Пример #1
0
/* Is address valid for reading? */
static int valid_address(struct KBacktraceIterator *kbt, VirtualAddress address)
{
	HV_PTE *l1_pgtable = kbt->pgtable;
	HV_PTE *l2_pgtable;
	unsigned long pfn;
	HV_PTE pte;
	struct page *page;

	if (l1_pgtable == NULL)
		return 0;	/* can't read user space in other tasks */

	pte = l1_pgtable[HV_L1_INDEX(address)];
	if (!hv_pte_get_present(pte))
		return 0;
	pfn = hv_pte_get_pfn(pte);
	if (pte_huge(pte)) {
		if (!pfn_valid(pfn)) {
			pr_err("huge page has bad pfn %#lx\n", pfn);
			return 0;
		}
		return hv_pte_get_present(pte) && hv_pte_get_readable(pte);
	}

	page = pfn_to_page(pfn);
	if (PageHighMem(page)) {
		pr_err("L2 page table not in LOWMEM (%#llx)\n",
		       HV_PFN_TO_CPA(pfn));
		return 0;
	}
	l2_pgtable = (HV_PTE *)pfn_to_kaddr(pfn);
	pte = l2_pgtable[HV_L2_INDEX(address)];
	return hv_pte_get_present(pte) && hv_pte_get_readable(pte);
}
Пример #2
0
/* Is address valid for reading? */
static int valid_address(struct KBacktraceIterator *kbt, unsigned long address)
{
	HV_PTE *l1_pgtable = kbt->pgtable;
	HV_PTE *l2_pgtable;
	unsigned long pfn;
	HV_PTE pte;
	struct page *page;

	if (l1_pgtable == NULL)
		return 0;	/* can't read user space in other tasks */

#ifdef CONFIG_64BIT
	/* Find the real l1_pgtable by looking in the l0_pgtable. */
	pte = l1_pgtable[HV_L0_INDEX(address)];
	if (!hv_pte_get_present(pte))
		return 0;
	pfn = hv_pte_get_pfn(pte);
	if (pte_huge(pte)) {
		if (!pfn_valid(pfn)) {
			pr_err("L0 huge page has bad pfn %#lx\n", pfn);
			return 0;
		}
		return hv_pte_get_present(pte) && hv_pte_get_readable(pte);
	}
	page = pfn_to_page(pfn);
	BUG_ON(PageHighMem(page));  /* No HIGHMEM on 64-bit. */
	l1_pgtable = (HV_PTE *)pfn_to_kaddr(pfn);
#endif
	pte = l1_pgtable[HV_L1_INDEX(address)];
	if (!hv_pte_get_present(pte))
		return 0;
	pfn = hv_pte_get_pfn(pte);
	if (pte_huge(pte)) {
		if (!pfn_valid(pfn)) {
			pr_err("huge page has bad pfn %#lx\n", pfn);
			return 0;
		}
		return hv_pte_get_present(pte) && hv_pte_get_readable(pte);
	}

	page = pfn_to_page(pfn);
	if (PageHighMem(page)) {
		pr_err("L2 page table not in LOWMEM (%#llx)\n",
		       HV_PFN_TO_CPA(pfn));
		return 0;
	}
	l2_pgtable = (HV_PTE *)pfn_to_kaddr(pfn);
	pte = l2_pgtable[HV_L2_INDEX(address)];
	return hv_pte_get_present(pte) && hv_pte_get_readable(pte);
}
Пример #3
0
/*
 * Identify large copies from remotely-cached memory, and copy them
 * via memcpy_multicache() if they look good, otherwise fall back
 * to the particular kind of copying passed as the memcpy_t function.
 */
static unsigned long fast_copy(void *dest, const void *source, int len,
			       memcpy_t func)
{
	/*
	 * Check if it's big enough to bother with.  We may end up doing a
	 * small copy via TLB manipulation if we're near a page boundary,
	 * but presumably we'll make it up when we hit the second page.
	 */
	while (len >= LARGE_COPY_CUTOFF) {
		int copy_size, bytes_left_on_page;
		pte_t *src_ptep, *dst_ptep;
		pte_t src_pte, dst_pte;
		struct page *src_page, *dst_page;

		/* Is the source page oloc'ed to a remote cpu? */
retry_source:
		src_ptep = virt_to_pte(current->mm, (unsigned long)source);
		if (src_ptep == NULL)
			break;
		src_pte = *src_ptep;
		if (!hv_pte_get_present(src_pte) ||
		    !hv_pte_get_readable(src_pte) ||
		    hv_pte_get_mode(src_pte) != HV_PTE_MODE_CACHE_TILE_L3)
			break;
		if (get_remote_cache_cpu(src_pte) == smp_processor_id())
			break;
		src_page = pfn_to_page(pte_pfn(src_pte));
		get_page(src_page);
		if (pte_val(src_pte) != pte_val(*src_ptep)) {
			put_page(src_page);
			goto retry_source;
		}
		if (pte_huge(src_pte)) {
			/* Adjust the PTE to correspond to a small page */
			int pfn = pte_pfn(src_pte);
			pfn += (((unsigned long)source & (HPAGE_SIZE-1))
				>> PAGE_SHIFT);
			src_pte = pfn_pte(pfn, src_pte);
			src_pte = pte_mksmall(src_pte);
		}

