static int diffuse(char *src, char *dst, size_t size, const char *hash_name) { int hash_size = crypt_hash_size(hash_name); unsigned int digest_size; unsigned int i, blocks, padding; if (hash_size <= 0) return 1; digest_size = hash_size; blocks = size / digest_size; padding = size % digest_size; for (i = 0; i < blocks; i++) if(hash_buf(src + digest_size * i, dst + digest_size * i, i, (size_t)digest_size, hash_name)) return 1; if(padding) if(hash_buf(src + digest_size * i, dst + digest_size * i, i, (size_t)padding, hash_name)) return 1; return 0; }
bool KeyValClient::insert(KeyVal* kv) { int req_size = sizeof(KVRequest) + kv->val.len; KVRequest* req = (KVRequest*)mf_malloc(this->mf, req_size); req->type = TYPE_INSERT; req->kv = *kv; uint32_t hash131 = hash_buf(kv->val.bytes, kv->val.len); #define READBACK_CHECK 1 #if READBACK_CHECK ZLC_TERSE(ze, "Insert val len %d hash 0x%x\n",, kv->val.len, hash131); #endif // READBACK_CHECK lite_memcpy(req->kv.val.bytes, kv->val.bytes, kv->val.len); bool rc = this->sock->sendto(this->server, req, req_size); if (!rc) { return false; } ZeroCopyBuf* reply = this->sock->recvfrom(this->server); lite_assert(reply!=NULL); lite_assert(reply->len()==sizeof(uint32_t)); lite_assert(((uint32_t*)reply->data())[0] == hash131); delete reply; mf_free(this->mf, req); return true; }
static int diffuse(char *src, char *dst, size_t size, const EVP_MD *hash_id) { unsigned int digest_size = EVP_MD_size(hash_id); unsigned int i, blocks, padding; blocks = size / digest_size; padding = size % digest_size; for (i = 0; i < blocks; i++) if(hash_buf(src + digest_size * i, dst + digest_size * i, i, digest_size, hash_id)) return 1; if(padding) if(hash_buf(src + digest_size * i, dst + digest_size * i, i, padding, hash_id)) return 1; return 0; }
Value* KeyValClient::lookup(Key* key) { KVRequest req; req.type = TYPE_LOOKUP; req.kv.key = *key; bool rc = this->sock->sendto(this->server, &req, sizeof(KVRequest)); if (!rc) { return NULL; } ZeroCopyBuf* buf = this->sock->recvfrom(this->server); if (buf == NULL) { ZLC_TERSE(ze, "WARNING: timeout contacting KeyVal server\n"); return NULL; } Value* val = (Value*) buf->data(); #if READBACK_CHECK { uint32_t bytes131hash = hash_buf(val->bytes, val->len); ZLC_TERSE(ze, "lookup val len %d hash 0x%x\n",, val->len, bytes131hash); } #endif // READBACK_CHECK Value* new_val = (Value*) mf_malloc(this->mf, sizeof(Value)+val->len); lite_memcpy(new_val, val, sizeof(Value)+val->len); delete buf; #if READBACK_CHECK { uint32_t bytes131hash = hash_buf(new_val->bytes, new_val->len); ZLC_TERSE(ze, "lookup new_val len %d hash 0x%x\n",, new_val->len, bytes131hash); } #endif // READBACK_CHECK return new_val; }
void KVServer::handle_insert(KVRequest* request) { KeyVal* newKV = NULL; // If the key is already present, we need to remove it first // (because hash_table doesn't like inserts for existing values) newKV = (KeyVal*) hash_table_lookup(&db, &request->kv); if (newKV != NULL) { hash_table_remove(&db, newKV); free(newKV); } // Now copy the request and insert it into our database newKV = KV_clone(&request->kv); uint32_t hash131 = hash_buf(newKV->val.bytes, newKV->val.len); lite_assert(newKV); hash_table_insert(&db, newKV); annotate("insert", newKV); int rc; rc = sendto(sock, &hash131, sizeof(hash131), 0, (sockaddr*)&remote_addr, sizeof(remote_addr)); if (rc == -1) { fprintf(stderr, "(KeyValueServer) Failed to send insert reply!\n"); } }
