Пример #1
0
/*ARGSUSED*/
void
startup_kernel(void)
{
	char *cmdline;
	uintptr_t addr;
#if defined(__xpv)
	physdev_set_iopl_t set_iopl;
#endif /* __xpv */

	/*
	 * At this point we are executing in a 32 bit real mode.
	 */
#if defined(__xpv)
	cmdline = (char *)xen_info->cmd_line;
#else /* __xpv */
	cmdline = (char *)mb_info->cmdline;
#endif /* __xpv */

	prom_debug = (strstr(cmdline, "prom_debug") != NULL);
	map_debug = (strstr(cmdline, "map_debug") != NULL);

#if defined(__xpv)
	/*
	 * For dom0, before we initialize the console subsystem we'll
	 * need to enable io operations, so set I/O priveldge level to 1.
	 */
	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
		set_iopl.iopl = 1;
		(void) HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
	}
#endif /* __xpv */

	bcons_init(cmdline);
	DBG_MSG("\n\nSolaris prekernel set: ");
	DBG_MSG(cmdline);
	DBG_MSG("\n");

	if (strstr(cmdline, "multiboot") != NULL) {
		dboot_panic(NO_MULTIBOOT);
	}

	/*
	 * boot info must be 16 byte aligned for 64 bit kernel ABI
	 */
	addr = (uintptr_t)boot_info;
	addr = (addr + 0xf) & ~0xf;
	bi = (struct xboot_info *)addr;
	DBG((uintptr_t)bi);
	bi->bi_cmdline = (native_ptr_t)(uintptr_t)cmdline;

	/*
	 * Need correct target_kernel_text value
	 */
#if defined(_BOOT_TARGET_amd64)
	target_kernel_text = KERNEL_TEXT_amd64;
#elif defined(__xpv)
	target_kernel_text = KERNEL_TEXT_i386_xpv;
#else
	target_kernel_text = KERNEL_TEXT_i386;
#endif
	DBG(target_kernel_text);

#if defined(__xpv)

	/*
	 * XXPV	Derive this stuff from CPUID / what the hypervisor has enabled
	 */

#if defined(_BOOT_TARGET_amd64)
	/*
	 * 64-bit hypervisor.
	 */
	amd64_support = 1;
	pae_support = 1;

#else	/* _BOOT_TARGET_amd64 */

	/*
	 * See if we are running on a PAE Hypervisor
	 */
	{
		xen_capabilities_info_t caps;

		if (HYPERVISOR_xen_version(XENVER_capabilities, &caps) != 0)
			dboot_panic("HYPERVISOR_xen_version(caps) failed");
		caps[sizeof (caps) - 1] = 0;
		if (prom_debug)
			dboot_printf("xen capabilities %s\n", caps);
		if (strstr(caps, "x86_32p") != NULL)
			pae_support = 1;
	}

#endif	/* _BOOT_TARGET_amd64 */
	{
		xen_platform_parameters_t p;

		if (HYPERVISOR_xen_version(XENVER_platform_parameters, &p) != 0)
			dboot_panic("HYPERVISOR_xen_version(parms) failed");
		DBG(p.virt_start);
		mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
	}

	/*
	 * The hypervisor loads stuff starting at 1Gig
	 */
	mfn_base = ONE_GIG;
	DBG(mfn_base);

	/*
	 * enable writable page table mode for the hypervisor
	 */
	if (HYPERVISOR_vm_assist(VMASST_CMD_enable,
	    VMASST_TYPE_writable_pagetables) < 0)
		dboot_panic("HYPERVISOR_vm_assist(writable_pagetables) failed");

	/*
	 * check for NX support
	 */
	if (pae_support) {
		uint32_t eax = 0x80000000;
		uint32_t edx = get_cpuid_edx(&eax);

		if (eax >= 0x80000001) {
			eax = 0x80000001;
			edx = get_cpuid_edx(&eax);
			if (edx & CPUID_AMD_EDX_NX)
				NX_support = 1;
		}
	}

#if !defined(_BOOT_TARGET_amd64)

