Пример #1
0
/* Subroutine */ HYPRE_Int dtrsm_(const char *side,const char *uplo,const char *transa,const char *diag, 
	integer *m, integer *n, doublereal *alpha, doublereal *a, integer *
	lda, doublereal *b, integer *ldb)
{


    /* System generated locals */

    /* Local variables */
    static integer info;
    static doublereal temp;
    static integer i, j, k;
    static logical lside;
    extern logical hypre_lsame_(const char *,const char *);
    static integer nrowa;
    static logical upper;
    extern /* Subroutine */ HYPRE_Int hypre_xerbla_(const char *, integer *);
    static logical nounit;


/*  Purpose   
    =======   

    DTRSM  solves one of the matrix equations   

       op( A )*X = alpha*B,   or   X*op( A ) = alpha*B,   

    where alpha is a scalar, X and B are m by n matrices, A is a unit, or 
  
    non-unit,  upper or lower triangular matrix  and  op( A )  is one  of 
  

       op( A ) = A   or   op( A ) = A'.   

    The matrix X is overwritten on B.   

    Parameters   
    ==========   

    SIDE   - CHARACTER*1.   
             On entry, SIDE specifies whether op( A ) appears on the left 
  
             or right of X as follows:   

                SIDE = 'L' or 'l'   op( A )*X = alpha*B.   

                SIDE = 'R' or 'r'   X*op( A ) = alpha*B.   

             Unchanged on exit.   

    UPLO   - CHARACTER*1.   
             On entry, UPLO specifies whether the matrix A is an upper or 
  
             lower triangular matrix as follows:   

                UPLO = 'U' or 'u'   A is an upper triangular matrix.   

                UPLO = 'L' or 'l'   A is a lower triangular matrix.   

             Unchanged on exit.   

    TRANSA - CHARACTER*1.   
             On entry, TRANSA specifies the form of op( A ) to be used in 
  
             the matrix multiplication as follows:   

                TRANSA = 'N' or 'n'   op( A ) = A.   

                TRANSA = 'T' or 't'   op( A ) = A'.   

                TRANSA = 'C' or 'c'   op( A ) = A'.   

             Unchanged on exit.   

    DIAG   - CHARACTER*1.   
             On entry, DIAG specifies whether or not A is unit triangular 
  
             as follows:   

                DIAG = 'U' or 'u'   A is assumed to be unit triangular.   

                DIAG = 'N' or 'n'   A is not assumed to be unit   
                                    triangular.   

             Unchanged on exit.   

    M      - INTEGER.   
             On entry, M specifies the number of rows of B. M must be at 
  
             least zero.   
             Unchanged on exit.   

    N      - INTEGER.   
             On entry, N specifies the number of columns of B.  N must be 
  
             at least zero.   
             Unchanged on exit.   

    ALPHA  - DOUBLE PRECISION.   
             On entry,  ALPHA specifies the scalar  alpha. When  alpha is 
  
             zero then  A is not referenced and  B need not be set before 
  
             entry.   
             Unchanged on exit.   

    A      - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m 
  
             when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'. 
  
             Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k 
  
             upper triangular part of the array  A must contain the upper 
  
             triangular matrix  and the strictly lower triangular part of 
  
             A is not referenced.   
             Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k 
  
             lower triangular part of the array  A must contain the lower 
  
             triangular matrix  and the strictly upper triangular part of 
  
             A is not referenced.   
             Note that when  DIAG = 'U' or 'u',  the diagonal elements of 
  
             A  are not referenced either,  but are assumed to be  unity. 
  
             Unchanged on exit.   

    LDA    - INTEGER.   
             On entry, LDA specifies the first dimension of A as declared 
  
             in the calling (sub) program.  When  SIDE = 'L' or 'l'  then 
  
             LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r' 
  
             then LDA must be at least max( 1, n ).   
             Unchanged on exit.   

    B      - DOUBLE PRECISION array of DIMENSION ( LDB, n ).   
             Before entry,  the leading  m by n part of the array  B must 
  
             contain  the  right-hand  side  matrix  B,  and  on exit  is 
  
             overwritten by the solution matrix  X.   

