void iauC2tcio(double rc2i[3][3], double era, double rpom[3][3], double rc2t[3][3]) /* ** - - - - - - - - - - ** i a u C 2 t c i o ** - - - - - - - - - - ** ** Assemble the celestial to terrestrial matrix from CIO-based ** components (the celestial-to-intermediate matrix, the Earth Rotation ** Angle and the polar motion matrix). ** ** Status: support function. ** ** Given: ** rc2i double[3][3] celestial-to-intermediate matrix ** era double Earth rotation angle ** rpom double[3][3] polar-motion matrix ** ** Returned: ** rc2t double[3][3] celestial-to-terrestrial matrix ** ** Notes: ** ** 1) This function constructs the rotation matrix that transforms ** vectors in the celestial system into vectors in the terrestrial ** system. It does so starting from precomputed components, namely ** the matrix which rotates from celestial coordinates to the ** intermediate frame, the Earth rotation angle and the polar motion ** matrix. One use of the present function is when generating a ** series of celestial-to-terrestrial matrices where only the Earth ** Rotation Angle changes, avoiding the considerable overhead of ** recomputing the precession-nutation more often than necessary to ** achieve given accuracy objectives. ** ** 2) The relationship between the arguments is as follows: ** ** [TRS] = RPOM * R_3(ERA) * rc2i * [CRS] ** ** = rc2t * [CRS] ** ** where [CRS] is a vector in the Geocentric Celestial Reference ** System and [TRS] is a vector in the International Terrestrial ** Reference System (see IERS Conventions 2003). ** ** Called: ** iauCr copy r-matrix ** iauRz rotate around Z-axis ** iauRxr product of two r-matrices ** ** Reference: ** ** McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003), ** IERS Technical Note No. 32, BKG ** ** This revision: 2008 May 11 ** ** Original version 2012-03-01 ** ** Copyright (C) 2013 Naoki Arita. See notes at end. */ { double r[3][3]; /* Construct the matrix. */ iauCr(rc2i, r); iauRz(era, r); iauRxr(rpom, r, rc2t); return; /*---------------------------------------------------------------------- ** ** Celes is a wrapper of the SOFA Library for Ruby. ** ** This file is redistributed and relicensed in accordance with ** the SOFA Software License (http://www.iausofa.org/tandc.html). ** ** The original library is available from IAU Standards of ** Fundamental Astronomy (http://www.iausofa.org/). ** ** ** ** ** ** Copyright (C) 2013, Naoki Arita ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions ** are met: ** ** 1 Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** ** 2 Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in ** the documentation and/or other materials provided with the ** distribution. ** ** 3 Neither the name of the Standards Of Fundamental Astronomy Board, ** the International Astronomical Union nor the names of its ** contributors may be used to endorse or promote products derived ** from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ** FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ** COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, ** BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; ** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ** CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ** LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ** ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ** POSSIBILITY OF SUCH DAMAGE. ** **--------------------------------------------------------------------*/ }
void iauPmat76(double date1, double date2, double rmatp[3][3]) /* ** - - - - - - - - - - ** i a u P m a t 7 6 ** - - - - - - - - - - ** ** Precession matrix from J2000.0 to a specified date, IAU 1976 model. ** ** This function is part of the International Astronomical Union's ** SOFA (Standards Of Fundamental Astronomy) software collection. ** ** Status: support function. ** ** Given: ** date1,date2 double ending date, TT (Note 1) ** ** Returned: ** rmatp double[3][3] precession matrix, J2000.0 -> date1+date2 ** ** Notes: ** ** 1) The TT date date1+date2 is a Julian Date, apportioned in any ** convenient way between the two arguments. For example, ** JD(TT)=2450123.7 could be expressed in any of these ways, ** among others: ** ** date1 date2 ** ** 2450123.7 0.0 (JD method) ** 2451545.0 -1421.3 (J2000 method) ** 2400000.5 50123.2 (MJD method) ** 2450123.5 0.2 (date & time method) ** ** The JD method is the most natural and convenient to use in ** cases where the loss of several decimal digits of resolution ** is acceptable. The J2000 method is best matched to the way ** the argument is handled internally and will deliver the ** optimum resolution. The MJD method and the date & time methods ** are both good compromises between resolution and convenience. ** ** 2) The matrix operates in the sense V(date) = RMATP * V(J2000), ** where the p-vector V(J2000) is with respect to the mean ** equatorial triad of epoch J2000.0 and the p-vector V(date) ** is with respect to the mean equatorial triad of the given ** date. ** ** 3) Though the matrix method itself is rigorous, the precession ** angles are expressed through canonical polynomials which are ** valid only for a limited time span. In addition, the IAU 1976 ** precession rate is known to be imperfect. The absolute accuracy ** of the present formulation is better than 0.1 arcsec from ** 1960AD to 2040AD, better than 1 arcsec from 1640AD to 2360AD, ** and remains below 3 arcsec for the whole of the period ** 500BC to 3000AD. The errors exceed 10 arcsec outside the ** range 1200BC to 3900AD, exceed 100 arcsec outside 4200BC to ** 5600AD and exceed 1000 arcsec outside 6800BC to 8200AD. ** ** Called: ** iauPrec76 accumulated precession angles, IAU 1976 ** iauIr initialize r-matrix to identity ** iauRz rotate around Z-axis ** iauRy rotate around Y-axis ** iauCr copy r-matrix ** ** References: ** ** Lieske, J.H., 1979, Astron.Astrophys. 