		/* Is the destination page writable? */
retry_dest:
		dst_ptep = virt_to_pte(current->mm, (unsigned long)dest);
		if (dst_ptep == NULL) {
			put_page(src_page);
			break;
		}
		dst_pte = *dst_ptep;
		if (!hv_pte_get_present(dst_pte) ||
		    !hv_pte_get_writable(dst_pte)) {
			put_page(src_page);
			break;
		}
		dst_page = pfn_to_page(pte_pfn(dst_pte));
		if (dst_page == src_page) {
			/*
			 * Source and dest are on the same page; this
			 * potentially exposes us to incoherence if any
			 * part of src and dest overlap on a cache line.
			 * Just give up rather than trying to be precise.
			 */
			put_page(src_page);
			break;
		}
		get_page(dst_page);
		if (pte_val(dst_pte) != pte_val(*dst_ptep)) {
			put_page(dst_page);
			goto retry_dest;
		}
		if (pte_huge(dst_pte)) {
			/* Adjust the PTE to correspond to a small page */
			int pfn = pte_pfn(dst_pte);
			pfn += (((unsigned long)dest & (HPAGE_SIZE-1))
				>> PAGE_SHIFT);
			dst_pte = pfn_pte(pfn, dst_pte);
			dst_pte = pte_mksmall(dst_pte);
		}

		/* All looks good: create a cachable PTE and copy from it */
		copy_size = len;
		bytes_left_on_page =
			PAGE_SIZE - (((int)source) & (PAGE_SIZE-1));
		if (copy_size > bytes_left_on_page)
			copy_size = bytes_left_on_page;
		bytes_left_on_page =
			PAGE_SIZE - (((int)dest) & (PAGE_SIZE-1));
		if (copy_size > bytes_left_on_page)
			copy_size = bytes_left_on_page;
		memcpy_multicache(dest, source, dst_pte, src_pte, copy_size);

		/* Release the pages */
		put_page(dst_page);
		put_page(src_page);

		/* Continue on the next page */
		dest += copy_size;
		source += copy_size;
		len -= copy_size;
	}

	return func(dest, source, len);
}
static unsigned long fast_copy(void *dest, const void *source, int len,
			       memcpy_t func)
{
	/*
                                                                   
                                                                  
                                                                
  */
	while (len >= LARGE_COPY_CUTOFF) {
		int copy_size, bytes_left_on_page;
		pte_t *src_ptep, *dst_ptep;
		pte_t src_pte, dst_pte;
		struct page *src_page, *dst_page;

		/*                                             */
retry_source:
		src_ptep = virt_to_pte(current->mm, (unsigned long)source);
		if (src_ptep == NULL)
			break;
		src_pte = *src_ptep;
		if (!hv_pte_get_present(src_pte) ||
		    !hv_pte_get_readable(src_pte) ||
		    hv_pte_get_mode(src_pte) != HV_PTE_MODE_CACHE_TILE_L3)
			break;
		if (get_remote_cache_cpu(src_pte) == smp_processor_id())
			break;
		src_page = pfn_to_page(hv_pte_get_pfn(src_pte));
		get_page(src_page);
		if (pte_val(src_pte) != pte_val(*src_ptep)) {
			put_page(src_page);
			goto retry_source;
		}
		if (pte_huge(src_pte)) {
			/*                                              */
			int pfn = hv_pte_get_pfn(src_pte);
			pfn += (((unsigned long)source & (HPAGE_SIZE-1))
				>> PAGE_SHIFT);
			src_pte = pfn_pte(pfn, src_pte);
			src_pte = pte_mksmall(src_pte);
		}

		/*                                   */
retry_dest:
		dst_ptep = virt_to_pte(current->mm, (unsigned long)dest);
		if (dst_ptep == NULL) {
			put_page(src_page);
			break;
		}
		dst_pte = *dst_ptep;
		if (!hv_pte_get_present(dst_pte) ||
		    !hv_pte_get_writable(dst_pte)) {
			put_page(src_page);
			break;
		}
		dst_page = pfn_to_page(hv_pte_get_pfn(dst_pte));
		if (dst_page == src_page) {
			/*
                                                
                                                  
                                                   
                                                    
    */
			put_page(src_page);
			break;
		}
		get_page(dst_page);
		if (pte_val(dst_pte) != pte_val(*dst_ptep)) {
			put_page(dst_page);
			goto retry_dest;
		}
		if (pte_huge(dst_pte)) {
			/*                                              */
			int pfn = hv_pte_get_pfn(dst_pte);
			pfn += (((unsigned long)dest & (HPAGE_SIZE-1))
				>> PAGE_SHIFT);
			dst_pte = pfn_pte(pfn, dst_pte);
			dst_pte = pte_mksmall(dst_pte);
		}

		/*                                                        */
		copy_size = len;
		bytes_left_on_page =
			PAGE_SIZE - (((int)source) & (PAGE_SIZE-1));
		if (copy_size > bytes_left_on_page)
			copy_size = bytes_left_on_page;
		bytes_left_on_page =
			PAGE_SIZE - (((int)dest) & (PAGE_SIZE-1));
		if (copy_size > bytes_left_on_page)
			copy_size = bytes_left_on_page;
		memcpy_multicache(dest, source, dst_pte, src_pte, copy_size);

		/*                   */
		put_page(dst_page);
		put_page(src_page);

		/*                           */
		dest += copy_size;
		source += copy_size;
		len -= copy_size;
	}

	return func(dest, source, len);
}