int heartbeat_container_init_context(heartbeat_container* hc,
                                     uint64_t window_size,
                                     int log_fd,
                                     heartbeat_window_complete* hwc_callback) {
  if (heartbeat_container_init(hc, window_size)) {
    return -1;
  }
  heartbeat_init(&hc->hb, window_size, hc->window_buffer, log_fd,
                 hwc_callback);
  return 0;
}
Пример #2
0
Файл: glue.c Проект: chazu/btmux
static void
load_xcode(void)
{
	FILE *fp;
	int xcode_version;
	int filemode;

	initialize_colorize();

	fprintf(stderr, "LOADING: %s\n", mudconf.hcode_db);

	fp = my_open_file(mudconf.hcode_db, "rb", &filemode);
	if (!fp) {
		fprintf(stderr, "ERROR: %s not found.\n", mudconf.hcode_db);
		return;
	}

	fread(&xcode_version, sizeof(xcode_version), 1, fp);
	if (xcode_version != XCODE_MAGIC) {
		fprintf(stderr,
		        "LOADING: %s (skipped xcodetree - version difference: 0x%08X vs 0x%08X)\n",
		         mudconf.hcode_db, xcode_version, XCODE_MAGIC);
		return;
	}

	if (!load_btdb()) {
		/* TODO: We could be more graceful about this... */
		exit(EXIT_FAILURE);
	}

	rb_walk(xcode_tree, WALK_INORDER, load_update1, fp);
	rb_walk(xcode_tree, WALK_INORDER, load_update2, NULL);
	rb_walk(xcode_tree, WALK_INORDER, load_update3, NULL);
	rb_walk(xcode_tree, WALK_INORDER, load_update4, NULL);

	/* Read in autopilot data */
	rb_walk(xcode_tree, WALK_INORDER, load_autopilot_data, NULL);

	if (!feof(fp))
		loadrepairs(fp);

	my_close_file(fp, &filemode);

	fprintf(stderr, "LOADING: %s (done)\n", mudconf.hcode_db);

#ifdef BT_ADVANCED_ECON
	load_econdb();
#endif

	heartbeat_init();
}
Пример #3
0
void gears_init(void)
{
	int i;

	for(i = 0; i < 7; i++)
		motorPD[i] = 15;

	/* Set Mystro MOTOR to outputs */
	DDRD |= 0xfc; //Port D pins 2 - 7

	/* Set Mystro DIGITAL to inputs */
	DDRB &= 0xc0; 	//Port B pins 0 - 5	
	PORTB |= 0x3f; 	//Enable pull-ups on pins 0 - 5  

	/* Initialize Mystro ANALOG inputs */
	adc_init(ADC_AVCC, ADC_8BIT); 

	/* Set interval for 10us */
	heartbeat_init(100);

	/* Turn on universal interrupts */
	sei();
}
Пример #4
0
int main(int argc, char *argv[])
{
	mmatic *mm = mmatic_create();
	mmatic *mmtmp = mmatic_create();
	struct mg *mg;
	int i;

	/*
	 * initialize and parse config
	 */

	mg = mmatic_zalloc(mm, sizeof(struct mg));
	mg->mm = mm;
	mg->mmtmp = mmtmp;
	apply_defaults(mg);

	/* get my id number from hostname */
	fetch_myid(mg);

	/* parse command line options */
	if (parse_argv(mg, argc, argv))
		return 1;

	/* parse configuration file options */
	if (mg->options.conf_file) {
		if (parse_config(mg))
			return 4;
	}

	/*
	 * config syntax looks OK, see if it is feasible
	 */

	/* initialize random number generator */
	srand48(mg->options.myid);

	/* init libevent */
	mg->evb = event_init();
	event_set_log_callback(libevent_log);

	/* init stats structures so mgstats_aggregator_add() used somewhere below works */
	mgstats_init(mg);

	/* attach to raw interfaces */
	if (mgi_init(mg, handle_packet) <= 0) {
		dbg(0, "no available interfaces found\n");
		return 2;
	}

	/* parse traffic file */
	if (parse_traffic(mg))
		return 3;

	/*
	 * all OK, prepare to start
	 */

	/* synchronize time reference point on all nodes */
	mgc_sync(mg);

	/* schedule stats writing */
	mgstats_start(mg);

	/* attach global stats */
	_stats_init(mg);

	/* schedule heartbeat and disk sync signals */
	heartbeat_init(mg);
	sync_init(mg);

	/* schedule the real work of this node: line generators */
	for (i = 1; i < TRAFFIC_LINE_MAX; i++) {
		if (!(mg->lines[i] && mg->lines[i]->my))
			continue;

		/* this will schedule first execution */
		mgs_sleep(mg->lines[i], NULL);
		mg->running++;
	}

	/* suppose last frame was received now */
	gettimeofday(&mg->last, NULL);

	/*
	 * start!
	 */

	dbg(0, "Starting\n");
	event_base_dispatch(mg->evb);

