ssize_t psock_tcp_send(FAR struct socket *psock, FAR const void *buf, size_t len) { FAR struct tcp_conn_s *conn = (FAR struct tcp_conn_s *)psock->s_conn; struct send_s state; net_lock_t save; int err; int ret = OK; /* Verify that the sockfd corresponds to valid, allocated socket */ if (!psock || psock->s_crefs <= 0) { ndbg("ERROR: Invalid socket\n"); err = EBADF; goto errout; } /* If this is an un-connected socket, then return ENOTCONN */ if (psock->s_type != SOCK_STREAM || !_SS_ISCONNECTED(psock->s_flags)) { ndbg("ERROR: Not connected\n"); err = ENOTCONN; goto errout; } /* Make sure that we have the IP address mapping */ conn = (FAR struct tcp_conn_s *)psock->s_conn; DEBUGASSERT(conn); #if defined(CONFIG_NET_ARP_SEND) || defined(CONFIG_NET_ICMPv6_NEIGHBOR) #ifdef CONFIG_NET_ARP_SEND #ifdef CONFIG_NET_ICMPv6_NEIGHBOR if (psock->s_domain == PF_INET) #endif { /* Make sure that the IP address mapping is in the ARP table */ ret = arp_send(conn->u.ipv4.raddr); } #endif /* CONFIG_NET_ARP_SEND */ #ifdef CONFIG_NET_ICMPv6_NEIGHBOR #ifdef CONFIG_NET_ARP_SEND else #endif { /* Make sure that the IP address mapping is in the Neighbor Table */ ret = icmpv6_neighbor(conn->u.ipv6.raddr); } #endif /* CONFIG_NET_ICMPv6_NEIGHBOR */ /* Did we successfully get the address mapping? */ if (ret < 0) { ndbg("ERROR: Not reachable\n"); err = ENETUNREACH; goto errout; } #endif /* CONFIG_NET_ARP_SEND || CONFIG_NET_ICMPv6_NEIGHBOR */ /* Set the socket state to sending */ psock->s_flags = _SS_SETSTATE(psock->s_flags, _SF_SEND); /* Perform the TCP send operation */ /* Initialize the state structure. This is done with interrupts * disabled because we don't want anything to happen until we * are ready. */ save = net_lock(); memset(&state, 0, sizeof(struct send_s)); (void)sem_init(&state.snd_sem, 0, 0); /* Doesn't really fail */ state.snd_sock = psock; /* Socket descriptor to use */ state.snd_buflen = len; /* Number of bytes to send */ state.snd_buffer = buf; /* Buffer to send from */ if (len > 0) { /* Allocate resources to receive a callback */ state.snd_cb = tcp_callback_alloc(conn); if (state.snd_cb) { /* Get the initial sequence number that will be used */ state.snd_isn = tcp_getsequence(conn->sndseq); /* There is no outstanding, unacknowledged data after this * initial sequence number. */ conn->unacked = 0; /* Set the initial time for calculating timeouts */ #ifdef CONFIG_NET_SOCKOPTS state.snd_time = clock_systimer(); #endif /* Set up the callback in the connection */ state.snd_cb->flags = (TCP_ACKDATA | TCP_REXMIT | TCP_POLL | TCP_DISCONN_EVENTS); state.snd_cb->priv = (FAR void *)&state; state.snd_cb->event = tcpsend_interrupt; /* Notify the device driver of the availability of TX data */ send_txnotify(psock, conn); /* Wait for the send to complete or an error to occur: NOTES: (1) * net_lockedwait will also terminate if a signal is received, (2) interrupts * may be disabled! They will be re-enabled while the task sleeps and * automatically re-enabled when the task restarts. */ ret = net_lockedwait(&state.snd_sem); /* Make sure that no further interrupts are processed */ tcp_callback_free(conn, state.snd_cb); } } sem_destroy(&state.snd_sem); net_unlock(save); /* Set the socket state to idle */ psock->s_flags = _SS_SETSTATE(psock->s_flags, _SF_IDLE); /* Check for a errors. Errors are signalled by negative errno values * for the send length */ if (state.snd_sent < 0) { err = state.snd_sent; goto errout; } /* If net_lockedwait failed, then we were probably reawakened by a signal. In * this case, net_lockedwait will have set errno appropriately. */ if (ret < 0) { err = -ret; goto errout; } /* Return the number of bytes actually sent */ return state.snd_sent; errout: set_errno(err); return ERROR; }
