Пример #1
0
void ICVM_write(void){
	R_R0=i_write(
		rSTKs32(0),
		Nptr(rSTKu32(1)),
		rSTKu32(2));
	icvm_returnerr();
}
Пример #2
0
int i_job_header(i_job_info_t *job_info)
{
  char temp_string[256];
  char *ts;
  int e;

  /* libjpeg.doc: step 3 of 7 */
  job_info->cinfo->image_width = job_info->pixel_h;
  job_info->cinfo->image_height = 128;
  job_info->cinfo->input_components = job_info->components;
  if(job_info->components == 1)
    {
      job_info->cinfo->in_color_space = JCS_GRAYSCALE;
    }
  else
    {
      job_info->cinfo->in_color_space = JCS_RGB; /* colorspace of input image */
    }
  jpeg_set_defaults(job_info->cinfo);
  job_info->cinfo->jpeg_color_space = JCS_JETREADY;

  ts = temp_string;

  /* PJL */
  ts += sprintf(ts, "\x01b%%-12345X@PJL SET STRINGCODESET=UTF8\x00a");

  if (job_info->components == 1) 
    {
      ts += sprintf(ts, "@PJL SET PLANESINUSE=1\x00a");
    }

  ts += sprintf(ts, "@PJL SET COPIES=%d\x00a",job_info->copies);
  if (job_info->duplex) {
    ts += sprintf(ts, "@PJL SET DUPLEX=ON\x00d\x00a");
    if (job_info->tumble) {
      ts += sprintf(ts, "@PJL SET BINDING=SHORTEDGE\x00d\x00a");
    } else {
      ts += sprintf(ts, "@PJL SET BINDING=LONGEDGE\x00d\x00a");
    }
  } else {
    ts += sprintf(ts, "@PJL SET DUPLEX=OFF\x00d\x00a");
  }
  ts += sprintf(ts, "@PJL SET RESOLUTION=600\x00a");
  ts += sprintf(ts, "@PJL SET TIMEOUT=90\x00a");
  ts += sprintf(ts, "@PJL ENTER LANGUAGE=PCLXL\x00a");
  ts += sprintf(ts, ") HP-PCL XL;3;0;Comment, PCL-XL JetReady generator\x00a");

  /* PCL XL */
  ts += sprintf(ts, "%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c",
		PXL_ubyte(PXL_eInch),                PXL_Measure,
		PXL_ubyte(PXL_eBackChAndErrPage),    PXL_ErrorReport,
		PXL_uint16_xy(600, 600),             PXL_UnitsPerMeasure,
		PXL_BeginSession);

  e = i_write(job_info, temp_string, ts - temp_string);
  return 0;
} 
Пример #3
0
/****************************************************************************
REMARKS:
VxD implementation of the ANSI C fwrite function. Note that the VxD file I/O
functions are layered on DOS, so can only read up to 64K at a time. Since
we are expected to handle much larger chunks than this, we handle larger
blocks automatically in here.
****************************************************************************/
size_t fwrite(
	const void *ptr,
	size_t size,
	size_t n,
	FILE *f)
{
	const char	*buf = ptr;
	WORD 		error;
	int			bytes,writtenbytes,totalbytes = 0;

	/* Flush anything already in the buffer */
	if (!f->writemode)
		return 0;
	fflush(f);
	bytes = size * n;
	while (bytes > 0x10000) {
		if (initComplete) {
			writtenbytes  = R0_WriteFile(false,(HANDLE)f->handle,buf,0x8000,f->offset,&error);
			writtenbytes += R0_WriteFile(false,(HANDLE)f->handle,buf+0x8000,0x8000,f->offset+0x8000,&error);
			}
		else {
			writtenbytes  = i_write(f->handle,buf,0x8000);
			writtenbytes += i_write(f->handle,buf+0x8000,0x8000);
			}
		totalbytes += writtenbytes;
		f->offset += writtenbytes;
		buf += 0x10000;
		bytes -= 0x10000;
		}
	if (initComplete)
		writtenbytes = R0_WriteFile(false,(HANDLE)f->handle,buf,bytes,f->offset,&error);
	else
		writtenbytes = i_write(f->handle,buf,bytes);
	totalbytes += writtenbytes;
	f->offset += writtenbytes;
	if (f->offset > f->filesize)
		f->filesize = f->offset;
	return totalbytes / size;
}
Пример #4
0
int i_job_footer(i_job_info_t *job_info)
{
  char temp_string[256];
  char *ts;
  int e;