    LDB    - INTEGER.   
             On entry, LDB specifies the first dimension of B as declared 
  
             in  the  calling  (sub)  program.   LDB  must  be  at  least 
  
             max( 1, m ).   
             Unchanged on exit.   


    Level 3 Blas routine.   


    -- Written on 8-February-1989.   
       Jack Dongarra, Argonne National Laboratory.   
       Iain Duff, AERE Harwell.   
       Jeremy Du Croz, Numerical Algorithms Group Ltd.   
       Sven Hammarling, Numerical Algorithms Group Ltd.   



       Test the input parameters.   

    
   Parameter adjustments   
       Function Body */

#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]
#define B(I,J) b[(I)-1 + ((J)-1)* ( *ldb)]

    lside = hypre_lsame_(side, "L");
    if (lside) {
	nrowa = *m;
    } else {
	nrowa = *n;
    }
    nounit = hypre_lsame_(diag, "N");
    upper = hypre_lsame_(uplo, "U");

    info = 0;
    if (! lside && ! hypre_lsame_(side, "R")) {
	info = 1;
    } else if (! upper && ! hypre_lsame_(uplo, "L")) {
	info = 2;
    } else if (! hypre_lsame_(transa, "N") && ! hypre_lsame_(transa, "T") 
	    && ! hypre_lsame_(transa, "C")) {
	info = 3;
    } else if (! hypre_lsame_(diag, "U") && ! hypre_lsame_(diag, "N")) {
	info = 4;
    } else if (*m < 0) {
	info = 5;
    } else if (*n < 0) {
	info = 6;
    } else if (*lda < max(1,nrowa)) {
	info = 9;
    } else if (*ldb < max(1,*m)) {
	info = 11;
    }
    if (info != 0) {
	hypre_xerbla_("DTRSM ", &info);
	return 0;
    }

/*     Quick return if possible. */

    if (*n == 0) {
	return 0;
    }

/*     And when  alpha.eq.zero. */

    if (*alpha == 0.) {
	for (j = 1; j <= *n; ++j) {
	    for (i = 1; i <= *m; ++i) {
		B(i,j) = 0.;
/* L10: */
	    }
/* L20: */
	}
	return 0;
    }

/*     Start the operations. */

    if (lside) {
	if (hypre_lsame_(transa, "N")) {

/*           Form  B := alpha*inv( A )*B. */

	    if (upper) {
		for (j = 1; j <= *n; ++j) {
		    if (*alpha != 1.) {
			for (i = 1; i <= *m; ++i) {
			    B(i,j) = *alpha * B(i,j);
/* L30: */
			}
		    }
		    for (k = *m; k >= 1; --k) {
			if (B(k,j) != 0.) {
			    if (nounit) {
				B(k,j) /= A(k,k);
			    }
			    for (i = 1; i <= k-1; ++i) {
				B(i,j) -= B(k,j) * A(i,k);
/* L40: */
			    }
			}
/* L50: */
		    }
/* L60: */
		}
	    } else {
		for (j = 1; j <= *n; ++j) {
		    if (*alpha != 1.) {
			for (i = 1; i <= *m; ++i) {
			    B(i,j) = *alpha * B(i,j);
/* L70: */
			}
		    }
		    for (k = 1; k <= *m; ++k) {
			if (B(k,j) != 0.) {
			    if (nounit) {
				B(k,j) /= A(k,k);
			    }
			    for (i = k + 1; i <= *m; ++i) {
				B(i,j) -= B(k,j) * A(i,k);
/* L80: */
			    }
			}
/* L90: */
		    }
/* L100: */
		}
	    }
	} else {

/*           Form  B := alpha*inv( A' )*B. */

	    if (upper) {
		for (j = 1; j <= *n; ++j) {
		    for (i = 1; i <= *m; ++i) {
			temp = *alpha * B(i,j);
			for (k = 1; k <= i-1; ++k) {
			    temp -= A(k,i) * B(k,j);
/* L110: */
			}
			if (nounit) {
			    temp /= A(i,i);
			}
			B(i,j) = temp;
/* L120: */
		    }
/* L130: */
		}
	    } else {
		for (j = 1; j <= *n; ++j) {
		    for (i = *m; i >= 1; --i) {
			temp = *alpha * B(i,j);
			for (k = i + 1; k <= *m; ++k) {
			    temp -= A(k,i) * B(k,j);
/* L140: */
			}
			if (nounit) {
			    temp /= A(i,i);
			}
			B(i,j) = temp;
/* L150: */
		    }
/* L160: */
		}
	    }
	}
    } else {
	if (hypre_lsame_(transa, "N")) {