	/*
	 * The 32-bit hypervisor uses segmentation to protect itself from
	 * guests. This means when a guest attempts to install a flat 4GB
	 * code or data descriptor the 32-bit hypervisor will protect itself
	 * by silently shrinking the segment such that if the guest attempts
	 * any access where the hypervisor lives a #gp fault is generated.
	 * The problem is that some applications expect a full 4GB flat
	 * segment for their current thread pointer and will use negative
	 * offset segment wrap around to access data. TLS support in linux
	 * brand is one example of this.
	 *
	 * The 32-bit hypervisor can catch the #gp fault in these cases
	 * and emulate the access without passing the #gp fault to the guest
	 * but only if VMASST_TYPE_4gb_segments is explicitly turned on.
	 * Seems like this should have been the default.
	 * Either way, we want the hypervisor -- and not Solaris -- to deal
	 * to deal with emulating these accesses.
	 */
	if (HYPERVISOR_vm_assist(VMASST_CMD_enable,
	    VMASST_TYPE_4gb_segments) < 0)
		dboot_panic("HYPERVISOR_vm_assist(4gb_segments) failed");
#endif	/* !_BOOT_TARGET_amd64 */

#else	/* __xpv */

	/*
	 * use cpuid to enable MMU features
	 */
	if (have_cpuid()) {
		uint32_t eax, edx;

		eax = 1;
		edx = get_cpuid_edx(&eax);
		if (edx & CPUID_INTC_EDX_PSE)
			largepage_support = 1;
		if (edx & CPUID_INTC_EDX_PGE)
			pge_support = 1;
		if (edx & CPUID_INTC_EDX_PAE)
			pae_support = 1;

		eax = 0x80000000;
		edx = get_cpuid_edx(&eax);
		if (eax >= 0x80000001) {
			eax = 0x80000001;
			edx = get_cpuid_edx(&eax);
			if (edx & CPUID_AMD_EDX_LM)
				amd64_support = 1;
			if (edx & CPUID_AMD_EDX_NX)
				NX_support = 1;
		}
	} else {
		dboot_printf("cpuid not supported\n");
	}
#endif /* __xpv */


#if defined(_BOOT_TARGET_amd64)
	if (amd64_support == 0)
		dboot_panic("long mode not supported, rebooting");
	else if (pae_support == 0)
		dboot_panic("long mode, but no PAE; rebooting");
#else
	/*
	 * Allow the command line to over-ride use of PAE for 32 bit.
	 */
	if (strstr(cmdline, "disablePAE=true") != NULL) {
		pae_support = 0;
		NX_support = 0;
		amd64_support = 0;
	}
#endif

	/*
	 * initialize the simple memory allocator
	 */
	init_mem_alloc();

#if !defined(__xpv) && !defined(_BOOT_TARGET_amd64)
	/*
	 * disable PAE on 32 bit h/w w/o NX and < 4Gig of memory
	 */
	if (max_mem < FOUR_GIG && NX_support == 0)
		pae_support = 0;
#endif

	/*
	 * configure mmu information
	 */
	if (pae_support) {
		shift_amt = shift_amt_pae;
		ptes_per_table = 512;
		pte_size = 8;
		lpagesize = TWO_MEG;
#if defined(_BOOT_TARGET_amd64)
		top_level = 3;
#else
		top_level = 2;
#endif
	} else {
		pae_support = 0;
		NX_support = 0;
		shift_amt = shift_amt_nopae;
		ptes_per_table = 1024;
		pte_size = 4;
		lpagesize = FOUR_MEG;
		top_level = 1;
	}

	DBG(pge_support);
	DBG(NX_support);
	DBG(largepage_support);
	DBG(amd64_support);
	DBG(top_level);
	DBG(pte_size);
	DBG(ptes_per_table);
	DBG(lpagesize);

#if defined(__xpv)
	ktext_phys = ONE_GIG;		/* from UNIX Mapfile */
#else
	ktext_phys = FOUR_MEG;		/* from UNIX Mapfile */
#endif

#if !defined(__xpv) && defined(_BOOT_TARGET_amd64)
	/*
	 * For grub, copy kernel bits from the ELF64 file to final place.
	 */
	DBG_MSG("\nAllocating nucleus pages.\n");
	ktext_phys = (uintptr_t)do_mem_alloc(ksize, FOUR_MEG);
	if (ktext_phys == 0)
		dboot_panic("failed to allocate aligned kernel memory");
	if (dboot_elfload64(mb_header.load_addr) != 0)
		dboot_panic("failed to parse kernel ELF image, rebooting");
#endif

	DBG(ktext_phys);

	/*
	 * Allocate page tables.
	 */
	build_page_tables();

	/*
	 * return to assembly code to switch to running kernel
	 */
	entry_addr_low = (uint32_t)target_kernel_text;
	DBG(entry_addr_low);
	bi->bi_use_largepage = largepage_support;
	bi->bi_use_pae = pae_support;
	bi->bi_use_pge = pge_support;
	bi->bi_use_nx = NX_support;