  ts = temp_string;
  ts += sprintf(ts, "%c",
		PXL_EndSession);

  ts += sprintf(ts, "\x01b%%-12345X@PJL EOJ\x00a");
  ts += sprintf(ts, "\x01b%%-12345X");

  e = i_write(job_info, temp_string, ts - temp_string);
  return 0;
} 
Пример #5
0
/****************************************************************************
REMARKS:
VxD implementation of the ANSI C fflush function.
****************************************************************************/
int	fflush(
	FILE *f)
{
	WORD 	error;
	int		bytes;

	/* First copy any data already written into our buffer */
	if (f->writemode && (bytes = (f->curp - f->startp)) > 0) {
		if (initComplete)
			bytes = R0_WriteFile(false,(HANDLE)f->handle,f->startp,bytes,f->offset,&error);
		else
			bytes = i_write(f->handle,f->startp,bytes);
		f->offset += bytes;
		if (f->offset > f->filesize)
			f->filesize = f->offset;
		f->startp = f->curp = f->buf;
		}
	return 0;
}
Пример #6
0
int i_page_footer(i_job_info_t *job_info)
{
  char temp_string[256];
  char *ts;
  int e;

  ts = temp_string;

  ts += sprintf(ts, "%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c",
		PXL_uint32(JR3EndImage), PXL_VUExtension,
		PXL_uint32(0x00040000), PXL_VUVersion,
		PXL_VendorUnique);

  ts += sprintf(ts, "%c",
		PXL_EndPage);

  e = i_write(job_info, temp_string, ts - temp_string);
  return 0;
} 
Пример #7
0
static void do_sdf(char *fnNDX,char *fnTPS,char *fnTRX, char *fnSDF, 
                   char *fnREF, bool bRef, rvec cutoff, real binwidth,
                   int mode, rvec triangle, rvec dtri)
{
  FILE       *fp;
  int        status;
  int        ng,natoms,i,j,k,l,X,Y,Z,lc,dest;
  ivec       nbin;
  int        ***count;
  /* real       ***sdf; */
  real       sdf,min_sdf=1e10,max_sdf=0;
  char       **grpname;
  int        *isize;
  int        isize_cg=0;
  int        isize_ref=3;
  int        ref_resind[3];
  int        nrefmol=0,refc=0;
  atom_id    **index;
  atom_id    *index_cg=NULL;
  atom_id    *index_ref=NULL;
  real       t,boxmin,hbox,normfac;
  real       invbinw;
  rvec       tri_upper,tri_lower;
  rvec       *x,xcog,dx,*x_i1,xi,*x_refmol;
  matrix     box;
  matrix     rot; /* rotation matrix := unit vectors for the molecule frame */
  rvec       k_mol,i1_mol,i2_mol,dx_mol;
  real       delta;
  atom_id    ix,jx;
  t_topology top;
  int        ePBC=-1;
  t_pbc      pbc;
  bool       bTop=FALSE,bRefDone=FALSE,bInGroup=FALSE;
  char       title[STRLEN];


  /* Read Topology */
  if (fnTPS) {
    bTop=read_tps_conf(fnTPS,title,&top,&ePBC,&x,NULL,box,TRUE);
  }
  


  if ( !bTop ) {
    fprintf(stderr,"\nNeed tpr-file to make a reference structure.\n");
    fprintf(stderr,"Option -r will be ignored!\n");
    bRef = FALSE;
  }