73, 282. ** equations (6) & (7), p283. ** ** Kaplan,G.H., 1981. USNO circular no. 163, pA2. ** ** This revision: 2013 June 18 ** ** SOFA release 2016-05-03 ** ** Copyright (C) 2016 IAU SOFA Board. See notes at end. */ { double zeta, z, theta, wmat[3][3]; /* Precession Euler angles, J2000.0 to specified date. */ iauPrec76(DJ00, 0.0, date1, date2, &zeta, &z, &theta); /* Form the rotation matrix. */ iauIr( wmat); iauRz( -zeta, wmat); iauRy( theta, wmat); iauRz( -z, wmat); iauCr( wmat, rmatp); return; /*---------------------------------------------------------------------- ** ** Copyright (C) 2016 ** Standards Of Fundamental Astronomy Board ** of the International Astronomical Union. ** ** ===================== ** SOFA Software License ** ===================== ** ** NOTICE TO USER: ** ** BY USING THIS SOFTWARE YOU ACCEPT THE FOLLOWING SIX TERMS AND ** CONDITIONS WHICH APPLY TO ITS USE. ** ** 1. The Software is owned by the IAU SOFA Board ("SOFA"). ** ** 2. Permission is granted to anyone to use the SOFA software for any ** purpose, including commercial applications, free of charge and ** without payment of royalties, subject to the conditions and ** restrictions listed below. ** ** 3. You (the user) may copy and distribute SOFA source code to others, ** and use and adapt its code and algorithms in your own software, ** on a world-wide, royalty-free basis. That portion of your ** distribution that does not consist of intact and unchanged copies ** of SOFA source code files is a "derived work" that must comply ** with the following requirements: ** ** a) Your work shall be marked or carry a statement that it ** (i) uses routines and computations derived by you from ** software provided by SOFA under license to you; and ** (ii) does not itself constitute software provided by and/or ** endorsed by SOFA. ** ** b) The source code of your derived work must contain descriptions ** of how the derived work is based upon, contains and/or differs ** from the original SOFA software. ** ** c) The names of all routines in your derived work shall not ** include the prefix "iau" or "sofa" or trivial modifications ** thereof such as changes of case. ** ** d) The origin of the SOFA components of your derived work must ** not be misrepresented; you must not claim that you wrote the ** original software, nor file a patent application for SOFA ** software or algorithms embedded in the SOFA software. ** ** e) These requirements must be reproduced intact in any source ** distribution and shall apply to anyone to whom you have ** granted a further right to modify the source code of your ** derived work. ** ** Note that, as originally distributed, the SOFA software is ** intended to be a definitive implementation of the IAU standards, ** and consequently third-party modifications are discouraged. All ** variations, no matter how minor, must be explicitly marked as ** such, as explained above. ** ** 4. You shall not cause the SOFA software to be brought into ** disrepute, either by misuse, or use for inappropriate tasks, or ** by inappropriate modification. ** ** 5. The SOFA software is provided "as is" and SOFA makes no warranty ** as to its use or performance. SOFA does not and cannot warrant ** the performance or results which the user may obtain by using the ** SOFA software. SOFA makes no warranties, express or implied, as ** to non-infringement of third party rights, merchantability, or ** fitness for any particular purpose. In no event will SOFA be ** liable to the user for any consequential, incidental, or special ** damages, including any lost profits or lost savings, even if a ** SOFA representative has been advised of such damages, or for any ** claim by any third party. ** ** 6. The provision of any version of the SOFA software under the terms ** and conditions specified herein does not imply that future ** versions will also be made available under the same terms and ** conditions. * ** In any published work or commercial product which uses the SOFA ** software directly, acknowledgement (see www.iausofa.org) is ** appreciated. ** ** Correspondence concerning SOFA software should be addressed as ** follows: ** ** By email: [email protected] ** By post: IAU SOFA Center ** HM Nautical Almanac Office ** UK Hydrographic Office ** Admiralty Way, Taunton ** Somerset, TA1 2DN ** United Kingdom ** **--------------------------------------------------------------------*/ }
void iauPn00(double date1, double date2, double dpsi, double deps, double *epsa, double rb[3][3], double rp[3][3], double rbp[3][3], double rn[3][3], double rbpn[3][3]) /* ** - - - - - - - - ** i a u P n 0 0 ** - - - - - - - - ** ** Precession-nutation, IAU 2000 model: a multi-purpose function, ** supporting classical (equinox-based) use directly and CIO-based ** use indirectly. ** ** This function is part of the International Astronomical Union's ** SOFA (Standards Of Fundamental Astronomy) software collection. ** ** Status: support function. ** ** Given: ** date1,date2 double TT as a 2-part Julian Date (Note 1) ** dpsi,deps double nutation (Note 2) ** ** Returned: ** epsa double mean obliquity (Note 3) ** rb double[3][3] frame bias matrix (Note 4) ** rp double[3][3] precession matrix (Note 5) ** rbp double[3][3] bias-precession matrix (Note 6) ** rn double[3][3] nutation matrix (Note 7) ** rbpn double[3][3] GCRS-to-true matrix (Note 8) ** ** Notes: ** ** 1) The TT date date1+date2 is a Julian Date, apportioned in any ** convenient way between the two arguments. For example, ** JD(TT)=2450123.7 could be expressed in any of these ways, ** among others: ** ** date1 date2 ** ** 2450123.7 0.0 (JD method) ** 2451545.0 -1421.3 (J2000 method) ** 2400000.5 50123.2 (MJD method) ** 2450123.5 0.2 (date & time method) ** ** The JD method is the most natural and convenient to use in ** cases where the loss of several decimal digits of resolution ** is acceptable. The J2000 method is best matched to the way ** the argument is handled internally and will deliver the ** optimum resolution. The MJD method and the date & time methods ** are both good compromises between resolution and convenience. ** ** 2) The caller is responsible for providing the nutation components; ** they are in longitude and obliquity, in radians and are with ** respect to the equinox and ecliptic of date. For high-accuracy ** applications, free core nutation should be included as well as ** any other relevant corrections to the position of the CIP. ** ** 3) The returned mean obliquity is consistent with the IAU 2000 ** precession-nutation models. ** ** 4) The matrix rb transforms vectors from GCRS to J2000.0 mean ** equator and equinox by applying frame bias. ** ** 5) The matrix rp transforms vectors from J2000.0 mean equator and ** equinox to mean equator and equinox of date by applying ** precession. ** ** 6) The matrix rbp transforms vectors from GCRS to mean equator and ** equinox of date by applying frame bias then precession. It is ** the product rp x rb. ** ** 7) The matrix rn transforms vectors from mean equator and equinox of ** date to true equator and equinox of date by applying the nutation ** (luni-solar + planetary). ** ** 8) The matrix rbpn transforms vectors from GCRS to true equator and ** equinox of date. It is the product rn x rbp, applying frame ** bias, precession and nutation in that order. ** ** 9) It is permissible to re-use the same array in the returned ** arguments. The arrays are filled in the order given. ** ** Called: ** iauPr00 IAU 2000 precession adjustments ** iauObl80 mean obliquity, IAU 1980 ** iauBp00 frame bias and precession matrices, IAU 2000 ** iauCr copy r-matrix ** iauNumat form nutation matrix ** iauRxr product of two r-matrices ** ** Reference: ** ** Capitaine, N., Chapront, J., Lambert, S. and Wallace, P., ** "Expressions for the Celestial Intermediate Pole and Celestial ** Ephemeris Origin consistent with the IAU 2000A precession- ** nutation model", Astron.Astrophys. 