#if defined(__xpv)

	bi->bi_next_paddr = next_avail_addr - mfn_base;
	DBG(bi->bi_next_paddr);
	bi->bi_next_vaddr = (native_ptr_t)next_avail_addr;
	DBG(bi->bi_next_vaddr);

	/*
	 * unmap unused pages in start area to make them available for DMA
	 */
	while (next_avail_addr < scratch_end) {
		(void) HYPERVISOR_update_va_mapping(next_avail_addr,
		    0, UVMF_INVLPG | UVMF_LOCAL);
		next_avail_addr += MMU_PAGESIZE;
	}

	bi->bi_xen_start_info = (uintptr_t)xen_info;
	DBG((uintptr_t)HYPERVISOR_shared_info);
	bi->bi_shared_info = (native_ptr_t)HYPERVISOR_shared_info;
	bi->bi_top_page_table = (uintptr_t)top_page_table - mfn_base;

#else /* __xpv */

	bi->bi_next_paddr = next_avail_addr;
	DBG(bi->bi_next_paddr);
	bi->bi_next_vaddr = (uintptr_t)next_avail_addr;
	DBG(bi->bi_next_vaddr);
	bi->bi_mb_info = (uintptr_t)mb_info;
	bi->bi_top_page_table = (uintptr_t)top_page_table;

#endif /* __xpv */

	bi->bi_kseg_size = FOUR_MEG;
	DBG(bi->bi_kseg_size);

#ifndef __xpv
	if (map_debug)
		dump_tables();
#endif

	DBG_MSG("\n\n*** DBOOT DONE -- back to asm to jump to kernel\n\n");
}
Пример #2
0
int get_cputype(int gettype){
  int eax, ebx, ecx, edx;
  int extend_family, family;
  int extend_model, model;
  int type, stepping;
  int feature = 0;

  cpuid(1, &eax, &ebx, &ecx, &edx);
  
  switch (gettype) {
  case GET_EXFAMILY :
    return BITMASK(eax, 20, 0xff);
  case GET_EXMODEL :
    return BITMASK(eax, 16, 0x0f);
  case GET_TYPE :
    return BITMASK(eax, 12, 0x03);
  case GET_FAMILY :
    return BITMASK(eax,  8, 0x0f);
  case GET_MODEL :
    return BITMASK(eax,  4, 0x0f);
  case GET_APICID :
    return BITMASK(ebx, 24, 0x0f);
  case GET_LCOUNT :
    return BITMASK(ebx, 16, 0x0f);
  case GET_CHUNKS :
    return BITMASK(ebx,  8, 0x0f);
  case GET_STEPPING :
    return BITMASK(eax,  0, 0x0f);
  case GET_BLANDID :
    return BITMASK(ebx,  0, 0xff);
  case GET_NUMSHARE :
    if (have_cpuid() < 4) return 0;
    cpuid(4, &eax, &ebx, &ecx, &edx);
    return BITMASK(eax, 14, 0xfff);
  case GET_NUMCORES :
    if (have_cpuid() < 4) return 0;
    cpuid(4, &eax, &ebx, &ecx, &edx);
    return BITMASK(eax, 26, 0x3f);

  case GET_FEATURE :
    if ((edx & (1 <<  3)) != 0) feature |= HAVE_PSE;
    if ((edx & (1 << 15)) != 0) feature |= HAVE_CMOV;
    if ((edx & (1 << 19)) != 0) feature |= HAVE_CFLUSH;
    if ((edx & (1 << 23)) != 0) feature |= HAVE_MMX;
    if ((edx & (1 << 25)) != 0) feature |= HAVE_SSE;
    if ((edx & (1 << 26)) != 0) feature |= HAVE_SSE2;
    if ((edx & (1 << 27)) != 0) {
      if (BITMASK(ebx, 16, 0x0f) > 0) feature |= HAVE_HIT;
    }
    if ((ecx & (1 <<  0)) != 0) feature |= HAVE_SSE3;
    if ((ecx & (1 <<  9)) != 0) feature |= HAVE_SSSE3;
    if ((ecx & (1 << 19)) != 0) feature |= HAVE_SSE4_1;
    if ((ecx & (1 << 20)) != 0) feature |= HAVE_SSE4_2;
#ifndef NO_AVX
    if (support_avx()) feature |= HAVE_AVX;
#endif

    if (have_excpuid() >= 0x01) {
      cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
      if ((ecx & (1 <<  6)) != 0) feature |= HAVE_SSE4A;
      if ((ecx & (1 <<  7)) != 0) feature |= HAVE_MISALIGNSSE;
      if ((edx & (1 << 30)) != 0) feature |= HAVE_3DNOWEX;
      if ((edx & (1 << 31)) != 0) feature |= HAVE_3DNOW;
    }

    if (have_excpuid() >= 0x1a) {
      cpuid(0x8000001a, &eax, &ebx, &ecx, &edx);
      if ((eax & (1 <<  0)) != 0) feature |= HAVE_128BITFPU;
      if ((eax & (1 <<  1)) != 0) feature |= HAVE_FASTMOVU;
    }

