
                                  long_options, &option_index))) {
#else /* not HAVE_GETOPT_LONG */
        switch ((c = getopt (argc, argv, "hv"))) {
#endif /* not HAVE_GETOPT_LONG */
        case 'v': /* verbose */
            verbose = TRUE;
            break;
        case 'h': /* help */
            fprintf (stderr,
                     "Usage: optimize [OPTION] THRESHOLD < FILE\n"
                     "\n"
                     "  -v      --verbose  print statistics about the surface\n"
                     "  -h      --help     display this help and exit\n"
                     "\n"
                     "Report bugs to %s\n",
                     GTS_MAINTAINER);
            return 0; /* success */
            break;
        case '?': /* wrong options */
            fprintf (stderr, "Try `optimize --help' for more information.\n");
            return 1; /* failure */
        }
    }

    if (optind >= argc) { /* missing threshold */
        fprintf (stderr,
                 "optimize: missing THRESHOLD\n"
                 "Try `optimize --help' for more information.\n");
        return 1; /* failure */
    }
    threshold = strtod (argv[optind], NULL);

    if (threshold < 0.0) { /* threshold must be positive */
        fprintf (stderr,
                 "optimize: THRESHOLD must be >= 0.0\n"
                 "Try `optimize --help' for more information.\n");
        return 1; /* failure */
    }

    /* read surface in */
    s = gts_surface_new (gts_surface_class (),
                         gts_face_class (),
                         gts_edge_class (),
                         gts_vertex_class ());
    fp = gts_file_new (stdin);
    if (gts_surface_read (s, fp)) {
        fputs ("optimize: file on standard input is not a valid GTS file\n",
               stderr);
        fprintf (stderr, "stdin:%d:%d: %s\n", fp->line, fp->pos, fp->error);
        return 1; /* failure */
    }

    /* if verbose on print stats */
    if (verbose) {
        gts_surface_print_stats (s, stderr);
        gts_range_init (&angle);
        gts_surface_foreach_edge (s, (GtsFunc) angle_stats, &angle);
        gts_range_update (&angle);
        fputs ("#   angle : ", stderr);
        gts_range_print (&angle, stderr);
        fputc ('\n', stderr);
    }

    surface_optimize (s, -threshold);

    /* if verbose on print stats */
    if (verbose) {
        gts_surface_print_stats (s, stderr);
        gts_range_init (&angle);
        gts_surface_foreach_edge (s, (GtsFunc) angle_stats, &angle);
        gts_range_update (&angle);
        fputs ("#   angle : ", stderr);
        gts_range_print (&angle, stderr);
        fputc ('\n', stderr);
    }

    /* write surface */
    gts_surface_write (s, stdout);

    return 0; /* success */
}
Пример #11
0
/* inside - check if points are inside a surface */
int main (int argc, char * argv[])
{
  GtsSurface * s1;
  GNode * tree1;
  GtsPoint P;
  FILE * fptr;
  GtsFile * fp;
  int c = 0, cnt = 0;
  double x,y,z;
  gboolean verbose = FALSE;
  gchar * file1, * file2;
  gboolean is_open1, is_inside;

  if (!setlocale (LC_ALL, "POSIX"))
    g_warning ("cannot set locale to POSIX");

  /* parse options using getopt */
  while (c != EOF) {
#ifdef HAVE_GETOPT_LONG
    static struct option long_options[] = {
      {"help", no_argument, NULL, 'h'},
      {"verbose", no_argument, NULL, 'v'}
    };
    int option_index = 0;
    switch ((c = getopt_long (argc, argv, "shv", 
			      long_options, &option_index))) {
#else /* not HAVE_GETOPT_LONG */
    switch ((c = getopt (argc, argv, "shv"))) {
#endif /* not HAVE_GETOPT_LONG */
    case 'v': /* verbose */
      verbose = TRUE;
      break;
    case 'h': /* help */
      fprintf (stderr,
	"Usage: gtsinside [OPTION] FILE1 FILE2\n"
	"Test whether points are inside a closed surface.\n"
	"FILE1 is a surface file. FILE2 is a text file where each line\n"
	"contains the three coordinates of a point, separated with blanks.\n"
	"\n"
	"  -v      --verbose  print statistics about the surface\n"
	"  -h      --help     display this help and exit\n"
	"\n"
	"Reports bugs to %s\n",
	"https://savannah.nongnu.org/projects/pyformex/");
      return 0; /* success */
      break;
    case '?': /* wrong options */
      fprintf (stderr, "Try `gtsinside --help' for more information.\n");
      return 1; /* failure */
    }
  }