  /* Allocate memory for 4 groups, 3 dummy groups and a group for the ref 
structure if needed */
  ng = 4;
  snew(grpname,ng);
  /* the dummy groups are used to dynamically store triples of atoms */
  /* for molecular coordinate systems */
  if ( bRef )
    {
      snew(isize,ng+4);
      snew(index,ng+4);
    }
  else 
    {
      snew(isize,ng+3);
      snew(index,ng+3);
    }


  /* Read the index groups */
  fprintf(stderr,"\nSelect the 3 reference groups and the SDF group:\n");
  if (fnTPS)
    get_index(&top.atoms,fnNDX,ng,isize,index,grpname);
  else
    rd_index(fnNDX,ng,isize,index,grpname);


  isize[NDX_REF1]=isize[G_REF1];
  for (i=NDX_REF1; i<=NDX_REF3; i++)
    snew(index[i],isize[NDX_REF1]);


  /* Read first frame and check it */
  natoms=read_first_x(&status,fnTRX,&t,&x,box);
  if ( !natoms )
    gmx_fatal(FARGS,"Could not read coordinates from statusfile!\n");


  /* check with topology */
  if (fnTPS)
    if ( natoms > top.atoms.nr )
      gmx_fatal(FARGS,"Trajectory (%d atoms) does not match topology (%d atoms)!\n",
                  natoms,top.atoms.nr);


  /* check with index groups */
  for (i=0; i<ng; i++)
    for (j=0; j<isize[i]; j++)
      if ( index[i][j] >= natoms )
        gmx_fatal(FARGS,"Atom index (%d) in index group %s (%d atoms) larger "
                    "than number of atoms in trajectory (%d atoms)!\n",
                    index[i][j],grpname[i],isize[i],natoms);


  /* check reference groups */
  if ( mode == 1 )
    {
      if ( isize[G_REF1] != isize[G_REF2] || isize[G_REF1] != isize[G_REF3] || 
           isize[G_REF2] != isize[G_REF3] )
        gmx_fatal(FARGS,"For single particle SDF, all reference groups"
                    "must have the same size.\n");


      /* for single particle SDF dynamic triples are not needed */
      /* so we build them right here */


      /* copy all triples from G_REFx to NDX_REFx */    
      for (i=0; i<isize[G_REF1]; i++)
        {
          /* check if all three atoms come from the same molecule */
          for (j=G_REF1; j<=G_REF3; j++)
            ref_resind[j] = top.atoms.atom[index[j][i]].resind;


          if ( ref_resind[G_REF1] != ref_resind[G_REF2] ||
                 ref_resind[G_REF2] != ref_resind[G_REF3] ||
                 ref_resind[G_REF3] != ref_resind[G_REF1] )
              {
                fprintf(stderr,"\nWarning: reference triple (%d) will be skipped.\n",i);
                fprintf(stderr,  "         resnr[1]: %d, resnr[2]: %d, resnr[3]: %d\n",
                        ref_resind[G_REF1],ref_resind[G_REF2], ref_resind[G_REF3]);
                isize[NDX_REF1]--;
                for (j=NDX_REF1; j<=NDX_REF3; j++)
                  srenew(index[j],isize[NDX_REF1]);
                continue;
              }
          else
            /* check if all entries are unique*/
            if ( index[G_REF1][i] == index[G_REF2][i] ||
                 index[G_REF2][i] == index[G_REF3][i] ||
                 index[G_REF3][i] == index[G_REF1][i] )
              {
                fprintf(stderr,"Warning: reference triple (%d) will be skipped.\n",i);
                fprintf(stderr,  "         index[1]: %d, index[2]: %d, index[3]: %d\n",
                        index[G_REF1][i],index[G_REF2][i],index[G_REF3][i]);    
                isize[NDX_REF1]--;
                for (j=NDX_REF1; j<=NDX_REF3; j++)
                  srenew(index[j],isize[NDX_REF1]);
                continue;
              }
            else /* everythings fine, copy that one */
              for (j=G_REF1; j<=G_REF3; j++)
                index[j+4][i] = index[j][i];
        }
    }
  else if ( mode == 2 )
    {
      if ( isize[G_REF1] != isize[G_REF2] )
        gmx_fatal(FARGS,"For two particle SDF, reference groups 1 and 2"
                    "must have the same size.\n");