  }
  return feature;
}
Пример #3
0
int get_cpuname(void){

  int family, exfamily, model, vendor, exmodel;

  if (!have_cpuid()) return CPUTYPE_80386;

  family   = get_cputype(GET_FAMILY);
  exfamily = get_cputype(GET_EXFAMILY);
  model    = get_cputype(GET_MODEL);
  exmodel  = get_cputype(GET_EXMODEL);

  vendor = get_vendor();

  if (vendor == VENDOR_INTEL){
    switch (family) {
    case 0x4:
      return CPUTYPE_80486;
    case 0x5:
      return CPUTYPE_PENTIUM;
    case 0x6:
      switch (exmodel) {
      case 0: 
	switch (model) {
	case  1:
	case  3:
	case  5:
	case  6:
	  return CPUTYPE_PENTIUM2;
	case  7:
	case  8:
	case 10:
	case 11:
	  return CPUTYPE_PENTIUM3;
	case  9:
	case 13:
	case 14:
	  return CPUTYPE_PENTIUMM;
	case 15:
	  return CPUTYPE_CORE2;
	}
	break;
      case 1:
	switch (model) {
	case  6:
	  return CPUTYPE_CORE2;
	case  7:
	  return CPUTYPE_PENRYN;
	case 10:
	case 11:
	case 14:
	case 15:
	  return CPUTYPE_NEHALEM;
	case 12:
	  return CPUTYPE_ATOM;
	case 13:
	  return CPUTYPE_DUNNINGTON;
	}
	break;
      case  2:
	switch (model) {
	case 5:
	  //Intel Core (Clarkdale) / Core (Arrandale) 
	  // Pentium (Clarkdale) / Pentium Mobile (Arrandale) 
	  // Xeon (Clarkdale), 32nm
	  return CPUTYPE_NEHALEM;
	case 10:
	  //Intel Core i5-2000 /i7-2000 (Sandy Bridge)
	  if(support_avx())
	    return CPUTYPE_SANDYBRIDGE;
	  else
	    return CPUTYPE_NEHALEM; //OS doesn't support AVX
	case 12:
	  //Xeon Processor 5600 (Westmere-EP)
	  return CPUTYPE_NEHALEM;
	case 13:
	  //Intel Core i7-3000 / Xeon E5 (Sandy Bridge)
	  if(support_avx())
	    return CPUTYPE_SANDYBRIDGE;
	  else
	    return CPUTYPE_NEHALEM;
	case 15:
	  //Xeon Processor E7 (Westmere-EX)
	  return CPUTYPE_NEHALEM;
	}
	break;
      case 3:
	switch (model) {
	case 10:
	  if(support_avx())
	    return CPUTYPE_SANDYBRIDGE;
	  else
	    return CPUTYPE_NEHALEM;
	}
	break;
      }
      break;
    case 0x7:
      return CPUTYPE_ITANIUM;
    case 0xf:
      switch (exfamily) {
      case 0 :
	return CPUTYPE_PENTIUM4;
      case 1 :
	return CPUTYPE_ITANIUM;
      }
      break;
    }
    return CPUTYPE_INTEL_UNKNOWN;
  }

  if (vendor == VENDOR_AMD){
    switch (family) {
    case 0x4:
      return CPUTYPE_AMD5X86;
    case 0x5:
      return CPUTYPE_AMDK6;
    case 0x6:
      return CPUTYPE_ATHLON;
    case 0xf:
      switch (exfamily) {
      case  0:
      case  2:
	return CPUTYPE_OPTERON;
      case  1:
      case 10:
      case  6:   //AMD Bulldozer Opteron 6200 / Opteron 4200 / AMD FX-Series
	return CPUTYPE_BARCELONA;
      case  5:
	return CPUTYPE_BOBCAT;
      }
      break;
    }
    return CPUTYPE_AMD_UNKNOWN;
  }

