void L3GD20::measure() { #if L3GD20_USE_DRDY // if the gyro doesn't have any data ready then re-schedule // for 100 microseconds later. This ensures we don't double // read a value and then miss the next value if (_bus == PX4_SPI_BUS_SENSORS && stm32_gpioread(GPIO_EXTI_GYRO_DRDY) == 0) { perf_count(_reschedules); hrt_call_delay(&_call, 100); return; } #endif /* status register and data as read back from the device */ #pragma pack(push, 1) struct { uint8_t cmd; uint8_t temp; uint8_t status; int16_t x; int16_t y; int16_t z; } raw_report; #pragma pack(pop) gyro_report report; /* start the performance counter */ perf_begin(_sample_perf); /* fetch data from the sensor */ memset(&raw_report, 0, sizeof(raw_report)); raw_report.cmd = ADDR_OUT_TEMP | DIR_READ | ADDR_INCREMENT; transfer((uint8_t *)&raw_report, (uint8_t *)&raw_report, sizeof(raw_report)); #if L3GD20_USE_DRDY if ((raw_report.status & 0xF) != 0xF) { /* we waited for DRDY, but did not see DRDY on all axes when we captured. That means a transfer error of some sort */ perf_count(_errors); return; } #endif /* * 1) Scale raw value to SI units using scaling from datasheet. * 2) Subtract static offset (in SI units) * 3) Scale the statically calibrated values with a linear * dynamically obtained factor * * Note: the static sensor offset is the number the sensor outputs * at a nominally 'zero' input. Therefore the offset has to * be subtracted. * * Example: A gyro outputs a value of 74 at zero angular rate * the offset is 74 from the origin and subtracting * 74 from all measurements centers them around zero. */ report.timestamp = hrt_absolute_time(); report.error_count = 0; // not recorded switch (_orientation) { case SENSOR_BOARD_ROTATION_000_DEG: /* keep axes in place */ report.x_raw = raw_report.x; report.y_raw = raw_report.y; break; case SENSOR_BOARD_ROTATION_090_DEG: /* swap x and y */ report.x_raw = raw_report.y; report.y_raw = raw_report.x; break; case SENSOR_BOARD_ROTATION_180_DEG: /* swap x and y and negate both */ report.x_raw = ((raw_report.x == -32768) ? 32767 : -raw_report.x); report.y_raw = ((raw_report.y == -32768) ? 32767 : -raw_report.y); break; case SENSOR_BOARD_ROTATION_270_DEG: /* swap x and y and negate y */ report.x_raw = raw_report.y; report.y_raw = ((raw_report.x == -32768) ? 32767 : -raw_report.x); break; } report.z_raw = raw_report.z; report.x = ((report.x_raw * _gyro_range_scale) - _gyro_scale.x_offset) * _gyro_scale.x_scale; report.y = ((report.y_raw * _gyro_range_scale) - _gyro_scale.y_offset) * _gyro_scale.y_scale; report.z = ((report.z_raw * _gyro_range_scale) - _gyro_scale.z_offset) * _gyro_scale.z_scale; report.x = _gyro_filter_x.apply(report.x); report.y = _gyro_filter_y.apply(report.y); report.z = _gyro_filter_z.apply(report.z); // apply user specified rotation rotate_3f(_rotation, report.x, report.y, report.z); report.scaling = _gyro_range_scale; report.range_rad_s = _gyro_range_rad_s; _reports->force(&report); /* notify anyone waiting for data */ poll_notify(POLLIN); /* publish for subscribers */ if (!(_pub_blocked)) { /* publish it */ orb_publish(_orb_id, _gyro_topic, &report); } _read++; /* stop the perf counter */ perf_end(_sample_perf); }
void LSM303D::measure() { // if the accel doesn't have any data ready then re-schedule // for 100 microseconds later. This ensures we don't double // read a value and then miss the next value if (stm32_gpioread(GPIO_EXTI_ACCEL_DRDY) == 0) { perf_count(_accel_reschedules); hrt_call_delay(&_accel_call, 100); return; } if (read_reg(ADDR_CTRL_REG1) != _reg1_expected) { perf_count(_reg1_resets); reset(); return; } /* status register and data as read back from the device */ #pragma pack(push, 1) struct { uint8_t cmd; uint8_t status; int16_t x; int16_t y; int16_t z; } raw_accel_report; #pragma pack(pop) accel_report accel_report; /* start the performance counter */ perf_begin(_accel_sample_perf); /* fetch data from the sensor */ memset(&raw_accel_report, 0, sizeof(raw_accel_report)); raw_accel_report.cmd = ADDR_STATUS_A | DIR_READ | ADDR_INCREMENT; transfer((uint8_t *)&raw_accel_report, (uint8_t *)&raw_accel_report, sizeof(raw_accel_report)); /* * 1) Scale raw value to SI units using scaling from datasheet. * 2) Subtract static offset (in SI units) * 3) Scale the statically calibrated values with a linear * dynamically obtained factor * * Note: the static sensor offset is the number the sensor outputs * at a nominally 'zero' input. Therefore the offset has to * be subtracted. * * Example: A gyro outputs a value of 74 at zero angular rate * the offset is 74 from the origin and subtracting * 74 from all measurements centers them around zero. */ accel_report.timestamp = hrt_absolute_time(); accel_report.error_count = 0; // not reported accel_report.x_raw = raw_accel_report.x; accel_report.y_raw = raw_accel_report.y; accel_report.z_raw = raw_accel_report.z; float x_in_new = ((accel_report.x_raw * _accel_range_scale) - _accel_scale.x_offset) * _accel_scale.x_scale; float y_in_new = ((accel_report.y_raw * _accel_range_scale) - _accel_scale.y_offset) * _accel_scale.y_scale; float z_in_new = ((accel_report.z_raw * _accel_range_scale) - _accel_scale.z_offset) * _accel_scale.z_scale; accel_report.x = _accel_filter_x.apply(x_in_new); accel_report.y = _accel_filter_y.apply(y_in_new); accel_report.z = _accel_filter_z.apply(z_in_new); accel_report.scaling = _accel_range_scale; accel_report.range_m_s2 = _accel_range_m_s2; _accel_reports->force(&accel_report); /* notify anyone waiting for data */ poll_notify(POLLIN); if (_accel_topic > 0 && !(_pub_blocked)) { /* publish it */ orb_publish(ORB_ID(sensor_accel), _accel_topic, &accel_report); } _accel_read++; /* stop the perf counter */ perf_end(_accel_sample_perf); }