400, 1145-1154 (2003) ** ** n.b. The celestial ephemeris origin (CEO) was renamed "celestial ** intermediate origin" (CIO) by IAU 2006 Resolution 2. ** ** This revision: 2013 June 18 ** ** SOFA release 2015-02-09 ** ** Copyright (C) 2015 IAU SOFA Board. See notes at end. */ { double dpsipr, depspr, rbpw[3][3], rnw[3][3]; /* IAU 2000 precession-rate adjustments. */ iauPr00(date1, date2, &dpsipr, &depspr); /* Mean obliquity, consistent with IAU 2000 precession-nutation. */ *epsa = iauObl80(date1, date2) + depspr; /* Frame bias and precession matrices and their product. */ iauBp00(date1, date2, rb, rp, rbpw); iauCr(rbpw, rbp); /* Nutation matrix. */ iauNumat(*epsa, dpsi, deps, rnw); iauCr(rnw, rn); /* Bias-precession-nutation matrix (classical). */ iauRxr(rnw, rbpw, rbpn); return; /*---------------------------------------------------------------------- ** ** Copyright (C) 2015 ** Standards Of Fundamental Astronomy Board ** of the International Astronomical Union. ** ** ===================== ** SOFA Software License ** ===================== ** ** NOTICE TO USER: ** ** BY USING THIS SOFTWARE YOU ACCEPT THE FOLLOWING SIX TERMS AND ** CONDITIONS WHICH APPLY TO ITS USE. ** ** 1. The Software is owned by the IAU SOFA Board ("SOFA"). ** ** 2. Permission is granted to anyone to use the SOFA software for any ** purpose, including commercial applications, free of charge and ** without payment of royalties, subject to the conditions and ** restrictions listed below. ** ** 3. You (the user) may copy and distribute SOFA source code to others, ** and use and adapt its code and algorithms in your own software, ** on a world-wide, royalty-free basis. That portion of your ** distribution that does not consist of intact and unchanged copies ** of SOFA source code files is a "derived work" that must comply ** with the following requirements: ** ** a) Your work shall be marked or carry a statement that it ** (i) uses routines and computations derived by you from ** software provided by SOFA under license to you; and ** (ii) does not itself constitute software provided by and/or ** endorsed by SOFA. ** ** b) The source code of your derived work must contain descriptions ** of how the derived work is based upon, contains and/or differs ** from the original SOFA software. ** ** c) The names of all routines in your derived work shall not ** include the prefix "iau" or "sofa" or trivial modifications ** thereof such as changes of case. ** ** d) The origin of the SOFA components of your derived work must ** not be misrepresented; you must not claim that you wrote the ** original software, nor file a patent application for SOFA ** software or algorithms embedded in the SOFA software. ** ** e) These requirements must be reproduced intact in any source ** distribution and shall apply to anyone to whom you have ** granted a further right to modify the source code of your ** derived work. ** ** Note that, as originally distributed, the SOFA software is ** intended to be a definitive implementation of the IAU standards, ** and consequently third-party modifications are discouraged. All ** variations, no matter how minor, must be explicitly marked as ** such, as explained above. ** ** 4. You shall not cause the SOFA software to be brought into ** disrepute, either by misuse, or use for inappropriate tasks, or ** by inappropriate modification. ** ** 5. The SOFA software is provided "as is" and SOFA makes no warranty ** as to its use or performance. SOFA does not and cannot warrant ** the performance or results which the user may obtain by using the ** SOFA software. SOFA makes no warranties, express or implied, as ** to non-infringement of third party rights, merchantability, or ** fitness for any particular purpose. In no event will SOFA be ** liable to the user for any consequential, incidental, or special ** damages, including any lost profits or lost savings, even if a ** SOFA representative has been advised of such damages, or for any ** claim by any third party. ** ** 6. The provision of any version of the SOFA software under the terms ** and conditions specified herein does not imply that future ** versions will also be made available under the same terms and ** conditions. * ** In any published work or commercial product which uses the SOFA ** software directly, acknowledgement (see www.iausofa.org) is ** appreciated. ** ** Correspondence concerning SOFA software should be addressed as ** follows: ** ** By email: [email protected] ** By post: IAU SOFA Center ** HM Nautical Almanac Office ** UK Hydrographic Office ** Admiralty Way, Taunton ** Somerset, TA1 2DN ** United Kingdom ** **--------------------------------------------------------------------*/ }
void iauTr(double r[3][3], double rt[3][3]) /* ** - - - - - - ** i a u T r ** - - - - - - ** ** Transpose an r-matrix. ** ** This function is part of the International Astronomical Union's ** SOFA (Standards Of Fundamental Astronomy) software collection. ** ** Status: vector/matrix support function. ** ** Given: ** r double[3][3] r-matrix ** ** Returned: ** rt double[3][3] transpose ** ** Note: ** It is permissible for r and rt to be the same array. ** ** Called: ** iauCr copy r-matrix ** ** This revision: 2013 June 18 ** ** SOFA release 2015-02-09 ** ** Copyright (C) 2015 IAU SOFA Board. See notes at end. */ { double wm[3][3]; int i, j; for (i = 0; i < 3; i++) { for (j = 0; j < 3; j++) { wm[i][j] = r[j][i]; } } iauCr(wm, rt); return; /*---------------------------------------------------------------------- ** ** Copyright (C) 2015 ** Standards Of Fundamental Astronomy Board ** of the International Astronomical Union. ** ** ===================== ** SOFA Software License ** ===================== ** ** NOTICE TO USER: ** ** BY USING THIS SOFTWARE YOU ACCEPT THE FOLLOWING SIX TERMS AND ** CONDITIONS WHICH APPLY TO ITS USE. ** ** 1. The Software is owned by the IAU SOFA Board ("SOFA"). ** ** 2. Permission is granted to anyone to use the SOFA software for any ** purpose, including commercial applications, free of charge and ** without payment of royalties, subject to the conditions and ** restrictions listed below. ** ** 3. You (the user) may copy and distribute SOFA source code to others, ** and use and adapt its code and algorithms in your own software, ** on a world-wide, royalty-free basis. That portion of your ** distribution that