  if (vendor == VENDOR_CYRIX){
    switch (family) {
    case 0x4:
      return CPUTYPE_CYRIX5X86;
    case 0x5:
      return CPUTYPE_CYRIXM1;
    case 0x6:
      return CPUTYPE_CYRIXM2;
    }
    return CPUTYPE_CYRIX_UNKNOWN;
  }

  if (vendor == VENDOR_NEXGEN){
    switch (family) {
    case 0x5:
      return CPUTYPE_NEXGENNX586;
    }
    return CPUTYPE_NEXGEN_UNKNOWN;
  }

  if (vendor == VENDOR_CENTAUR){
    switch (family) {
    case 0x5:
      return CPUTYPE_CENTAURC6;
      break;
    case 0x6:
      return CPUTYPE_NANO;
      break;

    }
    return CPUTYPE_VIAC3;
  }

  if (vendor == VENDOR_RISE){
    switch (family) {
    case 0x5:
      return CPUTYPE_RISEMP6;
    }
    return CPUTYPE_RISE_UNKNOWN;
  }

  if (vendor == VENDOR_SIS){
    switch (family) {
    case 0x5:
      return CPUTYPE_SYS55X;
    }
    return CPUTYPE_SIS_UNKNOWN;
  }

  if (vendor == VENDOR_TRANSMETA){
    switch (family) {
    case 0x5:
      return CPUTYPE_CRUSOETM3X;
    }
    return CPUTYPE_TRANSMETA_UNKNOWN;
  }

  if (vendor == VENDOR_NSC){
    switch (family) {
    case 0x5:
      return CPUTYPE_NSGEODE;
    }
    return CPUTYPE_NSC_UNKNOWN;
  }

  return CPUTYPE_UNKNOWN;
}
Пример #4
0
int get_coretype(void){

  int family, exfamily, model, exmodel, vendor;

  if (!have_cpuid()) return CORE_80486;

  family   = get_cputype(GET_FAMILY);
  exfamily = get_cputype(GET_EXFAMILY);
  model    = get_cputype(GET_MODEL);
  exmodel  = get_cputype(GET_EXMODEL);

  vendor = get_vendor();

  if (vendor == VENDOR_INTEL){
    switch (family) {
    case  4:
      return CORE_80486;
    case  5:
      return CORE_P5;
    case  6:
      switch (exmodel) {
      case  0:
	switch (model) {
	case  0:
	case  1:
	case  2:
	case  3:
	case  4:
	case  5:
	case  6:
	  return CORE_P6;
	case  7:
	  return CORE_KATMAI;
	case  8:
	case 10:
	case 11:
	  return CORE_COPPERMINE;
	case  9:
	case 13:
	case 14:
	  return CORE_BANIAS;
	case 15:
	  return CORE_CORE2;
	}
	break;
      case  1:
	switch (model) {
	case  6:
	  return CORE_CORE2;
	case  7:
	  return CORE_PENRYN;
	case 10:
	case 11:
	case 14:
	case 15:
	  return CORE_NEHALEM;
	case 12:
	  return CORE_ATOM;
	case 13:
	  return CORE_DUNNINGTON;
	}
	break;
      case  2:
	switch (model) {
	case 5:
	  //Intel Core (Clarkdale) / Core (Arrandale) 
	  // Pentium (Clarkdale) / Pentium Mobile (Arrandale) 
	  // Xeon (Clarkdale), 32nm
	  return CORE_NEHALEM;
	case 10:
          //Intel Core i5-2000 /i7-2000 (Sandy Bridge)
	  if(support_avx())
	    return CORE_SANDYBRIDGE;
	  else
	    return CORE_NEHALEM; //OS doesn't support AVX
	case 12:
	  //Xeon Processor 5600 (Westmere-EP)
	  return CORE_NEHALEM;
	case 13:
          //Intel Core i7-3000 / Xeon E5 (Sandy Bridge)
	  if(support_avx())
	    return CORE_SANDYBRIDGE;
	  else
	    return CORE_NEHALEM; //OS doesn't support AVX
	case 15:
	  //Xeon Processor E7 (Westmere-EX)
	  return CORE_NEHALEM;
	}
	break;
      case 3:
	switch (model) {
	case 10:
	  if(support_avx())
	    return CORE_SANDYBRIDGE;
	  else
	    return CORE_NEHALEM; //OS doesn't support AVX
	}
	break;
      }
      break;

      case 15:
	if (model <= 0x2) return CORE_NORTHWOOD;
	else return CORE_PRESCOTT;
    }
  }