ssize_t net_sendfile(int outfd, struct file *infile, off_t *offset, size_t count) { FAR struct socket *psock = sockfd_socket(outfd); FAR struct tcp_conn_s *conn; struct sendfile_s state; net_lock_t save; int err; /* Verify that the sockfd corresponds to valid, allocated socket */ if (!psock || psock->s_crefs <= 0) { ndbg("ERROR: Invalid socket\n"); err = EBADF; goto errout; } /* If this is an un-connected socket, then return ENOTCONN */ if (psock->s_type != SOCK_STREAM || !_SS_ISCONNECTED(psock->s_flags)) { ndbg("ERROR: Not connected\n"); err = ENOTCONN; goto errout; } /* Make sure that we have the IP address mapping */ conn = (FAR struct tcp_conn_s *)psock->s_conn; DEBUGASSERT(conn); #if defined(CONFIG_NET_ARP_SEND) || defined(CONFIG_NET_ICMPv6_NEIGHBOR) #ifdef CONFIG_NET_ARP_SEND #ifdef CONFIG_NET_ICMPv6_NEIGHBOR if (psock->s_domain == PF_INET) #endif { /* Make sure that the IP address mapping is in the ARP table */ ret = arp_send(conn->u.ipv4.raddr); } #endif /* CONFIG_NET_ARP_SEND */ #ifdef CONFIG_NET_ICMPv6_NEIGHBOR #ifdef CONFIG_NET_ARP_SEND else #endif { /* Make sure that the IP address mapping is in the Neighbor Table */ ret = icmpv6_neighbor(conn->u.ipv6.raddr); } #endif /* CONFIG_NET_ICMPv6_NEIGHBOR */ /* Did we successfully get the address mapping? */ if (ret < 0) { ndbg("ERROR: Not reachable\n"); err = ENETUNREACH; goto errout; } #endif /* CONFIG_NET_ARP_SEND || CONFIG_NET_ICMPv6_NEIGHBOR */ /* Set the socket state to sending */ psock->s_flags = _SS_SETSTATE(psock->s_flags, _SF_SEND); /* Initialize the state structure. This is done with interrupts * disabled because we don't want anything to happen until we * are ready. */ save = net_lock(); memset(&state, 0, sizeof(struct sendfile_s)); sem_init(&state. snd_sem, 0, 0); /* Doesn't really fail */ state.snd_sock = psock; /* Socket descriptor to use */ state.snd_foffset = offset ? *offset : 0; /* Input file offset */ state.snd_flen = count; /* Number of bytes to send */ state.snd_file = infile; /* File to read from */ /* Allocate resources to receive a callback */ state.snd_datacb = tcp_callback_alloc(conn); if (state.snd_datacb == NULL) { nlldbg("Failed to allocate data callback\n"); err = ENOMEM; goto errout_locked; } state.snd_ackcb = tcp_callback_alloc(conn); if (state.snd_ackcb == NULL) { nlldbg("Failed to allocate ack callback\n"); err = ENOMEM; goto errout_datacb; } /* Get the initial sequence number that will be used */ state.snd_isn = tcp_getsequence(conn->sndseq); /* There is no outstanding, unacknowledged data after this * initial sequence number. */ conn->unacked = 0; #ifdef CONFIG_NET_SOCKOPTS /* Set the initial time for calculating timeouts */ state.snd_time = clock_systimer(); #endif /* Set up the ACK callback in the connection */ state.snd_ackcb->flags = (TCP_ACKDATA | TCP_REXMIT | TCP_DISCONN_EVENTS); state.snd_ackcb->priv = (FAR void *)&state; state.snd_ackcb->event = ack_interrupt; /* Perform the TCP send operation */ do { state.snd_datacb->flags = TCP_POLL; state.snd_datacb->priv = (FAR void *)&state; state.snd_datacb->event = sendfile_interrupt; /* Notify the device driver of the availability of TX data */ sendfile_txnotify(psock, conn); net_lockedwait(&state.snd_sem); } while (state.snd_sent >= 0 && state.snd_acked < state.snd_flen); /* Set the socket state to idle */ psock->s_flags = _SS_SETSTATE(psock->s_flags, _SF_IDLE); tcp_callback_free(conn, state.snd_ackcb); errout_datacb: tcp_callback_free(conn, state.snd_datacb); errout_locked: sem_destroy(&state. snd_sem); net_unlock(save); errout: if (err) { set_errno(err); return ERROR; } else if (state.snd_sent < 0) { set_errno(-state.snd_sent); return ERROR; } else { return state.snd_sent; } }