/* * Spawns the initial bot process and waits for them all to exit. */ int main(int argc, char *argv[]) { char *pythonpath = getenv("PYTHONPATH"); if (pythonpath) { char *str = (char*)xzmalloc(strlen(pythonpath) + strlen(":") + strlen("./libs") + 1); sprintf(str, "%s:%s", "./libs", pythonpath); setenv("PYTHONPATH", str, 1); free(str); } else { setenv("PYTHONPATH", "./libs", 1); } Py_Initialize(); init_opencore(); PyObject *sysPath = PySys_GetObject("path"); PyObject *libDir = PyString_FromString("."); PyList_Append(sysPath, libDir); Py_DECREF(libDir); if (pthread_key_create(&g_tls_key, NULL) != 0) { Log(OP_SMOD, "Error creating thread-specific storage"); exit(-1); } pthread_setspecific(g_tls_key, NULL); /* make directories */ mkdir("files", 0700); /* setup packet handlers */ for (int i = 0; i < 256; ++i) { g_pkt_core_handlers[i] = null_handler; g_pkt_game_handlers[i] = null_handler; } g_pkt_core_handlers[0x02] = pkt_handle_core_0x02; g_pkt_core_handlers[0x03] = pkt_handle_core_0x03; g_pkt_core_handlers[0x04] = pkt_handle_core_0x04; g_pkt_core_handlers[0x05] = pkt_handle_core_0x05; g_pkt_core_handlers[0x06] = pkt_handle_core_0x06; g_pkt_core_handlers[0x07] = pkt_handle_core_0x07; g_pkt_core_handlers[0x08] = pkt_handle_core_0x08_0x09; g_pkt_core_handlers[0x09] = pkt_handle_core_0x08_0x09; g_pkt_core_handlers[0x0A] = pkt_handle_core_0x0A; g_pkt_core_handlers[0x0E] = pkt_handle_core_0x0E; g_pkt_game_handlers[0x02] = pkt_handle_game_0x02; g_pkt_game_handlers[0x03] = pkt_handle_game_0x03; g_pkt_game_handlers[0x04] = pkt_handle_game_0x04; g_pkt_game_handlers[0x07] = pkt_handle_game_0x07; g_pkt_game_handlers[0x06] = pkt_handle_game_0x06; g_pkt_game_handlers[0x0A] = pkt_handle_game_0x0A; g_pkt_game_handlers[0x0D] = pkt_handle_game_0x0D; g_pkt_game_handlers[0x0E] = pkt_handle_game_0x0E; g_pkt_game_handlers[0x14] = pkt_handle_game_0x14; g_pkt_game_handlers[0x19] = pkt_handle_game_0x19; g_pkt_game_handlers[0x1C] = pkt_handle_game_0x1C; g_pkt_game_handlers[0x1D] = pkt_handle_game_0x1D; g_pkt_game_handlers[0x27] = pkt_handle_game_0x27; g_pkt_game_handlers[0x28] = pkt_handle_game_0x28; g_pkt_game_handlers[0x29] = pkt_handle_game_0x29; g_pkt_game_handlers[0x2E] = pkt_handle_game_0x2E; g_pkt_game_handlers[0x2F] = pkt_handle_game_0x2F; g_pkt_game_handlers[0x31] = pkt_handle_game_0x31; struct utsname uts; bzero(&uts, sizeof(struct utsname)); uname(&uts); uint64_t hash = hash_buf(&uts, sizeof(struct utsname)); g_machineid = gen_valid_mid(hash & 0xFFFFFFFF); g_permissionid = hash >> 32; load_op_file(); static const char* const masterconfig = "types/master.conf"; log_init(); db_init(masterconfig); botman_init(); /* run the master bot */ char arenaname[32] = { '\0' }; config_get_string("login.masterarena", arenaname, sizeof(arenaname), "#master", masterconfig); LogFmt(OP_MOD, "Starting master into %s", arenaname); char *err = StartBot("master", arenaname, NULL); if (err) { LogFmt(OP_MOD, "Error starting master bot: %s", err); return -1; } /* become the bot management thread and loop */ botman_mainloop(); botman_shutdown(); db_shutdown(); log_shutdown(); pthread_key_delete(g_tls_key); Py_Finalize(); return 0; }
uint32_t MmapBehavior::hash(const void* datum) { MmapBehavior* obj = (MmapBehavior*) datum; return hash_buf(obj->filename, strlen(obj->filename)); }