	/*******************************/

	/*
	 * cleanup after end of libevent loop
	 */

	event_base_free(mg->evb);
	mmatic_free(mg->mm);
	mmatic_free(mg->mmtmp);

	fflush(NULL);
	sync();

	return 0;
}
void *proc_diskspace_main(void *ptr) {
    struct netdata_static_thread *static_thread = (struct netdata_static_thread *)ptr;

    info("DISKSPACE thread created with task id %d", gettid());

    if(pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, NULL) != 0)
        error("DISKSPACE: Cannot set pthread cancel type to DEFERRED.");

    if(pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL) != 0)
        error("DISKSPACE: Cannot set pthread cancel state to ENABLE.");

    int vdo_cpu_netdata = config_get_boolean("plugin:proc", "netdata server resources", 1);

    int update_every = (int)config_get_number(CONFIG_SECTION_DISKSPACE, "update every", localhost->rrd_update_every);
    if(update_every < localhost->rrd_update_every)
        update_every = localhost->rrd_update_every;

    check_for_new_mountpoints_every = (int)config_get_number(CONFIG_SECTION_DISKSPACE, "check for new mount points every", check_for_new_mountpoints_every);
    if(check_for_new_mountpoints_every < update_every)
        check_for_new_mountpoints_every = update_every;

    struct rusage thread;

    usec_t duration = 0;
    usec_t step = update_every * USEC_PER_SEC;
    heartbeat_t hb;
    heartbeat_init(&hb);
    for(;;) {
        duration = heartbeat_dt_usec(&hb);
        /* usec_t hb_dt = */ heartbeat_next(&hb, step);

        if(unlikely(netdata_exit)) break;


        // --------------------------------------------------------------------------
        // this is smart enough not to reload it every time

        mountinfo_reload(0);


        // --------------------------------------------------------------------------
        // disk space metrics

        struct mountinfo *mi;
        for(mi = disk_mountinfo_root; mi; mi = mi->next) {

            if(unlikely(mi->flags & (MOUNTINFO_IS_DUMMY | MOUNTINFO_IS_BIND)))
                continue;

            do_disk_space_stats(mi, update_every);
            if(unlikely(netdata_exit)) break;
        }

        if(unlikely(netdata_exit)) break;

        dictionary_get_all(dict_mountpoints, mount_point_cleanup, NULL);

        if(vdo_cpu_netdata) {
            static RRDSET *stcpu_thread = NULL, *st_duration = NULL;
            static RRDDIM *rd_user = NULL, *rd_system = NULL, *rd_duration = NULL;

            // ----------------------------------------------------------------

            getrusage(RUSAGE_THREAD, &thread);

            if(!stcpu_thread) {
                stcpu_thread = rrdset_find_localhost("netdata.plugin_diskspace");
                if(!stcpu_thread)
                    stcpu_thread = rrdset_create_localhost(
                            "netdata"
                            , "plugin_diskspace"
                            , NULL
                            , "diskspace"
                            , NULL
                            , "NetData Disk Space Plugin CPU usage"
                            , "milliseconds/s"
                            , 132020
                            , update_every
                            , RRDSET_TYPE_STACKED
                    );

                rd_user   = rrddim_add(stcpu_thread, "user", NULL, 1, 1000, RRD_ALGORITHM_INCREMENTAL);
                rd_system = rrddim_add(stcpu_thread, "system", NULL, 1, 1000, RRD_ALGORITHM_INCREMENTAL);
            }
            else
                rrdset_next(stcpu_thread);

            rrddim_set_by_pointer(stcpu_thread, rd_user, thread.ru_utime.tv_sec * 1000000ULL + thread.ru_utime.tv_usec);
            rrddim_set_by_pointer(stcpu_thread, rd_system, thread.ru_stime.tv_sec * 1000000ULL + thread.ru_stime.tv_usec);
            rrdset_done(stcpu_thread);

            // ----------------------------------------------------------------

            if(!st_duration) {
                st_duration = rrdset_find_localhost("netdata.plugin_diskspace_dt");
                if(!st_duration)
                    st_duration = rrdset_create_localhost(
                            "netdata"
                            , "plugin_diskspace_dt"
                            , NULL
                            , "diskspace"
                            , NULL
                            , "NetData Disk Space Plugin Duration"
                            , "milliseconds/run"
                            , 132021
                            , update_every
                            , RRDSET_TYPE_AREA
                    );

                rd_duration = rrddim_add(st_duration, "duration", NULL, 1, 1000, RRD_ALGORITHM_ABSOLUTE);
            }
            else
                rrdset_next(st_duration);

            rrddim_set_by_pointer(st_duration, rd_duration, duration);
            rrdset_done(st_duration);

            // ----------------------------------------------------------------

            if(unlikely(netdata_exit)) break;
        }
    }

    info("DISKSPACE thread exiting");

    static_thread->enabled = 0;
    pthread_exit(NULL);
    return NULL;
}
Пример #6
0
void *proc_diskspace_main(void *ptr) {
    netdata_thread_cleanup_push(diskspace_main_cleanup, ptr);

    int vdo_cpu_netdata = config_get_boolean("plugin:proc", "netdata server resources", 1);

    cleanup_mount_points = config_get_boolean(CONFIG_SECTION_DISKSPACE, "remove charts of unmounted disks" , cleanup_mount_points);

    int update_every = (int)config_get_number(CONFIG_SECTION_DISKSPACE, "update every", localhost->rrd_update_every);
    if(update_every < localhost->rrd_update_every)
        update_every = localhost->rrd_update_every;

    check_for_new_mountpoints_every = (int)config_get_number(CONFIG_SECTION_DISKSPACE, "check for new mount points every", check_for_new_mountpoints_every);
    if(check_for_new_mountpoints_every < update_every)
        check_for_new_mountpoints_every = update_every;

    struct rusage thread;

    usec_t duration = 0;
    usec_t step = update_every * USEC_PER_SEC;
    heartbeat_t hb;
    heartbeat_init(&hb);
    while(!netdata_exit) {
        duration = heartbeat_dt_usec(&hb);
        /* usec_t hb_dt = */ heartbeat_next(&hb, step);

        if(unlikely(netdata_exit)) break;