      for (i=0; i<isize[G_REF1]; i++)
        {
          /* check consistency for atoms 1 and 2 */
          for (j=G_REF1; j<=G_REF2; j++)
            ref_resind[j] = top.atoms.atom[index[j][i]].resind;


          if ( ref_resind[G_REF1] != ref_resind[G_REF2] ||
               index[G_REF1][i] == index[G_REF2][i] )
            {
              if ( ref_resind[G_REF1] != ref_resind[G_REF2] )
                {
                  fprintf(stderr,"\nWarning: bond (%d) not from one molecule."
                          "Will not be used for SDF.\n",i);
                  fprintf(stderr,  "         resnr[1]: %d, resnr[2]: %d\n",
                          ref_resind[G_REF1],ref_resind[G_REF2]);
                }
              else
                {
                  fprintf(stderr,"\nWarning: atom1 and atom2 are identical."
                          "Bond (%d) will not be used for SDF.\n",i);
                  fprintf(stderr,  "         index[1]: %d, index[2]: %d\n",
                          index[G_REF1][i],index[G_REF2][i]);
                }
              for (j=NDX_REF1; j<=NDX_REF2; j++)
                {
                  for (k=i; k<isize[G_REF1]-1; k++)
                    index[j][k]=index[j][k+1];
                  isize[j]--;
                  srenew(index[j],isize[j]);
                }
            }
        }
    }


  /* Read Atoms for refmol group */
  if ( bRef )
    {
      snew(index[G_REFMOL],1);


      for (i=G_REF1; i<=G_REF3; i++)
        ref_resind[i] = top.atoms.atom[index[i][0]].resind;


      for (i=0; i<natoms; i++)
        {
          if (  ref_resind[G_REF1] == top.atoms.atom[i].resind ||
                ref_resind[G_REF2] == top.atoms.atom[i].resind ||
                ref_resind[G_REF3] == top.atoms.atom[i].resind )
            nrefmol++;
        }
      srenew(index[G_REFMOL],nrefmol);
      isize[G_REFMOL] = nrefmol;
      nrefmol = 0;


      for (i=0; i<natoms; i++)
        {
          if (  ref_resind[G_REF1] == top.atoms.atom[i].resind ||
                ref_resind[G_REF2] == top.atoms.atom[i].resind ||
                ref_resind[G_REF3] == top.atoms.atom[i].resind )
            {
              index[G_REFMOL][nrefmol] = i;
              nrefmol++;
            }
        }
    }


  /* initialize some stuff */
  boxmin = min( norm(box[XX]), min( norm(box[YY]), norm(box[ZZ]) ) );
  hbox   = boxmin / 2.0;


  for (i=0; i<DIM; i++)
    {
      cutoff[i] = cutoff[i] / 2;
      nbin[i]   = (int)(2 * cutoff[i] / binwidth) + 1;
      invbinw = 1.0 / binwidth;
      tri_upper[i] = triangle[i] + dtri[i];
      tri_upper[i] = sqr(tri_upper[i]);
      tri_lower[i] = triangle[i] - dtri[i];
      tri_lower[i] = sqr(tri_lower[i]);
    }


  /* Allocate the array's for sdf */
  snew(count,nbin[0]+1);
  for(i=0; i<nbin[0]+1; i++) 
    {
      snew(count[i],nbin[1]+1);
      for (j=0; j<nbin[1]+1; j++) 
        snew(count[i][j],nbin[2]+1);
    }