/*           Form  B := alpha*B*inv( A ). */

	    if (upper) {
		for (j = 1; j <= *n; ++j) {
		    if (*alpha != 1.) {
			for (i = 1; i <= *m; ++i) {
			    B(i,j) = *alpha * B(i,j);
/* L170: */
			}
		    }
		    for (k = 1; k <= j-1; ++k) {
			if (A(k,j) != 0.) {
			    for (i = 1; i <= *m; ++i) {
				B(i,j) -= A(k,j) * B(i,k);
/* L180: */
			    }
			}
/* L190: */
		    }
		    if (nounit) {
			temp = 1. / A(j,j);
			for (i = 1; i <= *m; ++i) {
			    B(i,j) = temp * B(i,j);
/* L200: */
			}
		    }
/* L210: */
		}
	    } else {
		for (j = *n; j >= 1; --j) {
		    if (*alpha != 1.) {
			for (i = 1; i <= *m; ++i) {
			    B(i,j) = *alpha * B(i,j);
/* L220: */
			}
		    }
		    for (k = j + 1; k <= *n; ++k) {
			if (A(k,j) != 0.) {
			    for (i = 1; i <= *m; ++i) {
				B(i,j) -= A(k,j) * B(i,k);
/* L230: */
			    }
			}
/* L240: */
		    }
		    if (nounit) {
			temp = 1. / A(j,j);
			for (i = 1; i <= *m; ++i) {
			    B(i,j) = temp * B(i,j);
/* L250: */
			}
		    }
/* L260: */
		}
	    }
	} else {

/*           Form  B := alpha*B*inv( A' ). */

	    if (upper) {
		for (k = *n; k >= 1; --k) {
		    if (nounit) {
			temp = 1. / A(k,k);
			for (i = 1; i <= *m; ++i) {
			    B(i,k) = temp * B(i,k);
/* L270: */
			}
		    }
		    for (j = 1; j <= k-1; ++j) {
			if (A(j,k) != 0.) {
			    temp = A(j,k);
			    for (i = 1; i <= *m; ++i) {
				B(i,j) -= temp * B(i,k);
/* L280: */
			    }
			}
/* L290: */
		    }
		    if (*alpha != 1.) {
			for (i = 1; i <= *m; ++i) {
			    B(i,k) = *alpha * B(i,k);
/* L300: */
			}
		    }
/* L310: */
		}
	    } else {
		for (k = 1; k <= *n; ++k) {
		    if (nounit) {
			temp = 1. / A(k,k);
			for (i = 1; i <= *m; ++i) {
			    B(i,k) = temp * B(i,k);
/* L320: */
			}
		    }
		    for (j = k + 1; j <= *n; ++j) {
			if (A(j,k) != 0.) {
			    temp = A(j,k);
			    for (i = 1; i <= *m; ++i) {
				B(i,j) -= temp * B(i,k);
/* L330: */
			    }
			}
/* L340: */
		    }
		    if (*alpha != 1.) {
			for (i = 1; i <= *m; ++i) {
			    B(i,k) = *alpha * B(i,k);
/* L350: */
			}
		    }
/* L360: */
		}
	    }
	}
    }

    return 0;