        // --------------------------------------------------------------------------
        // this is smart enough not to reload it every time

        mountinfo_reload(0);


        // --------------------------------------------------------------------------
        // disk space metrics

        struct mountinfo *mi;
        for(mi = disk_mountinfo_root; mi; mi = mi->next) {

            if(unlikely(mi->flags & (MOUNTINFO_IS_DUMMY | MOUNTINFO_IS_BIND)))
                continue;

            do_disk_space_stats(mi, update_every);
            if(unlikely(netdata_exit)) break;
        }

        if(unlikely(netdata_exit)) break;

        if(dict_mountpoints)
            dictionary_get_all(dict_mountpoints, mount_point_cleanup, NULL);

        if(vdo_cpu_netdata) {
            static RRDSET *stcpu_thread = NULL, *st_duration = NULL;
            static RRDDIM *rd_user = NULL, *rd_system = NULL, *rd_duration = NULL;

            // ----------------------------------------------------------------

            getrusage(RUSAGE_THREAD, &thread);

            if(unlikely(!stcpu_thread)) {
                stcpu_thread = rrdset_create_localhost(
                        "netdata"
                        , "plugin_diskspace"
                        , NULL
                        , "diskspace"
                        , NULL
                        , "NetData Disk Space Plugin CPU usage"
                        , "milliseconds/s"
                        , "diskspace"
                        , NULL
                        , 132020
                        , update_every
                        , RRDSET_TYPE_STACKED
                );

                rd_user   = rrddim_add(stcpu_thread, "user", NULL, 1, 1000, RRD_ALGORITHM_INCREMENTAL);
                rd_system = rrddim_add(stcpu_thread, "system", NULL, 1, 1000, RRD_ALGORITHM_INCREMENTAL);
            }
            else
                rrdset_next(stcpu_thread);

            rrddim_set_by_pointer(stcpu_thread, rd_user, thread.ru_utime.tv_sec * 1000000ULL + thread.ru_utime.tv_usec);
            rrddim_set_by_pointer(stcpu_thread, rd_system, thread.ru_stime.tv_sec * 1000000ULL + thread.ru_stime.tv_usec);
            rrdset_done(stcpu_thread);

            // ----------------------------------------------------------------

            if(unlikely(!st_duration)) {
                st_duration = rrdset_create_localhost(
                        "netdata"
                        , "plugin_diskspace_dt"
                        , NULL
                        , "diskspace"
                        , NULL
                        , "NetData Disk Space Plugin Duration"
                        , "milliseconds/run"
                        , "diskspace"
                        , NULL
                        , 132021
                        , update_every
                        , RRDSET_TYPE_AREA
                );

                rd_duration = rrddim_add(st_duration, "duration", NULL, 1, 1000, RRD_ALGORITHM_ABSOLUTE);
            }
            else
                rrdset_next(st_duration);

            rrddim_set_by_pointer(st_duration, rd_duration, duration);
            rrdset_done(st_duration);

            // ----------------------------------------------------------------

            if(unlikely(netdata_exit)) break;
        }
    }

    netdata_thread_cleanup_pop(1);
    return NULL;
}
Пример #7
0
void *backends_main(void *ptr) {
    netdata_thread_cleanup_push(backends_main_cleanup, ptr);

    int default_port = 0;
    int sock = -1;
    BUFFER *b = buffer_create(1), *response = buffer_create(1);
    int (*backend_request_formatter)(BUFFER *, const char *, RRDHOST *, const char *, RRDSET *, RRDDIM *, time_t, time_t, uint32_t) = NULL;
    int (*backend_response_checker)(BUFFER *) = NULL;

    // ------------------------------------------------------------------------
    // collect configuration options

    struct timeval timeout = {
            .tv_sec = 0,
            .tv_usec = 0
    };
    int enabled             = config_get_boolean(CONFIG_SECTION_BACKEND, "enabled", 0);
    const char *source      = config_get(CONFIG_SECTION_BACKEND, "data source", "average");
    const char *type        = config_get(CONFIG_SECTION_BACKEND, "type", "graphite");
    const char *destination = config_get(CONFIG_SECTION_BACKEND, "destination", "localhost");
    backend_prefix          = config_get(CONFIG_SECTION_BACKEND, "prefix", "netdata");
    const char *hostname    = config_get(CONFIG_SECTION_BACKEND, "hostname", localhost->hostname);
    backend_update_every    = (int)config_get_number(CONFIG_SECTION_BACKEND, "update every", backend_update_every);
    int buffer_on_failures  = (int)config_get_number(CONFIG_SECTION_BACKEND, "buffer on failures", 10);
    long timeoutms          = config_get_number(CONFIG_SECTION_BACKEND, "timeout ms", backend_update_every * 2 * 1000);
    backend_send_names      = config_get_boolean(CONFIG_SECTION_BACKEND, "send names instead of ids", backend_send_names);

    charts_pattern = simple_pattern_create(config_get(CONFIG_SECTION_BACKEND, "send charts matching", "*"), NULL, SIMPLE_PATTERN_EXACT);
    hosts_pattern = simple_pattern_create(config_get(CONFIG_SECTION_BACKEND, "send hosts matching", "localhost *"), NULL, SIMPLE_PATTERN_EXACT);