  if (vendor == VENDOR_AMD){
    if (family <= 0x5) return CORE_80486;
    if (family <= 0xe) return CORE_ATHLON;
    if (family == 0xf){
      if ((exfamily == 0) || (exfamily == 2)) return CORE_OPTERON; 
      else if (exfamily == 5) return CORE_BOBCAT; 
      else if (exfamily == 6) return CORE_BARCELONA;  //AMD Bulldozer Opteron 6200 / Opteron 4200 / AMD FX-Series
      else return CORE_BARCELONA;
    }
  }

  if (vendor == VENDOR_CENTAUR) {
    switch (family) {
    case 0x6:
      return CORE_NANO;
      break;
    }
    return CORE_VIAC3;
  }

  return CORE_UNKNOWN;
}
Пример #5
0
int get_cpuname(void){

  int family, exfamily, model, vendor, exmodel;

  if (!have_cpuid()) return CPUTYPE_80386;

  family   = get_cputype(GET_FAMILY);
  exfamily = get_cputype(GET_EXFAMILY);
  model    = get_cputype(GET_MODEL);
  exmodel  = get_cputype(GET_EXMODEL);

  vendor = get_vendor();

  if (vendor == VENDOR_INTEL){
    switch (family) {
    case 0x4:
      return CPUTYPE_80486;
    case 0x5:
      return CPUTYPE_PENTIUM;
    case 0x6:
      switch (exmodel) {
      case 0:
	switch (model) {
	case  1:
	case  3:
	case  5:
	case  6:
	  return CPUTYPE_PENTIUM2;
	case  7:
	case  8:
	case 10:
	case 11:
	  return CPUTYPE_PENTIUM3;
	case  9:
	case 13:
	case 14:
	  return CPUTYPE_PENTIUMM;
	case 15:
	  return CPUTYPE_CORE2;
	}
	break;
      case 1:
	switch (model) {
	case  6:
	  return CPUTYPE_CORE2;
	case  7:
	  return CPUTYPE_PENRYN;
	case 10:
	case 11:
	case 14:
	case 15:
	  return CPUTYPE_NEHALEM;
	case 12:
	  return CPUTYPE_ATOM;
	case 13:
	  return CPUTYPE_DUNNINGTON;
	}
	break;
      case  2:
	switch (model) {
	case 5:
	  //Intel Core (Clarkdale) / Core (Arrandale)
	  // Pentium (Clarkdale) / Pentium Mobile (Arrandale)
	  // Xeon (Clarkdale), 32nm
	  return CPUTYPE_NEHALEM;
	case 10:
	  //Intel Core i5-2000 /i7-2000 (Sandy Bridge)
	  if(support_avx())
	    return CPUTYPE_SANDYBRIDGE;
	  else
	    return CPUTYPE_NEHALEM; //OS doesn't support AVX
	case 12:
	  //Xeon Processor 5600 (Westmere-EP)
	  return CPUTYPE_NEHALEM;
	case 13:
	  //Intel Core i7-3000 / Xeon E5 (Sandy Bridge)
	  if(support_avx())
	    return CPUTYPE_SANDYBRIDGE;
	  else
	    return CPUTYPE_NEHALEM;
	case 14:
	  // Xeon E7540
	case 15:
	  //Xeon Processor E7 (Westmere-EX)
	  return CPUTYPE_NEHALEM;
	}
	break;
      case 3:
	switch (model) {
	case 10:
        case 14:
	  // Ivy Bridge
	  if(support_avx())
	    return CPUTYPE_SANDYBRIDGE;
	  else
	    return CPUTYPE_NEHALEM;
        case 12:
	case 15:
          if(support_avx())
#ifndef NO_AVX2
            return CPUTYPE_HASWELL;
#else
	    return CPUTYPE_SANDYBRIDGE;
#endif
          else
	    return CPUTYPE_NEHALEM;
	}
	break;
      case 4:
        switch (model) {
        case 5:
	case 6:
          if(support_avx())
#ifndef NO_AVX2
            return CPUTYPE_HASWELL;
#else
	    return CPUTYPE_SANDYBRIDGE;
#endif
          else
	    return CPUTYPE_NEHALEM;
        }
        break;
      }
      break;
    case 0x7:
      return CPUTYPE_ITANIUM;
    case 0xf:
      switch (exfamily) {
      case 0 :
	return CPUTYPE_PENTIUM4;
      case 1 :
	return CPUTYPE_ITANIUM;
      }
      break;
    }
Пример #6
0
int get_cpuname(void){