/*     End of DTRSM . */

} /* dtrsm_ */
Пример #2
0
/* Subroutine */ HYPRE_Int dsymm_(char *side, char *uplo, integer *m, integer *n, 
	doublereal *alpha, doublereal *a, integer *lda, doublereal *b, 
	integer *ldb, doublereal *beta, doublereal *c__, integer *ldc)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, 
	    i__3;
    /* Local variables */
    static integer info;
    static doublereal temp1, temp2;
    static integer i__, j, k;
    extern logical hypre_lsame_(char *, char *);
    static integer nrowa;
    static logical upper;
    extern /* Subroutine */ HYPRE_Int hypre_xerbla_(char *, integer *);
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]
#define c___ref(a_1,a_2) c__[(a_2)*c_dim1 + a_1]
/*  Purpose   
    =======   
    DSYMM  performs one of the matrix-matrix operations   
       C := alpha*A*B + beta*C,   
    or   
       C := alpha*B*A + beta*C,   
    where alpha and beta are scalars,  A is a symmetric matrix and  B and   
    C are  m by n matrices.   
    Parameters   
    ==========   
    SIDE   - CHARACTER*1.   
             On entry,  SIDE  specifies whether  the  symmetric matrix  A   
             appears on the  left or right  in the  operation as follows:   
                SIDE = 'L' or 'l'   C := alpha*A*B + beta*C,   
                SIDE = 'R' or 'r'   C := alpha*B*A + beta*C,   
             Unchanged on exit.   
    UPLO   - CHARACTER*1.   
             On  entry,   UPLO  specifies  whether  the  upper  or  lower   
             triangular  part  of  the  symmetric  matrix   A  is  to  be   
             referenced as follows:   
                UPLO = 'U' or 'u'   Only the upper triangular part of the   
                                    symmetric matrix is to be referenced.   
                UPLO = 'L' or 'l'   Only the lower triangular part of the   
                                    symmetric matrix is to be referenced.   
             Unchanged on exit.   
    M      - INTEGER.   
             On entry,  M  specifies the number of rows of the matrix  C.   
             M  must be at least zero.   
             Unchanged on exit.   
    N      - INTEGER.   
             On entry, N specifies the number of columns of the matrix C.   
             N  must be at least zero.   
             Unchanged on exit.   
    ALPHA  - DOUBLE PRECISION.   
             On entry, ALPHA specifies the scalar alpha.   
             Unchanged on exit.   
    A      - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is   
             m  when  SIDE = 'L' or 'l'  and is  n otherwise.   
             Before entry  with  SIDE = 'L' or 'l',  the  m by m  part of   
             the array  A  must contain the  symmetric matrix,  such that   
             when  UPLO = 'U' or 'u', the leading m by m upper triangular   
             part of the array  A  must contain the upper triangular part   
             of the  symmetric matrix and the  strictly  lower triangular   
             part of  A  is not referenced,  and when  UPLO = 'L' or 'l',   
             the leading  m by m  lower triangular part  of the  array  A   
             must  contain  the  lower triangular part  of the  symmetric   
             matrix and the  strictly upper triangular part of  A  is not   
             referenced.   
             Before entry  with  SIDE = 'R' or 'r',  the  n by n  part of   
             the array  A  must contain the  symmetric matrix,  such that   
             when  UPLO = 'U' or 'u', the leading n by n upper triangular   
             part of the array  A  must contain the upper triangular part   
             of the  symmetric matrix and the  strictly  lower triangular   
             part of  A  is not referenced,  and when  UPLO = 'L' or 'l',   
             the leading  n by n  lower triangular part  of the  array  A   
             must  contain  the  lower triangular part  of the  symmetric   
             matrix and the  strictly upper triangular part of  A  is not   
             referenced.   