does not consist of intact and unchanged copies ** of SOFA source code files is a "derived work" that must comply ** with the following requirements: ** ** a) Your work shall be marked or carry a statement that it ** (i) uses routines and computations derived by you from ** software provided by SOFA under license to you; and ** (ii) does not itself constitute software provided by and/or ** endorsed by SOFA. ** ** b) The source code of your derived work must contain descriptions ** of how the derived work is based upon, contains and/or differs ** from the original SOFA software. ** ** c) The names of all routines in your derived work shall not ** include the prefix "iau" or "sofa" or trivial modifications ** thereof such as changes of case. ** ** d) The origin of the SOFA components of your derived work must ** not be misrepresented; you must not claim that you wrote the ** original software, nor file a patent application for SOFA ** software or algorithms embedded in the SOFA software. ** ** e) These requirements must be reproduced intact in any source ** distribution and shall apply to anyone to whom you have ** granted a further right to modify the source code of your ** derived work. ** ** Note that, as originally distributed, the SOFA software is ** intended to be a definitive implementation of the IAU standards, ** and consequently third-party modifications are discouraged. All ** variations, no matter how minor, must be explicitly marked as ** such, as explained above. ** ** 4. You shall not cause the SOFA software to be brought into ** disrepute, either by misuse, or use for inappropriate tasks, or ** by inappropriate modification. ** ** 5. The SOFA software is provided "as is" and SOFA makes no warranty ** as to its use or performance. SOFA does not and cannot warrant ** the performance or results which the user may obtain by using the ** SOFA software. SOFA makes no warranties, express or implied, as ** to non-infringement of third party rights, merchantability, or ** fitness for any particular purpose. In no event will SOFA be ** liable to the user for any consequential, incidental, or special ** damages, including any lost profits or lost savings, even if a ** SOFA representative has been advised of such damages, or for any ** claim by any third party. ** ** 6. The provision of any version of the SOFA software under the terms ** and conditions specified herein does not imply that future ** versions will also be made available under the same terms and ** conditions. * ** In any published work or commercial product which uses the SOFA ** software directly, acknowledgement (see www.iausofa.org) is ** appreciated. ** ** Correspondence concerning SOFA software should be addressed as ** follows: ** ** By email: [email protected] ** By post: IAU SOFA Center ** HM Nautical Almanac Office ** UK Hydrographic Office ** Admiralty Way, Taunton ** Somerset, TA1 2DN ** United Kingdom ** **--------------------------------------------------------------------*/ }
void iauApco(double date1, double date2, double ebpv[2][3], double ehp[3], double x, double y, double s, double theta, double elong, double phi, double hm, double xp, double yp, double sp, double refa, double refb, iauASTROM *astrom) /* ** - - - - - - - - ** i a u A p c o ** - - - - - - - - ** ** For a terrestrial observer, prepare star-independent astrometry ** parameters for transformations between ICRS and observed ** coordinates. The caller supplies the Earth ephemeris, the Earth ** rotation information and the refraction constants as well as the ** site coordinates. ** ** This function is part of the International Astronomical Union's ** SOFA (Standards of Fundamental Astronomy) software collection. ** ** Status: support function. ** ** Given: ** date1 double TDB as a 2-part... ** date2 double ...Julian Date (Note 1) ** ebpv double[2][3] Earth barycentric PV (au, au/day, Note 2) ** ehp double[3] Earth heliocentric P (au, Note 2) ** x,y double CIP X,Y (components of unit vector) ** s double the CIO locator s (radians) ** theta double Earth rotation angle (radians) ** elong double longitude (radians, east +ve, Note 3) ** phi double latitude (geodetic, radians, Note 3) ** hm double height above ellipsoid (m, geodetic, Note 3) ** xp,yp double polar motion coordinates (radians, Note 4) ** sp double the TIO locator s' (radians, Note 4) ** refa double refraction constant A (radians, Note 5) ** refb double refraction constant B (radians, Note 5) ** ** Returned: ** astrom iauASTROM* star-independent astrometry parameters: ** pmt double PM time interval (SSB, Julian years) ** eb double[3] SSB to observer (vector, au) ** eh double[3] Sun to observer (unit vector) ** em double distance from Sun to observer (au) ** v double[3] barycentric observer velocity (vector, c) ** bm1 double sqrt(1-|v|^2): reciprocal of Lorenz factor ** bpn double[3][3] bias-precession-nutation matrix ** along double longitude + s' (radians) ** xpl double polar motion xp wrt local meridian (radians) ** ypl double polar motion yp wrt local meridian (radians) ** sphi double sine of geodetic latitude ** cphi double cosine of geodetic latitude ** diurab double magnitude of diurnal aberration vector ** eral double "local" Earth rotation angle (radians) ** refa double refraction constant A (radians) ** refb double refraction constant B (radians) ** ** Notes: ** ** 1) The TDB date date1+date2 is a Julian Date, apportioned in any ** convenient way between the two arguments. For example, ** JD(TDB)=2450123.7 could be expressed in any of these ways, among ** others: ** ** date1 date2 ** ** 2450123.7 0.0 (JD method) ** 2451545.0 -1421.3 (J2000 method) ** 2400000.5 50123.2 (MJD method) ** 2450123.5 0.2 (date & time method) ** ** The JD method is the most natural and convenient to use in cases ** where the loss of several decimal digits of resolution is ** acceptable. The J2000 method is best matched to the way the ** argument is handled internally and will deliver the optimum ** resolution. The MJD method and the date & time methods are both ** good compromises between resolution and convenience. For most ** applications of this function the choice will not be at all ** critical. ** ** TT can be used instead of TDB without any significant impact on ** accuracy. ** ** 2) The vectors eb, eh, and all the astrom vectors, are with respect ** to BCRS axes. ** ** 3) The geographical coordinates are with respect to the WGS84 ** reference ellipsoid. TAKE CARE WITH THE LONGITUDE SIGN ** CONVENTION: the longitude required by the present function is ** right-handed, i.e. east-positive, in accordance with geographical ** convention. ** ** 4) xp and yp are the coordinates (in radians) of the Celestial ** Intermediate