    // ------------------------------------------------------------------------
    // validate configuration options
    // and prepare for sending data to our backend

    backend_options = backend_parse_data_source(source, backend_options);

    if(timeoutms < 1) {
        error("BACKEND: invalid timeout %ld ms given. Assuming %d ms.", timeoutms, backend_update_every * 2 * 1000);
        timeoutms = backend_update_every * 2 * 1000;
    }
    timeout.tv_sec  = (timeoutms * 1000) / 1000000;
    timeout.tv_usec = (timeoutms * 1000) % 1000000;

    if(!enabled || backend_update_every < 1)
        goto cleanup;

    // ------------------------------------------------------------------------
    // select the backend type

    if(!strcmp(type, "graphite") || !strcmp(type, "graphite:plaintext")) {

        default_port = 2003;
        backend_response_checker = process_graphite_response;

        if((backend_options & BACKEND_SOURCE_BITS) == BACKEND_SOURCE_DATA_AS_COLLECTED)
            backend_request_formatter = format_dimension_collected_graphite_plaintext;
        else
            backend_request_formatter = format_dimension_stored_graphite_plaintext;

    }
    else if(!strcmp(type, "opentsdb") || !strcmp(type, "opentsdb:telnet")) {

        default_port = 4242;
        backend_response_checker = process_opentsdb_response;

        if((backend_options & BACKEND_SOURCE_BITS) == BACKEND_SOURCE_DATA_AS_COLLECTED)
            backend_request_formatter = format_dimension_collected_opentsdb_telnet;
        else
            backend_request_formatter = format_dimension_stored_opentsdb_telnet;

    }
    else if (!strcmp(type, "json") || !strcmp(type, "json:plaintext")) {

        default_port = 5448;
        backend_response_checker = process_json_response;

        if ((backend_options & BACKEND_SOURCE_BITS) == BACKEND_SOURCE_DATA_AS_COLLECTED)
            backend_request_formatter = format_dimension_collected_json_plaintext;
        else
            backend_request_formatter = format_dimension_stored_json_plaintext;

    }
    else {
        error("BACKEND: Unknown backend type '%s'", type);
        goto cleanup;
    }

    if(backend_request_formatter == NULL || backend_response_checker == NULL) {
        error("BACKEND: backend is misconfigured - disabling it.");
        goto cleanup;
    }


    // ------------------------------------------------------------------------
    // prepare the charts for monitoring the backend operation

    struct rusage thread;

    collected_number
            chart_buffered_metrics = 0,
            chart_lost_metrics = 0,
            chart_sent_metrics = 0,
            chart_buffered_bytes = 0,
            chart_received_bytes = 0,
            chart_sent_bytes = 0,
            chart_receptions = 0,
            chart_transmission_successes = 0,
            chart_transmission_failures = 0,
            chart_data_lost_events = 0,
            chart_lost_bytes = 0,
            chart_backend_reconnects = 0,
            chart_backend_latency = 0;

    RRDSET *chart_metrics = rrdset_create_localhost("netdata", "backend_metrics", NULL, "backend", NULL, "Netdata Buffered Metrics", "metrics", "backends", NULL, 130600, backend_update_every, RRDSET_TYPE_LINE);
    rrddim_add(chart_metrics, "buffered", NULL,  1, 1, RRD_ALGORITHM_ABSOLUTE);
    rrddim_add(chart_metrics, "lost",     NULL,  1, 1, RRD_ALGORITHM_ABSOLUTE);
    rrddim_add(chart_metrics, "sent",     NULL,  1, 1, RRD_ALGORITHM_ABSOLUTE);

    RRDSET *chart_bytes = rrdset_create_localhost("netdata", "backend_bytes", NULL, "backend", NULL, "Netdata Backend Data Size", "KB", "backends", NULL, 130610, backend_update_every, RRDSET_TYPE_AREA);
    rrddim_add(chart_bytes, "buffered", NULL, 1, 1024, RRD_ALGORITHM_ABSOLUTE);
    rrddim_add(chart_bytes, "lost",     NULL, 1, 1024, RRD_ALGORITHM_ABSOLUTE);
    rrddim_add(chart_bytes, "sent",     NULL, 1, 1024, RRD_ALGORITHM_ABSOLUTE);
    rrddim_add(chart_bytes, "received", NULL, 1, 1024, RRD_ALGORITHM_ABSOLUTE);

    RRDSET *chart_ops = rrdset_create_localhost("netdata", "backend_ops", NULL, "backend", NULL, "Netdata Backend Operations", "operations", "backends", NULL, 130630, backend_update_every, RRDSET_TYPE_LINE);
    rrddim_add(chart_ops, "write",     NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
    rrddim_add(chart_ops, "discard",   NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
    rrddim_add(chart_ops, "reconnect", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
    rrddim_add(chart_ops, "failure",   NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
    rrddim_add(chart_ops, "read",      NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);