  if (optind >= argc) { /* missing FILE1 */
    fprintf (stderr, 
	     "gtsinside: missing FILE1\n"
	     "Try `inside --help' for more information.\n");
    return 1; /* failure */
  }
  file1 = argv[optind++];

  if (optind >= argc) { /* missing FILE2 */
    fprintf (stderr, 
	     "gtsinside: missing FILE2\n"
	     "Try `gtsinside --help' for more information.\n");
    return 1; /* failure */
  }
  file2 = argv[optind++];

  /* open first file */
  if ((fptr = fopen (file1, "rt")) == NULL) {
    fprintf (stderr, "gtsinside: can not open file `%s'\n", file1);
    return 1;
  }
  /* reads in first surface file */
  s1 = GTS_SURFACE (gts_object_new (GTS_OBJECT_CLASS (gts_surface_class ())));
  fp = gts_file_new (fptr);
  if (gts_surface_read (s1, fp)) {
    fprintf (stderr, "gtsinside: `%s' is not a valid GTS surface file\n", 
	     file1);
    fprintf (stderr, "%s:%d:%d: %s\n", file1, fp->line, fp->pos, fp->error);
    return 1;
  }
  gts_file_destroy (fp);
  fclose (fptr);

  /* open second file */
  if ((fptr = fopen (file2, "rt")) == NULL) {
    fprintf (stderr, "gtsinside: can not open file `%s'\n", file2);
    return 1;
  }

  /* display summary information about the surface */
  if (verbose) {
    gts_surface_print_stats (s1, stderr);
  }

  /* check that the surface is an orientable manifold */
  if (!gts_surface_is_orientable (s1)) {
    fprintf (stderr, "gtsinside: surface `%s' is not an orientable manifold\n",
  	     file1);
    return 1;
  }

  /* build bounding box tree for the surface */
  tree1 = gts_bb_tree_surface (s1);
  is_open1 = gts_surface_volume (s1) < 0. ? TRUE : FALSE;

  /* scan file 2 for points and determine if it they are inside surface */
  while ( fscanf(fptr, "%lg %lg %lg", &x, &y, &z) == 3 ) {
    P.x = x; P.y = y; P.z = z;
    is_inside = gts_point_is_inside_surface(&P,tree1,is_open1);
    if (is_inside) printf("%d\n",cnt);
    //printf("Point %d: %lf, %lf, %lf: %d\n",cnt,P.x,P.y,P.z,is_inside);
    cnt++;
  }
  if ( !feof(fptr) ) {
    fprintf (stderr, "gtsinside: error while reading points from file `%s'\n",
  	     file2);
    return 1;
  }
  fclose (fptr);

  /* destroy surface */
  gts_object_destroy (GTS_OBJECT (s1));

  /* destroy bounding box tree (including bounding boxes) */
  gts_bb_tree_destroy (tree1, TRUE);

  return 0;
}
Пример #12
0
/* set - compute set operations between surfaces */
int main (int argc, char * argv[])
{
  GtsSurface * s1, * s2, * s3;
  GtsSurfaceInter * si;
  GNode * tree1, * tree2;
  FILE * fptr;
  GtsFile * fp;
  int c = 0;
  gboolean verbose = TRUE;
  gboolean inter = FALSE;
  gboolean check_self_intersection = FALSE;
  gchar * operation, * file1, * file2;
  gboolean closed = TRUE, is_open1, is_open2;

  if (!setlocale (LC_ALL, "POSIX"))
    g_warning ("cannot set locale to POSIX");