  int family, exfamily, model, vendor, exmodel;

  if (!have_cpuid()) return CPUTYPE_80386;

  family   = get_cputype(GET_FAMILY);
  exfamily = get_cputype(GET_EXFAMILY);
  model    = get_cputype(GET_MODEL);
  exmodel  = get_cputype(GET_EXMODEL);

  vendor = get_vendor();

  if (vendor == VENDOR_INTEL){
    switch (family) {
    case 0x4:
      return CPUTYPE_80486;
    case 0x5:
      return CPUTYPE_PENTIUM;
    case 0x6:
      switch (exmodel) {
      case 0: 
	switch (model) {
	case  1:
	case  3:
	case  5:
	case  6:
	  return CPUTYPE_PENTIUM2;
	case  7:
	case  8:
	case 10:
	case 11:
	  return CPUTYPE_PENTIUM3;
	case  9:
	case 13:
	case 14:
	  return CPUTYPE_PENTIUMM;
	case 15:
	  return CPUTYPE_CORE2;
	}
	break;
      case 1:
	switch (model) {
	case  6:
	  return CPUTYPE_CORE2;
	case  7:
	  return CPUTYPE_PENRYN;
	case 10:
	case 11:
	case 14:
	case 15:
	  return CPUTYPE_NEHALEM;
	case 12:
	  return CPUTYPE_ATOM;
	case 13:
	  return CPUTYPE_DUNNINGTON;
	break;
	}
      }
      break;
    case 0x7:
      return CPUTYPE_ITANIUM;
    case 0xf:
      switch (exfamily) {
      case 0 :
	return CPUTYPE_PENTIUM4;
      case 1 :
	return CPUTYPE_ITANIUM;
      }
      break;
    }
    return CPUTYPE_INTEL_UNKNOWN;
  }

  if (vendor == VENDOR_AMD){
    switch (family) {
    case 0x4:
      return CPUTYPE_AMD5X86;
    case 0x5:
      return CPUTYPE_AMDK6;
    case 0x6:
      return CPUTYPE_ATHLON;
    case 0xf:
      switch (exfamily) {
      case  0:
      case  2:
	return CPUTYPE_OPTERON;
      case  1:
      case 10:
	return CPUTYPE_BARCELONA;
      }
      break;
    }
    return CPUTYPE_AMD_UNKNOWN;
  }

  if (vendor == VENDOR_CYRIX){
    switch (family) {
    case 0x4:
      return CPUTYPE_CYRIX5X86;
    case 0x5:
      return CPUTYPE_CYRIXM1;
    case 0x6:
      return CPUTYPE_CYRIXM2;
    }
    return CPUTYPE_CYRIX_UNKNOWN;
  }

  if (vendor == VENDOR_NEXGEN){
    switch (family) {
    case 0x5:
      return CPUTYPE_NEXGENNX586;
    }
    return CPUTYPE_NEXGEN_UNKNOWN;
  }

  if (vendor == VENDOR_CENTAUR){
    switch (family) {
    case 0x5:
      return CPUTYPE_CENTAURC6;
      break;
    case 0x6:
      return CPUTYPE_NANO;
      break;

    }
    return CPUTYPE_VIAC3;
  }

  if (vendor == VENDOR_RISE){
    switch (family) {
    case 0x5:
      return CPUTYPE_RISEMP6;
    }
    return CPUTYPE_RISE_UNKNOWN;
  }

  if (vendor == VENDOR_SIS){
    switch (family) {
    case 0x5:
      return CPUTYPE_SYS55X;
    }
    return CPUTYPE_SIS_UNKNOWN;
  }

  if (vendor == VENDOR_TRANSMETA){
    switch (family) {
    case 0x5:
      return CPUTYPE_CRUSOETM3X;
    }
    return CPUTYPE_TRANSMETA_UNKNOWN;
  }

  if (vendor == VENDOR_NSC){
    switch (family) {
    case 0x5:
      return CPUTYPE_NSGEODE;
    }
    return CPUTYPE_NSC_UNKNOWN;
  }

  return CPUTYPE_UNKNOWN;
}
Пример #7
0
int get_coretype(void){

  int family, exfamily, model, exmodel, vendor;

  if (!have_cpuid()) return CORE_80486;

  family   = get_cputype(GET_FAMILY);
  exfamily = get_cputype(GET_EXFAMILY);
  model    = get_cputype(GET_MODEL);
  exmodel  = get_cputype(GET_EXMODEL);

  vendor = get_vendor();