  /* Allocate space for the coordinates */
  snew(x_i1,isize[G_SDF]);
  snew(x_refmol,isize[G_REFMOL]);
  for (i=0; i<isize[G_REFMOL]; i++)
    for (j=XX; j<=ZZ; j++)
      x_refmol[i][j] = 0;


  normfac = 0;


  do {
    /* Must init pbc every step because of pressure coupling */
    set_pbc(&pbc,ePBC,box);
    rm_pbc(&top.idef,ePBC,natoms,box,x,x);


    /* Dynamically build the ref tripels */
    if ( mode == 2 )
      {
        isize[NDX_REF1]=0;
        for (j=NDX_REF1; j<=NDX_REF3; j++)
          srenew(index[j],isize[NDX_REF1]+1);


        /* consistancy of G_REF[1,2] has already been check */
        /* hence we can look for the third atom right away */


        for (i=0; i<isize[G_REF1]; i++)
          {
            for (j=0; j<isize[G_REF3]; j++)
              {
                /* Avoid expensive stuff if possible */
                if ( top.atoms.atom[index[G_REF1][i]].resind != 
                     top.atoms.atom[index[G_REF3][j]].resind &&
                     index[G_REF1][i] != index[G_REF3][j] &&
                     index[G_REF2][i] != index[G_REF3][j] )
                  {
                    pbc_dx(&pbc,x[index[G_REF1][i]],x[index[G_REF3][j]],dx);
                    delta = norm2(dx);
                    if ( delta < tri_upper[G_REF1] &&
                         delta > tri_lower[G_REF1] )
                      {
                        pbc_dx(&pbc,x[index[G_REF2][i]],x[index[G_REF3][j]],dx);
                        delta = norm2(dx);
                        if ( delta < tri_upper[G_REF2] &&
                             delta > tri_lower[G_REF2] )
                          {
                            /* found triple */
                            index[NDX_REF1][isize[NDX_REF1]]=index[G_REF1][i];
                            index[NDX_REF2][isize[NDX_REF1]]=index[G_REF2][i];
                            index[NDX_REF3][isize[NDX_REF1]]=index[G_REF3][j];


                            /* resize groups */
                            isize[NDX_REF1]++;
                            for (k=NDX_REF1; k<=NDX_REF3; k++)
                              srenew(index[k],isize[NDX_REF1]+1);
                          }
                      }
                  }
              }
          }
      }
    else if ( mode ==3 )
      {
        isize[NDX_REF1]=0;
        for (j=NDX_REF1; j<=NDX_REF3; j++)
          srenew(index[j],isize[NDX_REF1]+1);

        /* consistancy will be checked while searching */


        for (i=0; i<isize[G_REF1]; i++)
          {
            for (j=0; j<isize[G_REF2]; j++)
              {
                /* Avoid expensive stuff if possible */
                if ( top.atoms.atom[index[G_REF1][i]].resind != 
                     top.atoms.atom[index[G_REF2][j]].resind &&
                     index[G_REF1][i] != index[G_REF2][j] )
                  {
                    pbc_dx(&pbc,x[index[G_REF1][i]],x[index[G_REF2][j]],dx);
                    delta = norm2(dx);
                    if ( delta < tri_upper[G_REF3] &&
                         delta > tri_lower[G_REF3] )
                      {
                        for (k=0; k<isize[G_REF3]; k++)
                          {
                            if ( top.atoms.atom[index[G_REF1][i]].resind != 
                                 top.atoms.atom[index[G_REF3][k]].resind &&
                                 top.atoms.atom[index[G_REF2][j]].resind != 
                                 top.atoms.atom[index[G_REF3][k]].resind &&
                                 index[G_REF1][i] != index[G_REF3][k] &&
                                 index[G_REF2][j] != index[G_REF3][k])
                              {
                                pbc_dx(&pbc,x[index[G_REF1][i]],x[index[G_REF3][k]],dx);
                                delta = norm2(dx);
                                if ( delta < tri_upper[G_REF1] &&
                                     delta > tri_lower[G_REF1] )
                                  {
                                    pbc_dx(&pbc,x[index[G_REF2][j]],x[index[G_REF3][k]],dx);
                                    delta = norm2(dx);
                                    if ( delta < tri_upper[G_REF2] &&
                                         delta > tri_lower[G_REF2] )
                                      {
                                        /* found triple */
                                        index[NDX_REF1][isize[NDX_REF1]]=index[G_REF1][i];
                                        index[NDX_REF2][isize[NDX_REF1]]=index[G_REF2][j];
                                        index[NDX_REF3][isize[NDX_REF1]]=index[G_REF3][k];
                                    