  /* parse options using getopt */
  while (c != EOF) {
#ifdef HAVE_GETOPT_LONG
    static struct option long_options[] = {
      {"inter", no_argument, NULL, 'i'},
      {"self", no_argument, NULL, 's'},
      {"help", no_argument, NULL, 'h'},
      {"verbose", no_argument, NULL, 'v'}
    };
    int option_index = 0;
    switch ((c = getopt_long (argc, argv, "hvis", 
			      long_options, &option_index))) {
#else /* not HAVE_GETOPT_LONG */
    switch ((c = getopt (argc, argv, "hvis"))) {
#endif /* not HAVE_GETOPT_LONG */
    case 's': /* self */
      check_self_intersection = TRUE;
      break;
    case 'i': /* inter */
      inter = TRUE;
      break;
    case 'v': /* verbose */
      verbose = FALSE;
      break;
    case 'h': /* help */
      fprintf (stderr,
             "Usage: set [OPTION] OPERATION FILE1 FILE2\n"
             "Compute set operations between surfaces, where OPERATION is either.\n"
             "union, inter, diff.\n"
	     "\n"
             "  -i      --inter    output an OOGL (Geomview) representation of the curve\n"
             "                     intersection of the surfaces\n"
	     "  -s      --self     checks that the surfaces are not self-intersecting\n"
             "                     if one of them is, the set of self-intersecting faces\n"
	     "                     is written (as a GtsSurface) on standard output\n"
	     "  -v      --verbose  do not print statistics about the surface\n"
	     "  -h      --help     display this help and exit\n"
	     "\n"
	     "Reports bugs to %s\n",
	     GTS_MAINTAINER);
      return 0; /* success */
      break;
    case '?': /* wrong options */
      fprintf (stderr, "Try `set --help' for more information.\n");
      return 1; /* failure */
    }
  }

  if (optind >= argc) { /* missing OPERATION */
    fprintf (stderr, 
	     "set: missing OPERATION\n"
	     "Try `set --help' for more information.\n");
    return 1; /* failure */
  }
  operation = argv[optind++];

  if (optind >= argc) { /* missing FILE1 */
    fprintf (stderr, 
	     "set: missing FILE1\n"
	     "Try `set --help' for more information.\n");
    return 1; /* failure */
  }
  file1 = argv[optind++];

  if (optind >= argc) { /* missing FILE2 */
    fprintf (stderr, 
	     "set: missing FILE2\n"
	     "Try `set --help' for more information.\n");
    return 1; /* failure */
  }
  file2 = argv[optind++];

  /* open first file */
  if ((fptr = fopen (file1, "rt")) == NULL) {
    fprintf (stderr, "set: can not open file `%s'\n", file1);
    return 1;
  }
  /* reads in first surface file */
  s1 = GTS_SURFACE (gts_object_new (GTS_OBJECT_CLASS (gts_surface_class ())));
  fp = gts_file_new (fptr);
  if (gts_surface_read (s1, fp)) {
    fprintf (stderr, "set: `%s' is not a valid GTS surface file\n", 
	     file1);
    fprintf (stderr, "%s:%d:%d: %s\n", file1, fp->line, fp->pos, fp->error);
    return 1;
  }
  gts_file_destroy (fp);
  fclose (fptr);

  /* open second file */
  if ((fptr = fopen (file2, "rt")) == NULL) {
    fprintf (stderr, "set: can not open file `%s'\n", file2);
    return 1;
  }
  /* reads in second surface file */
  s2 = GTS_SURFACE (gts_object_new (GTS_OBJECT_CLASS (gts_surface_class ())));
  fp = gts_file_new (fptr);
  if (gts_surface_read (s2, fp)) {
    fprintf (stderr, "set: `%s' is not a valid GTS surface file\n", 
	     file2);
    fprintf (stderr, "%s:%d:%d: %s\n", file2, fp->line, fp->pos, fp->error);
    return 1;
  }
  gts_file_destroy (fp);
  fclose (fptr);