    /*
     * this is misleading - we can only measure the time we need to send data
     * this time is not related to the time required for the data to travel to
     * the backend database and the time that server needed to process them
     *
     * issue #1432 and https://www.softlab.ntua.gr/facilities/documentation/unix/unix-socket-faq/unix-socket-faq-2.html
     *
    RRDSET *chart_latency = rrdset_create_localhost("netdata", "backend_latency", NULL, "backend", NULL, "Netdata Backend Latency", "ms", "backends", NULL, 130620, backend_update_every, RRDSET_TYPE_AREA);
    rrddim_add(chart_latency, "latency",   NULL,  1, 1000, RRD_ALGORITHM_ABSOLUTE);
    */

    RRDSET *chart_rusage = rrdset_create_localhost("netdata", "backend_thread_cpu", NULL, "backend", NULL, "NetData Backend Thread CPU usage", "milliseconds/s", "backends", NULL, 130630, backend_update_every, RRDSET_TYPE_STACKED);
    rrddim_add(chart_rusage, "user",   NULL, 1, 1000, RRD_ALGORITHM_INCREMENTAL);
    rrddim_add(chart_rusage, "system", NULL, 1, 1000, RRD_ALGORITHM_INCREMENTAL);


    // ------------------------------------------------------------------------
    // prepare the backend main loop

    info("BACKEND: configured ('%s' on '%s' sending '%s' data, every %d seconds, as host '%s', with prefix '%s')", type, destination, source, backend_update_every, hostname, backend_prefix);

    usec_t step_ut = backend_update_every * USEC_PER_SEC;
    time_t after = now_realtime_sec();
    int failures = 0;
    heartbeat_t hb;
    heartbeat_init(&hb);

    while(!netdata_exit) {

        // ------------------------------------------------------------------------
        // Wait for the next iteration point.

        heartbeat_next(&hb, step_ut);
        time_t before = now_realtime_sec();
        debug(D_BACKEND, "BACKEND: preparing buffer for timeframe %lu to %lu", (unsigned long)after, (unsigned long)before);

        // ------------------------------------------------------------------------
        // add to the buffer the data we need to send to the backend

        netdata_thread_disable_cancelability();

        size_t count_hosts = 0;
        size_t count_charts_total = 0;
        size_t count_dims_total = 0;

        rrd_rdlock();
        RRDHOST *host;
        rrdhost_foreach_read(host) {
            if(unlikely(!rrdhost_flag_check(host, RRDHOST_FLAG_BACKEND_SEND|RRDHOST_FLAG_BACKEND_DONT_SEND))) {
                char *name = (host == localhost)?"localhost":host->hostname;
                if (!hosts_pattern || simple_pattern_matches(hosts_pattern, name)) {
                    rrdhost_flag_set(host, RRDHOST_FLAG_BACKEND_SEND);
                    info("enabled backend for host '%s'", name);
                }
                else {
                    rrdhost_flag_set(host, RRDHOST_FLAG_BACKEND_DONT_SEND);
                    info("disabled backend for host '%s'", name);
                }
            }

            if(unlikely(!rrdhost_flag_check(host, RRDHOST_FLAG_BACKEND_SEND)))
                continue;

            rrdhost_rdlock(host);

            count_hosts++;
            size_t count_charts = 0;
            size_t count_dims = 0;
            size_t count_dims_skipped = 0;

            const char *__hostname = (host == localhost)?hostname:host->hostname;

            RRDSET *st;
            rrdset_foreach_read(st, host) {
                if(likely(backends_can_send_rrdset(backend_options, st))) {
                    rrdset_rdlock(st);

                    count_charts++;

                    RRDDIM *rd;
                    rrddim_foreach_read(rd, st) {
                        if (likely(rd->last_collected_time.tv_sec >= after)) {
                            chart_buffered_metrics += backend_request_formatter(b, backend_prefix, host, __hostname, st, rd, after, before, backend_options);
                            count_dims++;
                        }
                        else {
                            debug(D_BACKEND, "BACKEND: not sending dimension '%s' of chart '%s' from host '%s', its last data collection (%lu) is not within our timeframe (%lu to %lu)", rd->id, st->id, __hostname, (unsigned long)rd->last_collected_time.tv_sec, (unsigned long)after, (unsigned long)before);
                            count_dims_skipped++;
                        }
                    }

                    rrdset_unlock(st);
                }
            }

            debug(D_BACKEND, "BACKEND: sending host '%s', metrics of %zu dimensions, of %zu charts. Skipped %zu dimensions.", __hostname, count_dims, count_charts, count_dims_skipped);
            count_charts_total += count_charts;
            count_dims_total += count_dims;

            rrdhost_unlock(host);
        }
        rrd_unlock();

        netdata_thread_enable_cancelability();

        debug(D_BACKEND, "BACKEND: buffer has %zu bytes, added metrics for %zu dimensions, of %zu charts, from %zu hosts", buffer_strlen(b), count_dims_total, count_charts_total, count_hosts);

        // ------------------------------------------------------------------------

        chart_buffered_bytes = (collected_number)buffer_strlen(b);