Pole with respect to the International Terrestrial ** Reference System (see IERS Conventions), measured along the ** meridians 0 and 90 deg west respectively. sp is the TIO locator ** s', in radians, which positions the Terrestrial Intermediate ** Origin on the equator. For many applications, xp, yp and ** (especially) sp can be set to zero. ** ** Internally, the polar motion is stored in a form rotated onto the ** local meridian. ** ** 5) The refraction constants refa and refb are for use in a ** dZ = A*tan(Z)+B*tan^3(Z) model, where Z is the observed ** (i.e. refracted) zenith distance and dZ is the amount of ** refraction. ** ** 6) It is advisable to take great care with units, as even unlikely ** values of the input parameters are accepted and processed in ** accordance with the models used. ** ** 7) In cases where the caller does not wish to provide the Earth ** Ephemeris, the Earth rotation information and refraction ** constants, the function iauApco13 can be used instead of the ** present function. This starts from UTC and weather readings etc. ** and computes suitable values using other SOFA functions. ** ** 8) This is one of several functions that inserts into the astrom ** structure star-independent parameters needed for the chain of ** astrometric transformations ICRS <-> GCRS <-> CIRS <-> observed. ** ** The various functions support different classes of observer and ** portions of the transformation chain: ** ** functions observer transformation ** ** iauApcg iauApcg13 geocentric ICRS <-> GCRS ** iauApci iauApci13 terrestrial ICRS <-> CIRS ** iauApco iauApco13 terrestrial ICRS <-> observed ** iauApcs iauApcs13 space ICRS <-> GCRS ** iauAper iauAper13 terrestrial update Earth rotation ** iauApio iauApio13 terrestrial CIRS <-> observed ** ** Those with names ending in "13" use contemporary SOFA models to ** compute the various ephemerides. The others accept ephemerides ** supplied by the caller. ** ** The transformation from ICRS to GCRS covers space motion, ** parallax, light deflection, and aberration. From GCRS to CIRS ** comprises frame bias and precession-nutation. From CIRS to ** observed takes account of Earth rotation, polar motion, diurnal ** aberration and parallax (unless subsumed into the ICRS <-> GCRS ** transformation), and atmospheric refraction. ** ** 9) The context structure astrom produced by this function is used by ** iauAtioq, iauAtoiq, iauAtciq* and iauAticq*. ** ** Called: ** iauAper astrometry parameters: update ERA ** iauC2ixys celestial-to-intermediate matrix, given X,Y and s ** iauPvtob position/velocity of terrestrial station ** iauTrxpv product of transpose of r-matrix and pv-vector ** iauApcs astrometry parameters, ICRS-GCRS, space observer ** iauCr copy r-matrix ** ** This revision: 2013 October 9 ** ** SOFA release 2013-12-02 ** ** Copyright (C) 2013 IAU SOFA Board. See notes at end. */ { double sl, cl, r[3][3], pvc[2][3], pv[2][3]; /* Longitude with adjustment for TIO locator s'. */ astrom->along = elong + sp; /* Polar motion, rotated onto the local meridian. */ sl = sin(astrom->along); cl = cos(astrom->along); astrom->xpl = xp*cl - yp*sl; astrom->ypl = xp*sl + yp*cl; /* Functions of latitude. */ astrom->sphi = sin(phi); astrom->cphi = cos(phi); /* Refraction constants. */ astrom->refa = refa; astrom->refb = refb; /* Local Earth rotation angle. */ iauAper(theta, astrom); /* Disable the (redundant) diurnal aberration step. */ astrom->diurab = 0.0; /* CIO based BPN matrix. */ iauC2ixys(x, y, s, r); /* Observer's geocentric position and velocity (m, m/s, CIRS). */ iauPvtob(elong, phi, hm, xp, yp, sp, theta, pvc); /* Rotate into GCRS. */ iauTrxpv(r, pvc, pv); /* ICRS <-> GCRS parameters. */ iauApcs(date1, date2, pv, ebpv, ehp, astrom); /* Store the CIO based BPN matrix. */ iauCr(r, astrom->bpn ); /* Finished. */ /*---------------------------------------------------------------------- ** ** Copyright (C) 2013 ** Standards Of Fundamental Astronomy Board ** of the International Astronomical Union. ** ** ===================== ** SOFA Software License ** ===================== ** ** NOTICE TO USER: ** ** BY USING THIS SOFTWARE YOU ACCEPT THE FOLLOWING SIX TERMS AND ** CONDITIONS WHICH APPLY TO ITS USE. ** ** 1. The Software is owned by the IAU SOFA Board ("SOFA"). ** ** 2. Permission is granted to anyone to use the SOFA software for any ** purpose, including commercial applications, free of charge and ** without payment of royalties, subject to the conditions and ** restrictions listed below. ** ** 3. You (the user) may copy and distribute SOFA source code to others, ** and use and adapt its code and algorithms in your own software, ** on a world-wide, royalty-free basis. That portion of your ** distribution that does not consist of intact and unchanged copies ** of SOFA source code files is a "derived work" that must comply ** with the following requirements: ** ** a) Your work shall be marked or carry a statement that it ** (i) uses routines and computations derived by you from ** software provided by SOFA under license to you; and ** (ii) does not itself constitute software provided by and/or ** endorsed by SOFA. ** ** b) The source code of your derived work must contain descriptions ** of how the derived work is based upon, contains and/or differs ** from the original SOFA software. ** ** c) The names of all routines in your derived work shall not ** include the prefix "iau" or "sofa" or trivial modifications ** thereof such as changes of case. ** ** d) The origin of the SOFA components of your derived work must ** not be misrepresented; you must not claim that you wrote the ** original software, nor file a patent application for SOFA ** software or algorithms embedded in the SOFA software. ** ** e) These requirements must be reproduced intact in any source ** distribution and shall apply to anyone to whom you have ** granted a further right to modify the source code of your ** derived work. ** ** Note that, as originally distributed, the SOFA software is ** intended to be a definitive implementation of the IAU standards, ** and consequently third-party modifications are discouraged. All ** variations, no matter how minor, must be explicitly marked as ** such, as explained above. ** ** 4. You shall not cause the SOFA software to be brought into ** disrepute, either by misuse, or use for inappropriate tasks, or ** by inappropriate modification. ** ** 5. The SOFA software is provided "as is" and SOFA makes no warranty ** as to its use or performance. SOFA does not and cannot warrant ** the performance or results which the user may obtain by using the ** SOFA software. SOFA makes no warranties, express or implied, as ** to non-infringement of third party rights, merchantability, or ** fitness for any particular purpose. In no event will SOFA be ** liable to the user for any consequential, incidental, or special ** damages, including any lost profits or lost savings, even if a ** SOFA representative has been advised of such damages, or for any ** claim by any third party. ** ** 6. The provision of any version of the SOFA software under the terms ** and conditions specified herein does not imply that future ** versions will also be made available under the same terms and ** conditions. * ** In any published work or commercial product which uses the SOFA ** software directly, acknowledgement (see www.iausofa.org) is ** appreciated. ** ** Correspondence concerning SOFA software should be addressed as ** follows: ** ** By email: [email protected] ** By post: IAU SOFA Center ** HM Nautical Almanac Office ** UK Hydrographic Office ** Admiralty Way, Taunton ** Somerset, TA1 2DN ** United Kingdom ** **--------------------------------------------------------------------*/ }