             Unchanged on exit.   
    LDA    - INTEGER.   
             On entry, LDA specifies the first dimension of A as declared   
             in the calling (sub) program.  When  SIDE = 'L' or 'l'  then   
             LDA must be at least  max( 1, m ), otherwise  LDA must be at   
             least  max( 1, n ).   
             Unchanged on exit.   
    B      - DOUBLE PRECISION array of DIMENSION ( LDB, n ).   
             Before entry, the leading  m by n part of the array  B  must   
             contain the matrix B.   
             Unchanged on exit.   
    LDB    - INTEGER.   
             On entry, LDB specifies the first dimension of B as declared   
             in  the  calling  (sub)  program.   LDB  must  be  at  least   
             max( 1, m ).   
             Unchanged on exit.   
    BETA   - DOUBLE PRECISION.   
             On entry,  BETA  specifies the scalar  beta.  When  BETA  is   
             supplied as zero then C need not be set on input.   
             Unchanged on exit.   
    C      - DOUBLE PRECISION array of DIMENSION ( LDC, n ).   
             Before entry, the leading  m by n  part of the array  C must   
             contain the matrix  C,  except when  beta  is zero, in which   
             case C need not be set on entry.   
             On exit, the array  C  is overwritten by the  m by n updated   
             matrix.   
    LDC    - INTEGER.   
             On entry, LDC specifies the first dimension of C as declared   
             in  the  calling  (sub)  program.   LDC  must  be  at  least   
             max( 1, m ).   
             Unchanged on exit.   
    Level 3 Blas routine.   
    -- Written on 8-February-1989.   
       Jack Dongarra, Argonne National Laboratory.   
       Iain Duff, AERE Harwell.   
       Jeremy Du Croz, Numerical Algorithms Group Ltd.   
       Sven Hammarling, Numerical Algorithms Group Ltd.   
       Set NROWA as the number of rows of A.   
       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    c_dim1 = *ldc;
    c_offset = 1 + c_dim1 * 1;
    c__ -= c_offset;
    /* Function Body */
    if (hypre_lsame_(side, "L")) {
	nrowa = *m;
    } else {
	nrowa = *n;
    }
    upper = hypre_lsame_(uplo, "U");
/*     Test the input parameters. */
    info = 0;
    if (! hypre_lsame_(side, "L") && ! hypre_lsame_(side, "R")) {
	info = 1;
    } else if (! upper && ! hypre_lsame_(uplo, "L")) {
	info = 2;
    } else if (*m < 0) {
	info = 3;
    } else if (*n < 0) {
	info = 4;
    } else if (*lda < max(1,nrowa)) {
	info = 7;
    } else if (*ldb < max(1,*m)) {
	info = 9;
    } else if (*ldc < max(1,*m)) {
	info = 12;
    }
    if (info != 0) {
	hypre_xerbla_("DSYMM ", &info);
	return 0;
    }
/*     Quick return if possible. */
    if ((*m == 0 || *n == 0) || (*alpha == 0. && *beta == 1.)) {
	return 0;
    }
/*     And when  alpha.eq.zero. */
    if (*alpha == 0.) {
	if (*beta == 0.) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *m;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    c___ref(i__, j) = 0.;
/* L10: */
		}
/* L20: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *m;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    c___ref(i__, j) = *beta * c___ref(i__, j);
/* L30: */
		}
/* L40: */
	    }
	}
	return 0;
    }
/*     Start the operations. */
    if (hypre_lsame_(side, "L")) {
/*        Form  C := alpha*A*B + beta*C. */
	if (upper) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *m;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    temp1 = *alpha * b_ref(i__, j);
		    temp2 = 0.;
		    i__3 = i__ - 1;
		    for (k = 1; k <= i__3; ++k) {
			c___ref(k, j) = c___ref(k, j) + temp1 * a_ref(k, i__);
			temp2 += b_ref(k, j) * a_ref(k, i__);
/* L50: */
		    }
		    if (*beta == 0.) {
			c___ref(i__, j) = temp1 * a_ref(i__, i__) + *alpha * 
				temp2;
		    } else {
			c___ref(i__, j) = *beta * c___ref(i__, j) + temp1 * 
				a_ref(i__, i__) + *alpha * temp2;
		    }
/* L60: */
		}
/* L70: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		for (i__ = *m; i__ >= 1; --i__) {