        // reset the monitoring chart counters
        chart_received_bytes =
        chart_sent_bytes =
        chart_sent_metrics =
        chart_lost_metrics =
        chart_transmission_successes =
        chart_transmission_failures =
        chart_data_lost_events =
        chart_lost_bytes =
        chart_backend_reconnects =
        chart_backend_latency = 0;

        if(unlikely(netdata_exit)) break;

        //fprintf(stderr, "\nBACKEND BEGIN:\n%s\nBACKEND END\n", buffer_tostring(b)); // FIXME
        //fprintf(stderr, "after = %lu, before = %lu\n", after, before);

        // prepare for the next iteration
        // to add incrementally data to buffer
        after = before;

        // ------------------------------------------------------------------------
        // if we are connected, receive a response, without blocking

        if(likely(sock != -1)) {
            errno = 0;

            // loop through to collect all data
            while(sock != -1 && errno != EWOULDBLOCK) {
                buffer_need_bytes(response, 4096);

                ssize_t r = recv(sock, &response->buffer[response->len], response->size - response->len, MSG_DONTWAIT);
                if(likely(r > 0)) {
                    // we received some data
                    response->len += r;
                    chart_received_bytes += r;
                    chart_receptions++;
                }
                else if(r == 0) {
                    error("BACKEND: '%s' closed the socket", destination);
                    close(sock);
                    sock = -1;
                }
                else {
                    // failed to receive data
                    if(errno != EAGAIN && errno != EWOULDBLOCK) {
                        error("BACKEND: cannot receive data from backend '%s'.", destination);
                    }
                }
            }

            // if we received data, process them
            if(buffer_strlen(response))
                backend_response_checker(response);
        }

        // ------------------------------------------------------------------------
        // if we are not connected, connect to a backend server

        if(unlikely(sock == -1)) {
            usec_t start_ut = now_monotonic_usec();
            size_t reconnects = 0;

            sock = connect_to_one_of(destination, default_port, &timeout, &reconnects, NULL, 0);

            chart_backend_reconnects += reconnects;
            chart_backend_latency += now_monotonic_usec() - start_ut;
        }

        if(unlikely(netdata_exit)) break;

        // ------------------------------------------------------------------------
        // if we are connected, send our buffer to the backend server

        if(likely(sock != -1)) {
            size_t len = buffer_strlen(b);
            usec_t start_ut = now_monotonic_usec();
            int flags = 0;
#ifdef MSG_NOSIGNAL
            flags += MSG_NOSIGNAL;
#endif

            ssize_t written = send(sock, buffer_tostring(b), len, flags);
            chart_backend_latency += now_monotonic_usec() - start_ut;
            if(written != -1 && (size_t)written == len) {
                // we sent the data successfully
                chart_transmission_successes++;
                chart_sent_bytes += written;
                chart_sent_metrics = chart_buffered_metrics;

                // reset the failures count
                failures = 0;

                // empty the buffer
                buffer_flush(b);
            }
            else {
                // oops! we couldn't send (all or some of the) data
                error("BACKEND: failed to write data to database backend '%s'. Willing to write %zu bytes, wrote %zd bytes. Will re-connect.", destination, len, written);
                chart_transmission_failures++;

                if(written != -1)
                    chart_sent_bytes += written;

                // increment the counter we check for data loss
                failures++;

                // close the socket - we will re-open it next time
                close(sock);
                sock = -1;
            }
        }
        else {
            error("BACKEND: failed to update database backend '%s'", destination);
            chart_transmission_failures++;

            // increment the counter we check for data loss
            failures++;
        }

        if(failures > buffer_on_failures) {
            // too bad! we are going to lose data
            chart_lost_bytes += buffer_strlen(b);
            error("BACKEND: reached %d backend failures. Flushing buffers to protect this host - this results in data loss on back-end server '%s'", failures, destination);
            buffer_flush(b);
            failures = 0;
            chart_data_lost_events++;
            chart_lost_metrics = chart_buffered_metrics;
        }

        if(unlikely(netdata_exit)) break;

        // ------------------------------------------------------------------------
        // update the monitoring charts

        if(likely(chart_ops->counter_done)) rrdset_next(chart_ops);
        rrddim_set(chart_ops, "read",         chart_receptions);
        rrddim_set(chart_ops, "write",        chart_transmission_successes);
        rrddim_set(chart_ops, "discard",      chart_data_lost_events);
        rrddim_set(chart_ops, "failure",      chart_transmission_failures);
        rrddim_set(chart_ops, "reconnect",    chart_backend_reconnects);
        rrdset_done(chart_ops);

        if(likely(chart_metrics->counter_done)) rrdset_next(chart_metrics);
        rrddim_set(chart_metrics, "buffered", chart_buffered_metrics);
        rrddim_set(chart_metrics, "lost",     chart_lost_metrics);
        rrddim_set(chart_metrics, "sent",     chart_sent_metrics);
        rrdset_done(chart_metrics);

        if(likely(chart_bytes->counter_done)) rrdset_next(chart_bytes);
        rrddim_set(chart_bytes, "buffered",   chart_buffered_bytes);
        rrddim_set(chart_bytes, "lost",       chart_lost_bytes);
        rrddim_set(chart_bytes, "sent",       chart_sent_bytes);
        rrddim_set(chart_bytes, "received",   chart_received_bytes);
        rrdset_done(chart_bytes);