  /* display summary information about both surfaces */
  if (verbose) {
    gts_surface_print_stats (s1, stderr);
    gts_surface_print_stats (s2, stderr);
  }

  /* check that the surfaces are orientable manifolds */
  if (!gts_surface_is_orientable (s1)) {
    fprintf (stderr, "set: surface `%s' is not an orientable manifold\n",
	     file1);
    return 1;
  }
  if (!gts_surface_is_orientable (s2)) {
    fprintf (stderr, "set: surface `%s' is not an orientable manifold\n",
	     file2);
    return 1;
  }

  /* check that the surfaces are not self-intersecting */
  if (check_self_intersection) {
    GtsSurface * self_intersects;

    self_intersects = gts_surface_is_self_intersecting (s1);
    if (self_intersects != NULL) {
      fprintf (stderr, "set: surface `%s' is self-intersecting\n", file1);
      if (verbose)
	gts_surface_print_stats (self_intersects, stderr);
      gts_surface_write (self_intersects, stdout);
      gts_object_destroy (GTS_OBJECT (self_intersects));
      return 1;
    }
    self_intersects = gts_surface_is_self_intersecting (s2);
    if (self_intersects != NULL) {
      fprintf (stderr, "set: surface `%s' is self-intersecting\n", file2);
      if (verbose)
	gts_surface_print_stats (self_intersects, stderr);
      gts_surface_write (self_intersects, stdout);
      gts_object_destroy (GTS_OBJECT (self_intersects));
      return 1;
    }
  }

  /* build bounding box tree for first surface */
  tree1 = gts_bb_tree_surface (s1);
  is_open1 = gts_surface_volume (s1) < 0. ? TRUE : FALSE;

  /* build bounding box tree for second surface */
  tree2 = gts_bb_tree_surface (s2);
  is_open2 = gts_surface_volume (s2) < 0. ? TRUE : FALSE;

  si = gts_surface_inter_new (gts_surface_inter_class (),
			      s1, s2, tree1, tree2, is_open1, is_open2);
  g_assert (gts_surface_inter_check (si, &closed));
  if (!closed) {
    fprintf (stderr,
	     "set: the intersection of `%s' and `%s' is not a closed curve\n",
	     file1, file2);
    return 1;
  }

  s3 = gts_surface_new (gts_surface_class (),
			gts_face_class (),
			gts_edge_class (),
			gts_vertex_class ());  
  if (!strcmp (operation, "union")) {
    gts_surface_inter_boolean (si, s3, GTS_1_OUT_2);
    gts_surface_inter_boolean (si, s3, GTS_2_OUT_1);
  }
  else if (!strcmp (operation, "inter")) {
    gts_surface_inter_boolean (si, s3, GTS_1_IN_2);
    gts_surface_inter_boolean (si, s3, GTS_2_IN_1);
  }
  else if (!strcmp (operation, "diff")) {
    gts_surface_inter_boolean (si, s3, GTS_1_OUT_2);
    gts_surface_inter_boolean (si, s3, GTS_2_IN_1);
    gts_surface_foreach_face (si->s2, (GtsFunc) gts_triangle_revert, NULL);
    gts_surface_foreach_face (s2, (GtsFunc) gts_triangle_revert, NULL);
  }
  else {
    fprintf (stderr, 
	     "set: operation `%s' unknown\n"
	     "Try `set --help' for more information.\n", 
	     operation);
    return 1;
  }
  