                                        /* resize groups */
                                        isize[NDX_REF1]++;
                                        for (l=NDX_REF1; l<=NDX_REF3; l++)
                                          srenew(index[l],isize[NDX_REF1]+1);
                                      }
                                  }
                              }
                          }
                      }
                  }
              }
          }
      }
 
    for (i=0; i<isize[NDX_REF1]; i++)
      {
        /* setup the molecular coordinate system (i',j',k') */
        /* because the coodinate system of the box forms a unit matrix */
        /* (i',j',k') is identical with the rotation matrix */
        clear_mat(rot);


        /* k' = unitv(r(atom0) - r(atom1)) */
        pbc_dx(&pbc,x[index[NDX_REF1][i]],x[index[NDX_REF2][i]],k_mol);
        unitv(k_mol,rot[2]);
        
        /* i' = unitv(k' x (r(atom2) - r(atom1))) */
        pbc_dx(&pbc,x[index[NDX_REF3][i]],x[index[NDX_REF2][i]],i1_mol);
        cprod(i1_mol,rot[2],i2_mol);
        unitv(i2_mol,rot[0]);
      
        /* j' = k' x i' */
        cprod(rot[2],rot[0],rot[1]);


        /* set the point of reference */
        if ( mode == 2 )
          copy_rvec(x[index[NDX_REF3][i]],xi);
        else
          copy_rvec(x[index[NDX_REF1][i]],xi);


        /* make the reference */
        if ( bRef )
          {
            for (j=0; j<isize[G_REFMOL]; j++)
              {
                pbc_dx(&pbc,xi,x[index[G_REFMOL][j]],dx);
                mvmul(rot,dx,dx_mol);
                rvec_inc(x_refmol[j],dx_mol);
                for(k=XX; k<=ZZ; k++)
                   x_refmol[j][k] = x_refmol[j][k] / 2;
              }
          }


        /* Copy the indexed coordinates to a continuous array */
        for(j=0; j<isize[G_SDF]; j++)
          copy_rvec(x[index[G_SDF][j]],x_i1[j]);
        
        /* count the SDF */
        for(j=0; j<isize[G_SDF]; j++) 
          {
            /* Exclude peaks from the reference set */
            bInGroup=FALSE;
            for (k=NDX_REF1; k<=NDX_REF3; k++)
              if ( index[G_SDF][j] == index[k][i] )
                bInGroup=TRUE;


            if ( !bInGroup )
              {
                pbc_dx(&pbc,xi,x_i1[j],dx);
            
                /* transfer dx to the molecular coordinate system */
                mvmul(rot,dx,dx_mol);


                /* check cutoff's and count */
                if ( dx_mol[XX] > -cutoff[XX] && dx_mol[XX] < cutoff[XX] )
                  if ( dx_mol[YY] > -cutoff[YY] && dx_mol[YY] < cutoff[YY] )
                    if ( dx_mol[ZZ] > -cutoff[ZZ] && dx_mol[ZZ] < cutoff[ZZ] )
                      {
                        X = (int)(floor(dx_mol[XX]*invbinw)) + (nbin[XX]-1)/2 
+1;
                        Y = (int)(floor(dx_mol[YY]*invbinw)) + (nbin[YY]-1)/2 
+1;
                        Z = (int)(floor(dx_mol[ZZ]*invbinw)) + (nbin[ZZ]-1)/2 
+1;
                        count[X][Y][Z]++;
                        normfac++;
                      }
              }
          }
      }
  } while (read_next_x(status,&t,natoms,x,box));
  fprintf(stderr,"\n");
  
  close_trj(status);
  
  sfree(x);