        /*
        if(likely(chart_latency->counter_done)) rrdset_next(chart_latency);
        rrddim_set(chart_latency, "latency",  chart_backend_latency);
        rrdset_done(chart_latency);
        */

        getrusage(RUSAGE_THREAD, &thread);
        if(likely(chart_rusage->counter_done)) rrdset_next(chart_rusage);
        rrddim_set(chart_rusage, "user",   thread.ru_utime.tv_sec * 1000000ULL + thread.ru_utime.tv_usec);
        rrddim_set(chart_rusage, "system", thread.ru_stime.tv_sec * 1000000ULL + thread.ru_stime.tv_usec);
        rrdset_done(chart_rusage);

        if(likely(buffer_strlen(b) == 0))
            chart_buffered_metrics = 0;

        if(unlikely(netdata_exit)) break;
    }

cleanup:
    if(sock != -1)
        close(sock);

    buffer_free(b);
    buffer_free(response);

    netdata_thread_cleanup_pop(1);
    return NULL;
}
Пример #8
0
int main (void)
{
    // Configure pins to the default states.
    config_pin_defaults();

    // Initialize the watchdog module.
    watchdog_init();

    // First, initialize registers that control servo operation.
    registers_init();

#if PWM_STD_ENABLED || PWM_ENH_ENABLED
    // Initialize the PWM module.
    pwm_init();
#endif

#if STEP_ENABLED
    // Initialise the stepper motor
    step_init();
#endif
    
    // Initialize the ADC module.
    adc_init();

    // Initialise the Heartbeart
    heartbeat_init();

    // Initialize the PID algorithm module.
    pid_init();

#if CURVE_MOTION_ENABLED
    // Initialize curve motion module.
    motion_init();
#endif

    // Initialize the power module.
    power_init();

#if PULSE_CONTROL_ENABLED
    pulse_control_init();
#endif

#if BACKEMF_ENABLED
    // Initialise the back emf module
    backemf_init();
#endif

#if ALERT_ENABLED
    //initialise the alert registers
    alert_init();
#endif

    // Initialize the TWI slave module.
    twi_slave_init(banks_read_byte(POS_PID_BANK, REG_TWI_ADDRESS));

    // Finally initialize the timer.
    timer_set(0);

    // Enable interrupts.
    sei();

    // Trigger the adc sampling hardware
    adc_start(ADC_CHANNEL_POSITION);

    // Wait until initial position value is ready.
    while (!adc_position_value_is_ready());

#if CURVE_MOTION_ENABLED
    // Reset the curve motion with the current position of the servo.
    motion_reset(adc_get_position_value());
#endif

    // Set the initial seek position and velocity.
    registers_write_word(REG_SEEK_POSITION_HI, REG_SEEK_POSITION_LO, adc_get_position_value());
    registers_write_word(REG_SEEK_VELOCITY_HI, REG_SEEK_VELOCITY_LO, 0);

    // XXX Enable PWM and writing.  I do this for now to make development and
    // XXX tuning a bit easier.  Constantly manually setting these values to
    // XXX turn the servo on and write the gain values get's to be a pain.
#if PWM_STD_ENABLED || PWM_ENH_ENABLED
    pwm_enable();
#endif
#if STEP_ENABLED
    step_enable();
#endif

    registers_write_enable();

    // This is the main processing loop for the servo.  It basically looks
    // for new position, power or TWI commands to be processed.
    for (;;)
    {
        static uint8_t emf_motor_is_coasting = 0;

        // Is the system heartbeat ready?
        if (heartbeat_is_ready())
        {
            static int16_t last_seek_position;
            static int16_t wait_seek_position;
            static int16_t new_seek_position;

            // Clear the heartbeat flag
            heartbeat_value_clear_ready();

#if PULSE_CONTROL_ENABLED
            // Give pulse control a chance to update the seek position.
            pulse_control_update();
#endif

#if CURVE_MOTION_ENABLED
            // Give the motion curve a chance to update the seek position and velocity.
            motion_next(10);
#endif

            // General call support
            // Check to see if we have the wait flag enabled. If so save the new position, and write in the
            // old position until we get the move command
            if (general_call_enabled()) 
            {
                //we need to wait for the go command before moving
                if (general_call_wait())
                {
                    // store the new position, but let the servo lock to the last seek position
                    wait_seek_position = (int16_t) registers_read_word(REG_SEEK_POSITION_HI, REG_SEEK_POSITION_LO);
                    if (wait_seek_position != last_seek_position) // do we have a new position?
                    {
                        new_seek_position = wait_seek_position;
                        registers_write_word(REG_SEEK_POSITION_HI, REG_SEEK_POSITION_LO, last_seek_position);
                    }
                }
                last_seek_position = registers_read_word(REG_SEEK_POSITION_HI, REG_SEEK_POSITION_LO);

                //check to make sure that we can start the move.
                if (general_call_start() || 
                    ( registers_read_byte(REG_GENERAL_CALL_GROUP_START) == banks_read_byte(CONFIG_BANK, REG_GENERAL_CALL_GROUP)))
                {
                    // write the new position with the previously saved position
                    registers_write_word(REG_SEEK_POSITION_HI, REG_SEEK_POSITION_LO, new_seek_position);  
                    general_call_start_wait_reset();  // reset the wait flag
                    general_call_start_reset();  // reset the start flag
                }
            }