  /* check that the resulting surface is not self-intersecting */
  if (check_self_intersection) {
    GtsSurface * self_intersects;

    self_intersects = gts_surface_is_self_intersecting (s3);
    if (self_intersects != NULL) {
      fprintf (stderr, "set: the resulting surface is self-intersecting\n");
      if (verbose)
	gts_surface_print_stats (self_intersects, stderr);
      gts_surface_write (self_intersects, stdout);
      gts_object_destroy (GTS_OBJECT (self_intersects));
      return 1;
    }
  }
  /* display summary information about the resulting surface */
  if (verbose)
    gts_surface_print_stats (s3, stderr);
  /* write resulting surface to standard output */
  if (inter) {
    printf ("LIST {\n");
    g_slist_foreach (si->edges, (GFunc) write_edge, stdout);
    printf ("}\n");
  }
  else {
    GTS_POINT_CLASS (gts_vertex_class ())->binary = TRUE;
    gts_surface_write (s3, stdout);
  }

  /* destroy surfaces */
  gts_object_destroy (GTS_OBJECT (s1));
  gts_object_destroy (GTS_OBJECT (s2));
  gts_object_destroy (GTS_OBJECT (s3));
  gts_object_destroy (GTS_OBJECT (si));

  /* destroy bounding box trees (including bounding boxes) */
  gts_bb_tree_destroy (tree1, TRUE);
  gts_bb_tree_destroy (tree2, TRUE);  

  return 0;
}
Пример #13
0
/* sphere - generate a triangulated unit sphere by recursive subdivision.
   First approximation is an isocahedron; each level of refinement
   increases the number of triangles by a factor of 4. 
  */
int main (int argc, char * argv[])
{
  GtsSurface * s;
  gboolean verbose = FALSE;
  guint level=4;
  int c = 0;

  if (!setlocale (LC_ALL, "POSIX"))
    g_warning ("cannot set locale to POSIX");

  /* parse options using getopt */
  while (c != EOF) {
#ifdef HAVE_GETOPT_LONG
    static struct option long_options[] = {
      {"help", no_argument, NULL, 'h'},
      {"verbose", no_argument, NULL, 'v'},
      { NULL }
    };
    int option_index = 0;
    switch ((c = getopt_long (argc, argv, "hv", 
			      long_options, &option_index))) {
#else /* not HAVE_GETOPT_LONG */
    switch ((c = getopt (argc, argv, "hv"))) {
#endif /* not HAVE_GETOPT_LONG */
    case 'v': /* verbose */
      verbose = TRUE;
      break;
    case 'h': /* help */
      fprintf (stderr,
       "Usage: sphere [OPTION] [level]\n"
       "Generate a triangulated unit sphere by recursive subdivision.\n"
       "First approximation is an isocahedron; each level of refinement\n"
       "increases the number of triangles by a factor of 4.\n"
       "level must be a positive integer setting the recursion level\n"
       "(geodesation order), default is 4.\n"
       "\n"
       "Documentation: http://mathworld.wolfram.com/GeodesicDome.html\n"
       "\n"
       "  -v    --verbose  print statistics about the surface\n"
       "  -h    --help     display this help and exit\n"
       "\n"
       "Reports bugs to %s\n",
	       GTS_MAINTAINER);
      return 0; /* success */
      break;
    case '?': /* wrong options */
      fprintf (stderr, "Try `sphere --help' for more information.\n");
      return 1; /* failure */
    }
  }
  
  /* read level */
  if (optind < argc)
    level = atoi(argv[optind]);

  /* generate triangulated sphere */	
  s = gts_surface_new (gts_surface_class (),
		       gts_face_class (),
		       gts_edge_class (),
		       gts_vertex_class ());
  gts_surface_generate_sphere (s, level);

  /* if verbose on print stats */
  if (verbose)
    gts_surface_print_stats (s, stderr);