void iauBp06(double date1, double date2, double rb[3][3], double rp[3][3], double rbp[3][3]) /* ** - - - - - - - - ** i a u B p 0 6 ** - - - - - - - - ** ** Frame bias and precession, IAU 2006. ** ** This function is part of the International Astronomical Union's ** SOFA (Standards Of Fundamental Astronomy) software collection. ** ** Status: support function. ** ** Given: ** date1,date2 double TT as a 2-part Julian Date (Note 1) ** ** Returned: ** rb double[3][3] frame bias matrix (Note 2) ** rp double[3][3] precession matrix (Note 3) ** rbp double[3][3] bias-precession matrix (Note 4) ** ** Notes: ** ** 1) The TT date date1+date2 is a Julian Date, apportioned in any ** convenient way between the two arguments. For example, ** JD(TT)=2450123.7 could be expressed in any of these ways, ** among others: ** ** date1 date2 ** ** 2450123.7 0.0 (JD method) ** 2451545.0 -1421.3 (J2000 method) ** 2400000.5 50123.2 (MJD method) ** 2450123.5 0.2 (date & time method) ** ** The JD method is the most natural and convenient to use in ** cases where the loss of several decimal digits of resolution ** is acceptable. The J2000 method is best matched to the way ** the argument is handled internally and will deliver the ** optimum resolution. The MJD method and the date & time methods ** are both good compromises between resolution and convenience. ** ** 2) The matrix rb transforms vectors from GCRS to mean J2000.0 by ** applying frame bias. ** ** 3) The matrix rp transforms vectors from mean J2000.0 to mean of ** date by applying precession. ** ** 4) The matrix rbp transforms vectors from GCRS to mean of date by ** applying frame bias then precession. It is the product rp x rb. ** ** 5) It is permissible to re-use the same array in the returned ** arguments. The arrays are filled in the order given. ** ** Called: ** iauPfw06 bias-precession F-W angles, IAU 2006 ** iauFw2m F-W angles to r-matrix ** iauPmat06 PB matrix, IAU 2006 ** iauTr transpose r-matrix ** iauRxr product of two r-matrices ** iauCr copy r-matrix ** ** References: ** ** Capitaine, N. & Wallace, P.T., 2006, Astron.Astrophys. 450, 855 ** ** Wallace, P.T. & Capitaine, N., 2006, Astron.Astrophys. 459, 981 ** ** This revision: 2013 August 21 ** ** SOFA release 2013-12-02 ** ** Copyright (C) 2013 IAU SOFA Board. See notes at end. */ { double gamb, phib, psib, epsa, rbpw[3][3], rbt[3][3]; /* B matrix. */ iauPfw06(DJM0, DJM00, &gamb, &phib, &psib, &epsa); iauFw2m(gamb, phib, psib, epsa, rb); /* PxB matrix (temporary). */ iauPmat06(date1, date2, rbpw); /* P matrix. */ iauTr(rb, rbt); iauRxr(rbpw, rbt, rp); /* PxB matrix. */ iauCr(rbpw, rbp); return; /*---------------------------------------------------------------------- ** ** Copyright (C) 2013 ** Standards Of Fundamental Astronomy Board ** of the International Astronomical Union. ** ** ===================== ** SOFA Software License ** ===================== ** ** NOTICE TO USER: ** ** BY USING THIS SOFTWARE YOU ACCEPT THE FOLLOWING SIX TERMS AND ** CONDITIONS WHICH APPLY TO ITS USE. ** ** 1. The Software is owned by the IAU SOFA Board ("SOFA"). ** ** 2. Permission is granted to anyone to use the SOFA software for any ** purpose, including commercial applications, free of charge and ** without payment of royalties, subject to the conditions and ** restrictions listed below. ** ** 3. You (the user) may copy and distribute SOFA source code to others, ** and use and adapt its code and algorithms in your own software, ** on a world-wide, royalty-free basis. That portion of your ** distribution that does not consist of intact and unchanged copies ** of SOFA source code files is a "derived work" that must comply ** with the following requirements: ** ** a) Your work shall be marked or carry a statement that it ** (i) uses routines and computations derived by you from ** software provided by SOFA under license to you; and ** (ii) does not itself constitute software provided by and/or ** endorsed by SOFA. ** ** b) The source code of your derived work must contain descriptions ** of how the derived work is based upon, contains and/or differs ** from the original SOFA software. ** ** c) The names of all routines in your derived work shall not ** include the prefix "iau" or "sofa" or trivial modifications ** thereof such as changes of case. ** ** d) The origin of the SOFA components of your derived work must ** not be misrepresented; you must not claim that you wrote the ** original software, nor file a patent application for SOFA ** software or algorithms embedded in the SOFA software. ** ** e) These requirements must be reproduced intact in any source ** distribution and shall apply to anyone to whom you have ** granted a further right to modify the source code of your ** derived work. ** ** Note that, as originally distributed, the SOFA software is ** intended to be a definitive implementation of the IAU standards, ** and consequently third-party modifications are discouraged. All ** variations, no matter how minor, must be explicitly marked as ** such, as explained above. ** ** 4. You shall not cause the SOFA software to be brought into ** disrepute, either by misuse, or use for inappropriate tasks, or ** by inappropriate modification. ** ** 5. The SOFA software is provided "as is" and SOFA makes no warranty ** as to its use or performance. SOFA does not and cannot warrant ** the performance or results which the user may obtain by using the ** SOFA software. SOFA makes no warranties, express or implied, as ** to non-infringement of third party rights, merchantability, or ** fitness for any particular purpose. In no event will SOFA be ** liable to the user for any consequential, incidental, or special ** damages, including any lost profits or lost savings, even if a ** SOFA representative has been advised of such damages, or for any ** claim by any third party. ** ** 6. The provision of any version of the SOFA software under the terms ** and conditions specified herein does not imply that future ** versions will also be made available under the same terms and ** conditions. * ** In any published work or commercial product which uses the SOFA ** software directly, acknowledgement (see www.iausofa.org) is ** appreciated. ** ** Correspondence concerning SOFA software should be addressed as ** follows: ** ** By email: [email protected] ** By post: IAU SOFA Center ** HM Nautical Almanac Office ** UK Hydrographic Office ** Admiralty Way, Taunton ** Somerset, TA1 2DN ** United Kingdom ** **--------------------------------------------------------------------*/ }