		    temp1 = *alpha * b_ref(i__, j);
		    temp2 = 0.;
		    i__2 = *m;
		    for (k = i__ + 1; k <= i__2; ++k) {
			c___ref(k, j) = c___ref(k, j) + temp1 * a_ref(k, i__);
			temp2 += b_ref(k, j) * a_ref(k, i__);
/* L80: */
		    }
		    if (*beta == 0.) {
			c___ref(i__, j) = temp1 * a_ref(i__, i__) + *alpha * 
				temp2;
		    } else {
			c___ref(i__, j) = *beta * c___ref(i__, j) + temp1 * 
				a_ref(i__, i__) + *alpha * temp2;
		    }
/* L90: */
		}
/* L100: */
	    }
	}
    } else {
/*        Form  C := alpha*B*A + beta*C. */
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    temp1 = *alpha * a_ref(j, j);
	    if (*beta == 0.) {
		i__2 = *m;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    c___ref(i__, j) = temp1 * b_ref(i__, j);
/* L110: */
		}
	    } else {
		i__2 = *m;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    c___ref(i__, j) = *beta * c___ref(i__, j) + temp1 * b_ref(
			    i__, j);
/* L120: */
		}
	    }
	    i__2 = j - 1;
	    for (k = 1; k <= i__2; ++k) {
		if (upper) {
		    temp1 = *alpha * a_ref(k, j);
		} else {
		    temp1 = *alpha * a_ref(j, k);
		}
		i__3 = *m;
		for (i__ = 1; i__ <= i__3; ++i__) {
		    c___ref(i__, j) = c___ref(i__, j) + temp1 * b_ref(i__, k);
/* L130: */
		}
/* L140: */
	    }
	    i__2 = *n;
	    for (k = j + 1; k <= i__2; ++k) {
		if (upper) {
		    temp1 = *alpha * a_ref(j, k);
		} else {
		    temp1 = *alpha * a_ref(k, j);
		}
		i__3 = *m;
		for (i__ = 1; i__ <= i__3; ++i__) {
		    c___ref(i__, j) = c___ref(i__, j) + temp1 * b_ref(i__, k);
/* L150: */
		}
/* L160: */
	    }
/* L170: */
	}
    }
    return 0;
/*     End of DSYMM . */
} /* dsymm_ */
Пример #3
0
/* Subroutine */ HYPRE_Int dsyr2k_(char *uplo, char *trans, integer *n, integer *k, 
	doublereal *alpha, doublereal *a, integer *lda, doublereal *b, 
	integer *ldb, doublereal *beta, doublereal *c__, integer *ldc)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, 
	    i__3;
    /* Local variables */
    static integer info;
    static doublereal temp1, temp2;
    static integer i__, j, l;
    extern logical hypre_lsame_(char *, char *);
    static integer nrowa;
    static logical upper;
    extern /* Subroutine */ HYPRE_Int hypre_xerbla_(char *, integer *);
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]
#define c___ref(a_1,a_2) c__[(a_2)*c_dim1 + a_1]
/*  Purpose   
    =======   
    DSYR2K  performs one of the symmetric rank 2k operations   
       C := alpha*A*B' + alpha*B*A' + beta*C,   
    or   
       C := alpha*A'*B + alpha*B'*A + beta*C,   
    where  alpha and beta  are scalars, C is an  n by n  symmetric matrix   
    and  A and B  are  n by k  matrices  in the  first  case  and  k by n   
    matrices in the second case.   
    Parameters   
    ==========   
    UPLO   - CHARACTER*1.   
             On  entry,   UPLO  specifies  whether  the  upper  or  lower   
             triangular  part  of the  array  C  is to be  referenced  as   
             follows:   
                UPLO = 'U' or 'u'   Only the  upper triangular part of  C   
                                    is to be referenced.   
                UPLO = 'L' or 'l'   Only the  lower triangular part of  C   
                                    is to be referenced.   
             Unchanged on exit.   
    TRANS  - CHARACTER*1.   
             On entry,  TRANS  specifies the operation to be performed as   
             follows:   
                TRANS = 'N' or 'n'   C := alpha*A*B' + alpha*B*A' +   
                                          beta*C.   
                TRANS = 'T' or 't'   C := alpha*A'*B + alpha*B'*A +   
                                          beta*C.   
                TRANS = 'C' or 'c'   C := alpha*A'*B + alpha*B'*A +   
                                          beta*C.   
             Unchanged on exit.   
    N      - INTEGER.   
             On entry,  N specifies the order of the matrix C.  N must be   
             at least zero.   
             Unchanged on exit.   
    K      - INTEGER.   