  /* write generating surface to standard output */
  gts_surface_write (s, stdout);
  
  return 0; /* success */
}
Пример #14
0
int main (int argc, char * argv[])
{
  GtsSurface * s;
  GtsFile * fp;
  GtsFace * first = NULL;
  int c = 0;
  gboolean verbose = FALSE;

  if (!setlocale (LC_ALL, "POSIX"))
    g_warning ("cannot set locale to POSIX");

  colormap = colormap_red_blue (); /* default */

  /* parse options using getopt */
  while (c != EOF) {
#ifdef HAVE_GETOPT_LONG
    static struct option long_options[] = {
      {"cmap", required_argument, NULL, 'c'},
      {"help", no_argument, NULL, 'h'},
      {"verbose", no_argument, NULL, 'v'},
      { NULL }
    };
    int option_index = 0;
    switch ((c = getopt_long (argc, argv, "hvc:", 
			      long_options, &option_index))) {
#else /* not HAVE_GETOPT_LONG */
    switch ((c = getopt (argc, argv, "hvc:"))) {
#endif /* not HAVE_GETOPT_LONG */
    case 'c': { /* cmap */
      FILE * fptr = fopen (optarg, "rt");
      if (!fptr) {
	fprintf (stderr, "traverse: cannot open colormap file `%s'.\n",
		 optarg);
	return 1;
      }
      colormap = colormap_read (fptr);
      fclose (fptr);
      break;
    }
    case 'v': /* verbose */
      verbose = TRUE;
      break;
    case 'h': /* help */
      fprintf (stderr,
             "Usage: traverse [OPTION] < file.gts > file.oogl\n"
	     "Output an OOGL (geomview) surface colored according to the (graph) distance\n"
	     "from a random face to the others\n"
	     "\n"
	     "  -c FILE --cmap=FILE  load FILE as colormap\n"
	     "  -v      --verbose    print statistics about the surface\n"
	     "  -h      --help       display this help and exit\n"
	     "\n"
	     "Reports bugs to %s\n",
	     GTS_MAINTAINER);
      return 0; /* success */
      break;
    case '?': /* wrong options */
      fprintf (stderr, "Try `traverse --help' for more information.\n");
      return 1; /* failure */
    }
  }

  s = gts_surface_new (gts_surface_class (),
		       GTS_FACE_CLASS (depth_face_class ()),
		       gts_edge_class (),
		       gts_vertex_class ());
  fp = gts_file_new (stdin);
  if (gts_surface_read (s, fp)) {
    fputs ("traverse: file on standard input is not a valid GTS file\n", 
	   stderr);
    fprintf (stderr, "stdin:%d:%d: %s\n", fp->line, fp->pos, fp->error);
    return 1; /* failure */
  }

  if (verbose)
    gts_surface_print_stats (s, stderr);

  gts_surface_foreach_face (s, (GtsFunc) pick_first_face, &first);
  gts_range_init (&depth_range);
  if (first) {
    GtsSurfaceTraverse * t = gts_surface_traverse_new (s, first);
    GtsFace * f;
    guint level;
    while ((f = gts_surface_traverse_next (t, &level))) {
      DEPTH_FACE (f)->depth = level;
      gts_range_add_value (&depth_range, level);
    }
    gts_surface_traverse_destroy (t);
  }
  gts_range_update (&depth_range);
  if (verbose) {
    fputs ("distance: ", stderr);
    gts_range_print (&depth_range, stderr);
    fputc ('\n', stderr);
  }
  gts_surface_write_oogl (s, stdout);

  return 0;
}
Пример #15
0
int main (int argc, char * argv[])
{
  GtsSurface * s;
  gboolean verbose = FALSE;
  int c = 0;

  if (!setlocale (LC_ALL, "POSIX"))
    g_warning ("cannot set locale to POSIX");

  /* parse options using getopt */
  while (c != EOF) {
#ifdef HAVE_GETOPT_LONG
    static struct option long_options[] = {
      {"help", no_argument, NULL, 'h'},
      {"verbose", no_argument, NULL, 'v'},
    };
    int option_index = 0;
    switch ((c = getopt_long (argc, argv, "hv",
			      long_options, &option_index))) {
#else /* not HAVE_GETOPT_LONG */
    switch ((c = getopt (argc, argv, "hv"))) {
#endif /* not HAVE_GETOPT_LONG */
    case 'v': /* verbose */
      verbose = TRUE;
      break;
    case 'h': /* help */
      fprintf (stderr,
             "Usage: merge [OPTION] file1.gts file2.gts ...\n"
	     "Merges files and outputs the resulting GTS surface.\n"
	     "\n"
	     "  -v        --verbose       print statistics about the surface\n"
	     "  -h        --help          display this help and exit\n"
	     "\n"
	     "Reports bugs to %s\n",
	     GTS_MAINTAINER);
      return 0; /* success */
      break;
    case '?': /* wrong options */
      fprintf (stderr, "Try `merge --help' for more information.\n");
      return 1; /* failure */
    }
  }