void iauBp00(double date1, double date2, double rb[3][3], double rp[3][3], double rbp[3][3]) /* ** - - - - - - - - ** i a u B p 0 0 ** - - - - - - - - ** ** Frame bias and precession, IAU 2000. ** ** Status: canonical model. ** ** Given: ** date1,date2 double TT as a 2-part Julian Date (Note 1) ** ** Returned: ** rb double[3][3] frame bias matrix (Note 2) ** rp double[3][3] precession matrix (Note 3) ** rbp double[3][3] bias-precession matrix (Note 4) ** ** Notes: ** ** 1) The TT date date1+date2 is a Julian Date, apportioned in any ** convenient way between the two arguments. For example, ** JD(TT)=2450123.7 could be expressed in any of these ways, ** among others: ** ** date1 date2 ** ** 2450123.7 0.0 (JD method) ** 2451545.0 -1421.3 (J2000 method) ** 2400000.5 50123.2 (MJD method) ** 2450123.5 0.2 (date & time method) ** ** The JD method is the most natural and convenient to use in ** cases where the loss of several decimal digits of resolution ** is acceptable. The J2000 method is best matched to the way ** the argument is handled internally and will deliver the ** optimum resolution. The MJD method and the date & time methods ** are both good compromises between resolution and convenience. ** ** 2) The matrix rb transforms vectors from GCRS to mean J2000.0 by ** applying frame bias. ** ** 3) The matrix rp transforms vectors from J2000.0 mean equator and ** equinox to mean equator and equinox of date by applying ** precession. ** ** 4) The matrix rbp transforms vectors from GCRS to mean equator and ** equinox of date by applying frame bias then precession. It is ** the product rp x rb. ** ** 5) It is permissible to re-use the same array in the returned ** arguments. The arrays are filled in the order given. ** ** Called: ** iauBi00 frame bias components, IAU 2000 ** iauPr00 IAU 2000 precession adjustments ** iauIr initialize r-matrix to identity ** iauRx rotate around X-axis ** iauRy rotate around Y-axis ** iauRz rotate around Z-axis ** iauCr copy r-matrix ** iauRxr product of two r-matrices ** ** Reference: ** "Expressions for the Celestial Intermediate Pole and Celestial ** Ephemeris Origin consistent with the IAU 2000A precession- ** nutation model", Astron.Astrophys. 400, 1145-1154 (2003) ** ** n.b. The celestial ephemeris origin (CEO) was renamed "celestial ** intermediate origin" (CIO) by IAU 2006 Resolution 2. ** ** This revision: 2010 January 18 ** ** Original version 2012-03-01 ** ** Copyright (C) 2013 Naoki Arita. See notes at end. */ { /* J2000.0 obliquity (Lieske et al. 1977) */ const double EPS0 = 84381.448 * DAS2R; double t, dpsibi, depsbi; double dra0, psia77, oma77, chia, dpsipr, depspr, psia, oma, rbw[3][3]; /* Interval between fundamental epoch J2000.0 and current date (JC). */ t = ((date1 - DJ00) + date2) / DJC; /* Frame bias. */ iauBi00(&dpsibi, &depsbi, &dra0); /* Precession angles (Lieske et al. 1977) */ psia77 = (5038.7784 + (-1.07259 + (-0.001147) * t) * t) * t * DAS2R; oma77 = EPS0 + ((0.05127 + (-0.007726) * t) * t) * t * DAS2R; chia = ( 10.5526 + (-2.38064 + (-0.001125) * t) * t) * t * DAS2R; /* Apply IAU 2000 precession corrections. */ iauPr00(date1, date2, &dpsipr, &depspr); psia = psia77 + dpsipr; oma = oma77 + depspr; /* Frame bias matrix: GCRS to J2000.0. */ iauIr(rbw); iauRz(dra0, rbw); iauRy(dpsibi * sin(EPS0), rbw); iauRx(-depsbi, rbw); iauCr(rbw, rb); /* Precession matrix: J2000.0 to mean of date. */ iauIr(rp); iauRx(EPS0, rp); iauRz(-psia, rp); iauRx(-oma, rp); iauRz(chia, rp); /* Bias-precession matrix: GCRS to mean of date. */ iauRxr(rp, rbw, rbp); return; /*---------------------------------------------------------------------- ** ** Celes is a wrapper of the SOFA Library for Ruby. ** ** This file is redistributed and relicensed in accordance with ** the SOFA Software License (http://www.iausofa.org/tandc.html). ** ** The original library is available from IAU Standards of ** Fundamental Astronomy (http://www.iausofa.org/). ** ** ** ** ** ** Copyright (C) 2013, Naoki Arita ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions ** are met: ** ** 1 Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** ** 2 Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in ** the documentation and/or other materials provided with the ** distribution. ** ** 3 Neither the name of the Standards Of Fundamental Astronomy Board, ** the International Astronomical Union nor the names of its ** contributors may be used to endorse or promote products derived ** from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ** FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ** COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, ** BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; ** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ** CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ** LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ** ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ** POSSIBILITY OF SUCH DAMAGE. ** **--------------------------------------------------------------------*/ }