#if BACKEMF_ENABLED
            // Quick and dirty check to see if pwm is active. This is done to make sure the motor doesn't
            // whine in the audible range while idling.
            uint8_t pwm_a = registers_read_byte(REG_PWM_DIRA);
            uint8_t pwm_b = registers_read_byte(REG_PWM_DIRB);
            if (pwm_a || pwm_b)
            {
                // Disable PWM
                backemf_coast_motor();
                emf_motor_is_coasting = 1;
            }
            else
            {
                // reset the back EMF value to 0
                banks_write_word(INFORMATION_BANK, REG_BACKEMF_HI, REG_BACKEMF_LO, 0);
                emf_motor_is_coasting = 0;
            }
#endif

#if ADC_ENABLED
            // Trigger the adc sampling hardware. This triggers the position and temperature sample
            adc_start(ADC_FIRST_CHANNEL);
#endif

        }
    
    
        // Wait for the samples to complete
#if TEMPERATURE_ENABLED
        if (adc_temperature_value_is_ready())
        {
            // Save temperature value to registers
            registers_write_word(REG_TEMPERATURE_HI, REG_TEMPERATURE_LO, (uint16_t)adc_get_temperature_value());
        }
#endif
#if CURRENT_ENABLED
        if (adc_power_value_is_ready())
        {

            // Get the new power value.
            uint16_t power = adc_get_power_value();

            // Update the power value for reporting.
            power_update(power);
        }
#endif
#if ADC_POSITION_ENABLED
        if (adc_position_value_is_ready())
        {
            int16_t position;
            // Get the new position value from the ADC module.
            position = (int16_t) adc_get_position_value();
#else
        if (position_value_is_ready())
        {
            int16_t position;
            // Get the position value from an external module.
            position = (int16_t) get_position_value();
#endif
            int16_t pwm;
#if BACKEMF_ENABLED
            if (emf_motor_is_coasting == 1)
            {
                uint8_t pwm_a = registers_read_byte(REG_PWM_DIRA);
                uint8_t pwm_b = registers_read_byte(REG_PWM_DIRB);

                // Quick and dirty check to see if pwm is active
                if (pwm_a || pwm_b)
                {
                    // Get the backemf sample.
                    backemf_get_sample();

                    // Turn the motor back on
                    backemf_restore_motor();
		    emf_motor_is_coasting = 0;
                }
            }
#endif

            // Call the PID algorithm module to get a new PWM value.
            pwm = pid_position_to_pwm(position);

#if ALERT_ENABLED
            // Update the alert status registers and do any throttling
            alert_check();
#endif

            // Allow any alerts to modify the PWM value.
            pwm = alert_pwm_throttle(pwm);

#if PWM_STD_ENABLED || PWM_ENH_ENABLED
            // Update the servo movement as indicated by the PWM value.
            // Sanity checks are performed against the position value.
            pwm_update(position, pwm);
#endif

#if STEP_ENABLED
            // Update the stepper motor as indicated by the PWM value.
            // Sanity checks are performed against the position value.
            step_update(position, pwm);
#endif
        }
    
        // Was a command recieved?
        if (twi_data_in_receive_buffer())
        {
            // Handle any TWI command.
            handle_twi_command();
        }

        // Update the bank register operations
        banks_update_registers();

#if MAIN_MOTION_TEST_ENABLED
        // This code is in place for having the servo drive itself between
        // two positions to aid in the servo tuning process.  This code
        // should normally be disabled in config.h.
#if CURVE_MOTION_ENABLED
        if (motion_time_left() == 0)
        {
            registers_write_word(REG_CURVE_DELTA_HI, REG_CURVE_DELTA_LO, 2000);
            registers_write_word(REG_CURVE_POSITION_HI, REG_CURVE_POSITION_LO, 0x0100);
            motion_append();
            registers_write_word(REG_CURVE_DELTA_HI, REG_CURVE_DELTA_LO, 1000);
            registers_write_word(REG_CURVE_POSITION_HI, REG_CURVE_POSITION_LO, 0x0300);
            motion_append();
            registers_write_word(REG_CURVE_DELTA_HI, REG_CURVE_DELTA_LO, 2000);
            registers_write_word(REG_CURVE_POSITION_HI, REG_CURVE_POSITION_LO, 0x0300);
            motion_append();
            registers_write_word(REG_CURVE_DELTA_HI, REG_CURVE_DELTA_LO, 1000);
            registers_write_word(REG_CURVE_POSITION_HI, REG_CURVE_POSITION_LO, 0x0100);
            motion_append();
        }
#else
        {
            // Get the timer.
            uint16_t timer = timer_get();

            // Reset the timer if greater than 800.
            if (timer > 800) timer_set(0);

            // Look for specific events.
            if (timer == 0)
            {
                registers_write_word(REG_SEEK_POSITION_HI, REG_SEEK_POSITION_LO, 0x0100);
            }
            else if (timer == 400)
            {
                registers_write_word(REG_SEEK_POSITION_HI, REG_SEEK_POSITION_LO, 0x0300);
            }
        }
#endif
#endif
    }

    return 0;
}