  s = GTS_SURFACE (gts_object_new (GTS_OBJECT_CLASS (gts_surface_class ())));

  while (optind < argc) {
    FILE * f = fopen (argv[optind], "r");
    GtsFile * fp;
    GtsSurface * s1;

    if (f == NULL) {
      fprintf (stderr, "merge: can not open file `%s'\n", argv[optind]);
      return 1;
    }
    fp = gts_file_new (f);
    s1 = GTS_SURFACE (gts_object_new (GTS_OBJECT_CLASS (gts_surface_class ())));
    if (gts_surface_read (s1, fp)) {
      fprintf (stderr, "merge: `%s' is not a valid GTS surface file\n", 
	       argv[optind]);
      fprintf (stderr, "%s:%d:%d: %s\n", argv[optind], fp->line, fp->pos, fp->error);
      return 1;
    }
    gts_surface_merge (s, s1);
    gts_object_destroy (GTS_OBJECT (s1));
    gts_file_destroy (fp);
    fclose (f);
    optind++;
  }

  if (verbose)
    gts_surface_print_stats (s, stderr);

  gts_surface_write (s, stdout);

  return 0;
}
Пример #16
0
int main (int argc, char * argv[])
{
  int c = 0;
  gboolean verbose = FALSE;
  gboolean revert  = FALSE;  
  GtsSurface * s;
  GtsFile * fp;

  while (c != EOF) {
#ifdef HAVE_GETOPT_LONG
    static struct option long_options[] = {
      {"revert", no_argument, NULL, 'r'},
      {"help", no_argument, NULL, 'h'},
      {"verbose", no_argument, NULL, 'v'}
    };
    int option_index = 0;
    switch ((c = getopt_long (argc, argv, "hvr",
			      long_options, &option_index))) {
#else /* not HAVE_GETOPT_LONG */
    switch ((c = getopt (argc, argv, "hvr"))) {
#endif /* not HAVE_GETOPT_LONG */
    case 'r': /* revert */
      revert = TRUE;
      break;
    case 'h': /* help */
      fprintf (stderr,
             "Usage: gts2stl [OPTION]... < input.gts > output.stl\n"
	     "Convert a GTS file to STL format.\n"
	     "\n"
	     "  -r,     --revert       revert face normals\n"
	     "  -v,     --verbose      display surface statistics\n"
	     "  -h,     --help         display this help and exit\n"
	     "\n"
	     "Report bugs to %s\n",
	     GTS_MAINTAINER);
      return 0;
      break;
    case 'v':
      verbose = TRUE;
      break;
    case '?': /* wrong options */
      fprintf (stderr, "Try `gts2stl --help' for more information.\n");
      return 1;
    }
  }

  s = gts_surface_new (gts_surface_class (),
		       gts_face_class (),
		       gts_edge_class (),
		       gts_vertex_class ());
  fp = gts_file_new (stdin);
  if (gts_surface_read (s, fp)) {
    fputs ("gts2stl: file on standard input is not a valid GTS file\n", 
	   stderr);
    fprintf (stderr, "stdin:%d:%d: %s\n", fp->line, fp->pos, fp->error);
    return 1; /* failure */
  }

  if (revert)
    gts_surface_foreach_face (s, (GtsFunc) gts_triangle_revert, NULL);
  if (verbose)
    gts_surface_print_stats (s, stderr);

  puts ("solid");
  gts_surface_foreach_face (s, (GtsFunc) write_face, NULL);
  puts ("endsolid");

  return 0;
}