void iauBp00(double date1, double date2, double rb[3][3], double rp[3][3], double rbp[3][3]) /* ** - - - - - - - - ** i a u B p 0 0 ** - - - - - - - - ** ** Frame bias and precession, IAU 2000. ** ** This function is part of the International Astronomical Union's ** SOFA (Standards Of Fundamental Astronomy) software collection. ** ** Status: canonical model. ** ** Given: ** date1,date2 double TT as a 2-part Julian Date (Note 1) ** ** Returned: ** rb double[3][3] frame bias matrix (Note 2) ** rp double[3][3] precession matrix (Note 3) ** rbp double[3][3] bias-precession matrix (Note 4) ** ** Notes: ** ** 1) The TT date date1+date2 is a Julian Date, apportioned in any ** convenient way between the two arguments. For example, ** JD(TT)=2450123.7 could be expressed in any of these ways, ** among others: ** ** date1 date2 ** ** 2450123.7 0.0 (JD method) ** 2451545.0 -1421.3 (J2000 method) ** 2400000.5 50123.2 (MJD method) ** 2450123.5 0.2 (date & time method) ** ** The JD method is the most natural and convenient to use in ** cases where the loss of several decimal digits of resolution ** is acceptable. The J2000 method is best matched to the way ** the argument is handled internally and will deliver the ** optimum resolution. The MJD method and the date & time methods ** are both good compromises between resolution and convenience. ** ** 2) The matrix rb transforms vectors from GCRS to mean J2000.0 by ** applying frame bias. ** ** 3) The matrix rp transforms vectors from J2000.0 mean equator and ** equinox to mean equator and equinox of date by applying ** precession. ** ** 4) The matrix rbp transforms vectors from GCRS to mean equator and ** equinox of date by applying frame bias then precession. It is ** the product rp x rb. ** ** 5) It is permissible to re-use the same array in the returned ** arguments. The arrays are filled in the order given. ** ** Called: ** iauBi00 frame bias components, IAU 2000 ** iauPr00 IAU 2000 precession adjustments ** iauIr initialize r-matrix to identity ** iauRx rotate around X-axis ** iauRy rotate around Y-axis ** iauRz rotate around Z-axis ** iauCr copy r-matrix ** iauRxr product of two r-matrices ** ** Reference: ** "Expressions for the Celestial Intermediate Pole and Celestial ** Ephemeris Origin consistent with the IAU 2000A precession- ** nutation model", Astron.Astrophys. 400, 1145-1154 (2003) ** ** n.b. The celestial ephemeris origin (CEO) was renamed "celestial ** intermediate origin" (CIO) by IAU 2006 Resolution 2. ** ** This revision: 2010 January 18 ** ** SOFA release 2010-12-01 ** ** Copyright (C) 2010 IAU SOFA Board. See notes at end. */ { /* J2000.0 obliquity (Lieske et al. 1977) */ const double EPS0 = 84381.448 * DAS2R; double t, dpsibi, depsbi; double dra0, psia77, oma77, chia, dpsipr, depspr, psia, oma, rbw[3][3]; /* Interval between fundamental epoch J2000.0 and current date (JC). */ t = ((date1 - DJ00) + date2) / DJC; /* Frame bias. */ iauBi00(&dpsibi, &depsbi, &dra0); /* Precession angles (Lieske et al. 1977) */ psia77 = (5038.7784 + (-1.07259 + (-0.001147) * t) * t) * t * DAS2R; oma77 = EPS0 + ((0.05127 + (-0.007726) * t) * t) * t * DAS2R; chia = ( 10.5526 + (-2.38064 + (-0.001125) * t) * t) * t * DAS2R; /* Apply IAU 2000 precession corrections. */ iauPr00(date1, date2, &dpsipr, &depspr); psia = psia77 + dpsipr; oma = oma77 + depspr; /* Frame bias matrix: GCRS to J2000.0. */ iauIr(rbw); iauRz(dra0, rbw); iauRy(dpsibi * sin(EPS0), rbw); iauRx(-depsbi, rbw); iauCr(rbw, rb); /* Precession matrix: J2000.0 to mean of date. */ iauIr(rp); iauRx(EPS0, rp); iauRz(-psia, rp); iauRx(-oma, rp); iauRz(chia, rp); /* Bias-precession matrix: GCRS to mean of date. */ iauRxr(rp, rbw, rbp); return; /*---------------------------------------------------------------------- ** ** Copyright (C) 2010 ** Standards Of Fundamental Astronomy Board ** of the International Astronomical Union. ** ** ===================== ** SOFA Software License ** ===================== ** ** NOTICE TO USER: ** ** BY USING THIS SOFTWARE YOU ACCEPT THE FOLLOWING TERMS AND CONDITIONS ** WHICH APPLY TO ITS USE. ** ** 1. The Software is owned by the IAU SOFA Board ("SOFA"). ** ** 2. Permission is granted to anyone to use the SOFA software for any ** purpose, including commercial applications, free of charge and ** without payment of royalties, subject to the conditions and ** restrictions listed below. ** ** 3. You (the user) may copy and distribute SOFA source code to others, ** and use and adapt its code and algorithms in your own software, ** on a world-wide, royalty-free basis. That portion of your ** distribution that does not consist of intact and unchanged copies ** of SOFA source code files is a "derived work" that must comply ** with the following requirements: ** ** a) Your work shall be marked or carry a statement that it ** (i) uses routines and computations derived by you from ** software provided by SOFA under license to you; and ** (ii) does not itself constitute software provided by and/or ** endorsed by SOFA. ** ** b) The source code of your derived work must contain descriptions ** of how the derived work is based upon, contains and/or differs ** from the original SOFA software. ** ** c) The name(s) of all routine(s) in your derived work shall not ** include the prefix "iau". ** ** d) The origin of the SOFA components of your derived work must ** not be misrepresented; you must not claim that you wrote the ** original software, nor file a patent application for SOFA ** software or algorithms embedded in the SOFA software. ** ** e) These requirements must be reproduced intact in any source ** distribution and shall apply to anyone to whom you have ** granted a further right to modify the source code of your ** derived work. ** ** Note that, as originally distributed, the SOFA software is ** intended to be a definitive implementation of the IAU standards, ** and consequently third-party modifications are discouraged. All ** variations, no matter how minor, must be explicitly marked as ** such, as explained above. ** ** 4. In any published work or commercial products which includes ** results achieved by using the SOFA software, you shall ** acknowledge that the SOFA software was used in obtaining those ** results. ** ** 5. You shall not cause the SOFA software to be brought into ** disrepute, either by misuse, or use for inappropriate tasks, or ** by inappropriate modification. ** ** 6. The SOFA software is provided "as is" and SOFA makes no warranty ** as to its use or performance. SOFA does not and cannot warrant ** the performance or results which the user may obtain by using the ** SOFA software. SOFA makes no warranties, express or implied, as ** to non-infringement of third party rights, merchantability, or ** fitness for any particular purpose. In no event will SOFA be ** liable to the user for any consequential, incidental, or special ** damages, including any lost profits or lost savings, even if a ** SOFA representative has been advised of such damages, or for any ** claim by any third party. ** ** 7. The provision of any version of the SOFA software under the terms ** and conditions specified herein does not imply that future ** versions will also be made available under the same terms and ** conditions. ** ** Correspondence concerning SOFA software should be addressed as ** follows: ** ** By email: [email protected] ** By post: IAU SOFA Center ** HM Nautical Almanac Office ** UK Hydrographic Office ** Admiralty Way, Taunton ** Somerset, TA1 2DN ** United Kingdom ** **--------------------------------------------------------------------*/ }