  if (vendor == VENDOR_INTEL){
    switch (family) {
    case  4:
      return CORE_80486;
    case  5:
      return CORE_P5;
    case  6:
      switch (exmodel) {
      case  0:
	switch (model) {
	case  0:
	case  1:
	case  2:
	case  3:
	case  4:
	case  5:
	case  6:
	  return CORE_P6;
	case  7:
	  return CORE_KATMAI;
	case  8:
	case 10:
	case 11:
	  return CORE_COPPERMINE;
	case  9:
	case 13:
	case 14:
	  return CORE_BANIAS;
	case 15:
	  return CORE_CORE2;
	}
	break;
      case  1:
	switch (model) {
	case  6:
	  return CORE_CORE2;
	case  7:
	  return CORE_PENRYN;
	case 10:
	case 11:
	case 14:
	case 15:
	  return CORE_NEHALEM;
	case 12:
	  return CORE_ATOM;
	case 13:
	  return CORE_DUNNINGTON;
	break;
	}
      }
      case 15:
      if (model <= 0x2) return CORE_NORTHWOOD;
      return CORE_PRESCOTT;
    }
  }

  if (vendor == VENDOR_AMD){
    if (family <= 0x5) return CORE_80486;
    if (family <= 0xe) return CORE_ATHLON;
    if (family == 0xf){
      if ((exfamily == 0) || (exfamily == 2)) return CORE_OPTERON; else return CORE_BARCELONA;
    }
  }

  if (vendor == VENDOR_CENTAUR) {
    switch (family) {
    case 0x6:
      return CORE_NANO;
      break;
    }
    return CORE_VIAC3;
  }

  return CORE_UNKNOWN;
}
Пример #8
0
int cpu_detect()
{
  int eax, ebx, ecx, edx;
  int vendor, family, extend_family, model, extend_model;

  if (!have_cpuid()) return CPUNAME_REFERENCE;

  vendor=get_vendor();

  cpuid(1, &eax, &ebx, &ecx, &edx);
  extend_family = BITMASK(eax, 20, 0xff);
  extend_model=BITMASK(eax, 16, 0x0f);
  family=BITMASK(eax,  8, 0x0f);
  model=BITMASK(eax,  4, 0x0f);

  if (vendor == VENDOR_INTEL){
    switch (family) {
    case 0x6:
      switch (extend_model) {
      case 1:
	switch (model) {
	case 7:
	  //penryn uses dunnington config.
	  return CPUNAME_DUNNINGTON;
	case 13:
	  return CPUNAME_DUNNINGTON;
	}
	break;
      case 2:
	switch (model) {
	case 10:
	case 13:
	  if(support_avx()) {
	    return CPUNAME_SANDYBRIDGE;
	  }else{
	    return CPUNAME_REFERENCE; //OS doesn't support AVX
	  }
	}
	break;
      case 3:
	switch (model) {
	case 10:
	case 14:
	  //Ivy Bridge
	  if(support_avx()) {
	    return CPUNAME_SANDYBRIDGE;
	  }else{
	    return CPUNAME_REFERENCE; //OS doesn't support AVX
	  }
	case 12:
	case 15:
	  //Haswell. Temp use Sandy Brdige
	  if(support_avx()) {
	    return CPUNAME_SANDYBRIDGE;
	  }else{
	    return CPUNAME_REFERENCE; //OS doesn't support AVX
	  }

	}
	break;
      case 4:
        switch (model) {
        case 5:
	case 6:
	  //Haswell. Temp use Sandy Brdige
	  if(support_avx()) {
	    return CPUNAME_SANDYBRIDGE;
	  }else{
	    return CPUNAME_REFERENCE; //OS doesn't support AVX
	  }
	}
        break;
      }
      break;
    }
  }else if (vendor == VENDOR_AMD){
    switch (family) {
    case 0xf:
      switch (extend_family) {
      case 6:
	switch (model) {
	case 1:
	  if(support_avx())
	    return CPUNAME_BULLDOZER;
	  else
	    return CPUNAME_REFERENCE; //OS don't support AVX.
	case 2:
	  if(support_avx())
	    return CPUNAME_PILEDRIVER;
	  else
	    return CPUNAME_REFERENCE; //OS don't support AVX.
	case 0:
	  //Steamroller. Temp use Piledriver.
	  if(support_avx())
	    return CPUNAME_PILEDRIVER;
	  else
	    return CPUNAME_REFERENCE; //OS don't support AVX.
	}
      }
      break;
    }
  }

  return CPUNAME_REFERENCE;
}