  /* write the reference strcture*/
  if ( bRef )
    {
      fp=ffopen(fnREF,"w"); 
      fprintf(fp,"%s\n",title);
      fprintf(fp,"  %d\n",isize[G_REFMOL]);


      for (i=0; i<isize[G_REFMOL]; i++)
        fprintf(fp,"%5d%5s%5s%5d%8.3f%8.3f%8.3f\n",
                top.atoms.resinfo[top.atoms.atom[index[G_REFMOL][i]].resind].nr,
                *(top.atoms.resinfo[top.atoms.atom[index[G_REFMOL][i]].resind].name),
                *(top.atoms.atomname[index[G_REFMOL][i]]),i+1,
                -1*x_refmol[i][XX],-1*x_refmol[i][YY],-1*x_refmol[i][ZZ]);
      /* Inserted -1* on the line above three times */
      fprintf(fp,"   10.00000   10.00000   10.00000\n");
      ffclose(fp);
      fprintf(stderr,"\nWrote reference structure. (%d Atoms)\n",isize[G_REFMOL]);
    }


  /* Calculate the mean probability density */
  fprintf(stderr,"\nNumber of configuations used for SDF: %d\n",(int)normfac);


  normfac = nbin[0]*nbin[1]*nbin[2] / normfac;


  fprintf(stderr,"\nMean probability density: %f\n",1/normfac);


  /* normalize the SDF and write output */
  /* see http://www.csc.fi/gopenmol/index.phtml for documentation */
  fp=ffopen(fnSDF,"wb"); 


  /* rank */
  i_write(fp,3);


  /* Type of surface */
  i_write(fp,42);


  /* Zdim, Ydim, Xdim */
  for (i=ZZ; i>=XX; i--)
    i_write(fp,nbin[i]);


  /* [Z,Y,X][min,max] (box corners in Angstroem)*/
  for (i=ZZ; i>=XX; i--)
    {
      f_write(fp,-cutoff[i]*10);
      f_write(fp,cutoff[i]*10);
    }


/* Original Code
  for (i=1; i<nbin[2]+1; i++)
    for (j=1; j<nbin[1]+1; j++)
      for (k=1; k<nbin[0]+1; k++) 
        {
          sdf = normfac * count[k][j][i];
          if ( sdf < min_sdf ) min_sdf = sdf;
          if ( sdf > max_sdf ) max_sdf = sdf;
          f_write(fp,sdf);
        }*/
/* Changed Code to Mirror SDF to correct coordinates */
  for (i=nbin[2]; i>0; i--)
    for (j=nbin[1]; j>0; j--)
      for (k=nbin[0]; k>0; k--)
        {
          sdf = normfac * count[k][j][i];
          if ( sdf < min_sdf ) min_sdf = sdf;
          if ( sdf > max_sdf ) max_sdf = sdf;
          f_write(fp,sdf);
        }

  fprintf(stderr,"\nMin: %f Max: %f\n",min_sdf,max_sdf);


  ffclose(fp); 


  /* Give back the mem */
  for(i=0; i<nbin[0]+1; i++)
    {
      for (j=0; j<nbin[1]+1; j++)
        {
          sfree(count[i][j]);
        }
      sfree(count[i]);
    }
  sfree(count);
}
Пример #8
0
void
ClearLCD()
{
	i_write(0x01);
}
Пример #9
0
void
LCDLine_2(void)
{
	i_write(0xc0);
}
Пример #10
0
void
LCDLine_1(void)
{
	i_write(0x80);
}
Пример #11
0
void Clear_LCD(void )			/* Erases the LCD display */
{
    i_write(0b00000001);/*   Display Clear*/
}