             On entry with  TRANS = 'N' or 'n',  K  specifies  the number   
             of  columns  of the  matrices  A and B,  and on  entry  with   
             TRANS = 'T' or 't' or 'C' or 'c',  K  specifies  the  number   
             of rows of the matrices  A and B.  K must be at least  zero.   
             Unchanged on exit.   
    ALPHA  - DOUBLE PRECISION.   
             On entry, ALPHA specifies the scalar alpha.   
             Unchanged on exit.   
    A      - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is   
             k  when  TRANS = 'N' or 'n',  and is  n  otherwise.   
             Before entry with  TRANS = 'N' or 'n',  the  leading  n by k   
             part of the array  A  must contain the matrix  A,  otherwise   
             the leading  k by n  part of the array  A  must contain  the   
             matrix A.   
             Unchanged on exit.   
    LDA    - INTEGER.   
             On entry, LDA specifies the first dimension of A as declared   
             in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'   
             then  LDA must be at least  max( 1, n ), otherwise  LDA must   
             be at least  max( 1, k ).   
             Unchanged on exit.   
    B      - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is   
             k  when  TRANS = 'N' or 'n',  and is  n  otherwise.   
             Before entry with  TRANS = 'N' or 'n',  the  leading  n by k   
             part of the array  B  must contain the matrix  B,  otherwise   
             the leading  k by n  part of the array  B  must contain  the   
             matrix B.   
             Unchanged on exit.   
    LDB    - INTEGER.   
             On entry, LDB specifies the first dimension of B as declared   
             in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'   
             then  LDB must be at least  max( 1, n ), otherwise  LDB must   
             be at least  max( 1, k ).   
             Unchanged on exit.   
    BETA   - DOUBLE PRECISION.   
             On entry, BETA specifies the scalar beta.   
             Unchanged on exit.   
    C      - DOUBLE PRECISION array of DIMENSION ( LDC, n ).   
             Before entry  with  UPLO = 'U' or 'u',  the leading  n by n   
             upper triangular part of the array C must contain the upper   
             triangular part  of the  symmetric matrix  and the strictly   
             lower triangular part of C is not referenced.  On exit, the   
             upper triangular part of the array  C is overwritten by the   
             upper triangular part of the updated matrix.   
             Before entry  with  UPLO = 'L' or 'l',  the leading  n by n   
             lower triangular part of the array C must contain the lower   
             triangular part  of the  symmetric matrix  and the strictly   
             upper triangular part of C is not referenced.  On exit, the   
             lower triangular part of the array  C is overwritten by the   
             lower triangular part of the updated matrix.   
    LDC    - INTEGER.   
             On entry, LDC specifies the first dimension of C as declared   
             in  the  calling  (sub)  program.   LDC  must  be  at  least   
             max( 1, n ).   
             Unchanged on exit.   
    Level 3 Blas routine.   
    -- Written on 8-February-1989.   
       Jack Dongarra, Argonne National Laboratory.   
       Iain Duff, AERE Harwell.   
       Jeremy Du Croz, Numerical Algorithms Group Ltd.   
       Sven Hammarling, Numerical Algorithms Group Ltd.   
       Test the input parameters.   
       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    c_dim1 = *ldc;
    c_offset = 1 + c_dim1 * 1;
    c__ -= c_offset;
    /* Function Body */
    if (hypre_lsame_(trans, "N")) {
	nrowa = *n;
    } else {
	nrowa = *k;
    }
    upper = hypre_lsame_(uplo, "U");
    info = 0;
    if (! upper && ! hypre_lsame_(uplo, "L")) {
	info = 1;
    } else if (! hypre_lsame_(trans, "N") && ! hypre_lsame_(trans, 