int pkcs5_pbkdf2(const char *hash, const char *P, size_t Plen, const char *S, size_t Slen, unsigned int c, unsigned int dkLen, char *DK, unsigned int hash_block_size) { struct crypt_hmac *hmac; char U[MAX_PRF_BLOCK_LEN]; char T[MAX_PRF_BLOCK_LEN]; char P_hash[MAX_PRF_BLOCK_LEN]; int i, k, rc = -EINVAL; unsigned int u, hLen, l, r; size_t tmplen = Slen + 4; char *tmp; tmp = alloca(tmplen); if (tmp == NULL) return -ENOMEM; hLen = crypt_hmac_size(hash); if (hLen == 0 || hLen > MAX_PRF_BLOCK_LEN) return -EINVAL; if (c == 0) return -EINVAL; if (dkLen == 0) return -EINVAL; /* * * Steps: * * 1. If dkLen > (2^32 - 1) * hLen, output "derived key too long" and * stop. */ if (dkLen > 4294967295U) return -EINVAL; /* * 2. Let l be the number of hLen-octet blocks in the derived key, * rounding up, and let r be the number of octets in the last * block: * * l = CEIL (dkLen / hLen) , * r = dkLen - (l - 1) * hLen . * * Here, CEIL (x) is the "ceiling" function, i.e. the smallest * integer greater than, or equal to, x. */ l = dkLen / hLen; if (dkLen % hLen) l++; r = dkLen - (l - 1) * hLen; /* * 3. For each block of the derived key apply the function F defined * below to the password P, the salt S, the iteration count c, and * the block index to compute the block: * * T_1 = F (P, S, c, 1) , * T_2 = F (P, S, c, 2) , * ... * T_l = F (P, S, c, l) , * * where the function F is defined as the exclusive-or sum of the * first c iterates of the underlying pseudorandom function PRF * applied to the password P and the concatenation of the salt S * and the block index i: * * F (P, S, c, i) = U_1 \xor U_2 \xor ... \xor U_c * * where * * U_1 = PRF (P, S || INT (i)) , * U_2 = PRF (P, U_1) , * ... * U_c = PRF (P, U_{c-1}) . * * Here, INT (i) is a four-octet encoding of the integer i, most * significant octet first. * * 4. Concatenate the blocks and extract the first dkLen octets to * produce a derived key DK: * * DK = T_1 || T_2 || ... || T_l<0..r-1> * * 5. Output the derived key DK. * * Note. The construction of the function F follows a "belt-and- * suspenders" approach. The iterates U_i are computed recursively to * remove a degree of parallelism from an opponent; they are exclusive- * ored together to reduce concerns about the recursion degenerating * into a small set of values. * */ /* If hash_block_size is provided, hash password in advance. */ if (hash_block_size > 0 && Plen > hash_block_size) { if (hash_buf(P, Plen, P_hash, hLen, hash)) return -EINVAL; if (crypt_hmac_init(&hmac, hash, P_hash, hLen)) return -EINVAL; memset(P_hash, 0, sizeof(P_hash)); } else { if (crypt_hmac_init(&hmac, hash, P, Plen)) return -EINVAL; } for (i = 1; (unsigned int) i <= l; i++) { memset(T, 0, hLen); for (u = 1; u <= c ; u++) { if (u == 1) { memcpy(tmp, S, Slen); tmp[Slen + 0] = (i & 0xff000000) >> 24; tmp[Slen + 1] = (i & 0x00ff0000) >> 16; tmp[Slen + 2] = (i & 0x0000ff00) >> 8; tmp[Slen + 3] = (i & 0x000000ff) >> 0; if (crypt_hmac_write(hmac, tmp, tmplen)) goto out; } else { if (crypt_hmac_write(hmac, U, hLen)) goto out; } if (crypt_hmac_final(hmac, U, hLen)) goto out; for (k = 0; (unsigned int) k < hLen; k++) T[k] ^= U[k]; }
void KVServer::annotate(const char *label, KeyVal* kv) { uint32_t hash131 = hash_buf(kv->val.bytes, kv->val.len); fprintf(stderr, "\t%s: key %d len %d hash131 %08x\n", label, (int) kv->key, kv->val.len, hash131); }
uint32_t SockaddrHashable::hash() { return hash_buf(sockaddr, sockaddr_len); }