	    "T") && ! hypre_lsame_(trans, "C")) {
	info = 2;
    } else if (*n < 0) {
	info = 3;
    } else if (*k < 0) {
	info = 4;
    } else if (*lda < max(1,nrowa)) {
	info = 7;
    } else if (*ldb < max(1,nrowa)) {
	info = 9;
    } else if (*ldc < max(1,*n)) {
	info = 12;
    }
    if (info != 0) {
	hypre_xerbla_("DSYR2K", &info);
	return 0;
    }
/*     Quick return if possible. */
    if (*n == 0 || ((*alpha == 0. || *k == 0) && (*beta == 1.))) {
	return 0;
    }
/*     And when  alpha.eq.zero. */
    if (*alpha == 0.) {
	if (upper) {
	    if (*beta == 0.) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = j;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			c___ref(i__, j) = 0.;
/* L10: */
		    }
/* L20: */
		}
	    } else {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = j;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			c___ref(i__, j) = *beta * c___ref(i__, j);
/* L30: */
		    }
/* L40: */
		}
	    }
	} else {
	    if (*beta == 0.) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = *n;
		    for (i__ = j; i__ <= i__2; ++i__) {
			c___ref(i__, j) = 0.;
/* L50: */
		    }
/* L60: */
		}
	    } else {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = *n;
		    for (i__ = j; i__ <= i__2; ++i__) {
			c___ref(i__, j) = *beta * c___ref(i__, j);
/* L70: */
		    }
/* L80: */
		}
	    }
	}
	return 0;
    }
/*     Start the operations. */
    if (hypre_lsame_(trans, "N")) {
/*        Form  C := alpha*A*B' + alpha*B*A' + C. */
	if (upper) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (*beta == 0.) {
		    i__2 = j;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			c___ref(i__, j) = 0.;
/* L90: */
		    }
		} else if (*beta != 1.) {
		    i__2 = j;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			c___ref(i__, j) = *beta * c___ref(i__, j);
/* L100: */
		    }
		}
		i__2 = *k;
		for (l = 1; l <= i__2; ++l) {
		    if (a_ref(j, l) != 0. || b_ref(j, l) != 0.) {
			temp1 = *alpha * b_ref(j, l);
			temp2 = *alpha * a_ref(j, l);
			i__3 = j;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    c___ref(i__, j) = c___ref(i__, j) + a_ref(i__, l) 
				    * temp1 + b_ref(i__, l) * temp2;
/* L110: */
			}
		    }
/* L120: */
		}
/* L130: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (*beta == 0.) {
		    i__2 = *n;
		    for (i__ = j; i__ <= i__2; ++i__) {
			c___ref(i__, j) = 0.;
/* L140: */
		    }
		} else if (*beta != 1.) {
		    i__2 = *n;
		    for (i__ = j; i__ <= i__2; ++i__) {
			c___ref(i__, j) = *beta * c___ref(i__, j);
/* L150: */
		    }
		}
		i__2 = *k;
		for (l = 1; l <= i__2; ++l) {
		    if (a_ref(j, l) != 0. || b_ref(j, l) != 0.) {
			temp1 = *alpha * b_ref(j, l);
			temp2 = *alpha * a_ref(j, l);
			i__3 = *n;
			for (i__ = j; i__ <= i__3; ++i__) {
			    c___ref(i__, j) = c___ref(i__, j) + a_ref(i__, l) 
				    * temp1 + b_ref(i__, l) * temp2;
/* L160: */
			}
		    }
/* L170: */
		}
/* L180: */
	    }
	}
    } else {
/*        Form  C := alpha*A'*B + alpha*B'*A + C. */
	if (upper) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    temp1 = 0.;
		    temp2 = 0.;
		    i__3 = *k;
		    for (l = 1; l <= i__3; ++l) {
			temp1 += a_ref(l, i__) * b_ref(l, j);
			temp2 += b_ref(l, i__) * a_ref(l, j);
/* L190: */
		    }
		    if (*beta == 0.) {
			c___ref(i__, j) = *alpha * temp1 + *alpha * temp2;
		    } else {
			c___ref(i__, j) = *beta * c___ref(i__, j) + *alpha * 
				temp1 + *alpha * temp2;
		    }
/* L200: */
		}
/* L210: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n;
		for (i__ = j; i__ <= i__2; ++i__) {
		    temp1 = 0.;
		    temp2 = 0.;
		    i__3 = *k;
		    for (l = 1; l <= i__3; ++l) {
			temp1 += a_ref(l, i__) * b_ref(l, j);
			temp2 += b_ref(l, i__) * a_ref(l, j);
/* L220: */
		    }
		    if (*beta == 0.) {
			c___ref(i__, j) = *alpha * temp1 + *alpha * temp2;
		    } else {
			c___ref(i__, j) = *beta * c___ref(i__, j) + *alpha * 
				temp1 + *alpha * temp2;
		    }
/* L230: */
		}
/* L240: */
	    }
	}
    }
    return 0;
/*     End of DSYR2K. */
} /* dsyr2k_ */