ssize_t psock_tcp_send(FAR struct socket *psock, FAR const void *buf, size_t len) { FAR struct tcp_conn_s *conn; FAR struct tcp_wrbuffer_s *wrb; net_lock_t save; ssize_t result = 0; int errcode; int ret = OK; if (!psock || psock->s_crefs <= 0) { nerr("ERROR: Invalid socket\n"); errcode = EBADF; goto errout; } if (psock->s_type != SOCK_STREAM || !_SS_ISCONNECTED(psock->s_flags)) { nerr("ERROR: Not connected\n"); errcode = ENOTCONN; goto errout; } /* Make sure that we have the IP address mapping */ conn = (FAR struct tcp_conn_s *)psock->s_conn; DEBUGASSERT(conn); #if defined(CONFIG_NET_ARP_SEND) || defined(CONFIG_NET_ICMPv6_NEIGHBOR) #ifdef CONFIG_NET_ARP_SEND #ifdef CONFIG_NET_ICMPv6_NEIGHBOR if (psock->s_domain == PF_INET) #endif { /* Make sure that the IP address mapping is in the ARP table */ ret = arp_send(conn->u.ipv4.raddr); } #endif /* CONFIG_NET_ARP_SEND */ #ifdef CONFIG_NET_ICMPv6_NEIGHBOR #ifdef CONFIG_NET_ARP_SEND else #endif { /* Make sure that the IP address mapping is in the Neighbor Table */ ret = icmpv6_neighbor(conn->u.ipv6.raddr); } #endif /* CONFIG_NET_ICMPv6_NEIGHBOR */ /* Did we successfully get the address mapping? */ if (ret < 0) { nerr("ERROR: Not reachable\n"); errcode = ENETUNREACH; goto errout; } #endif /* CONFIG_NET_ARP_SEND || CONFIG_NET_ICMPv6_NEIGHBOR */ /* Dump the incoming buffer */ BUF_DUMP("psock_tcp_send", buf, len); /* Set the socket state to sending */ psock->s_flags = _SS_SETSTATE(psock->s_flags, _SF_SEND); if (len > 0) { /* Allocate a write buffer. Careful, the network will be momentarily * unlocked here. */ save = net_lock(); wrb = tcp_wrbuffer_alloc(); if (!wrb) { /* A buffer allocation error occurred */ nerr("ERROR: Failed to allocate write buffer\n"); errcode = ENOMEM; goto errout_with_lock; } /* Allocate resources to receive a callback */ if (!psock->s_sndcb) { psock->s_sndcb = tcp_callback_alloc(conn); } /* Test if the callback has been allocated */ if (!psock->s_sndcb) { /* A buffer allocation error occurred */ nerr("ERROR: Failed to allocate callback\n"); errcode = ENOMEM; goto errout_with_wrb; } /* Set up the callback in the connection */ psock->s_sndcb->flags = (TCP_ACKDATA | TCP_REXMIT | TCP_POLL | TCP_DISCONN_EVENTS); psock->s_sndcb->priv = (FAR void *)psock; psock->s_sndcb->event = psock_send_interrupt; /* Initialize the write buffer */ WRB_SEQNO(wrb) = (unsigned)-1; WRB_NRTX(wrb) = 0; result = WRB_COPYIN(wrb, (FAR uint8_t *)buf, len); /* Dump I/O buffer chain */ WRB_DUMP("I/O buffer chain", wrb, WRB_PKTLEN(wrb), 0); /* psock_send_interrupt() will send data in FIFO order from the * conn->write_q */ sq_addlast(&wrb->wb_node, &conn->write_q); ninfo("Queued WRB=%p pktlen=%u write_q(%p,%p)\n", wrb, WRB_PKTLEN(wrb), conn->write_q.head, conn->write_q.tail); /* Notify the device driver of the availability of TX data */ send_txnotify(psock, conn); net_unlock(save); } /* Set the socket state to idle */ psock->s_flags = _SS_SETSTATE(psock->s_flags, _SF_IDLE); /* Check for errors. Errors are signalled by negative errno values * for the send length */ if (result < 0) { errcode = result; goto errout; } /* If net_lockedwait failed, then we were probably reawakened by a signal. * In this case, net_lockedwait will have set errno appropriately. */ if (ret < 0) { errcode = -ret; goto errout; } /* Return the number of bytes actually sent */ return result; errout_with_wrb: tcp_wrbuffer_release(wrb); errout_with_lock: net_unlock(save); errout: set_errno(errcode); return ERROR; }
int icmpv6_ping(net_ipv6addr_t addr, uint16_t id, uint16_t seqno, uint16_t datalen, int dsecs) { struct icmpv6_ping_s state; net_lock_t save; #ifdef CONFIG_NET_ICMPv6_NEIGHBOR int ret; /* Make sure that the IP address mapping is in the Neighbor Table */ ret = icmpv6_neighbor(addr); if (ret < 0) { ndbg("ERROR: Not reachable\n"); return -ENETUNREACH; } #endif /* CONFIG_NET_ICMPv6_NEIGHBOR */ /* Initialize the state structure */ sem_init(&state.png_sem, 0, 0); state.png_ticks = DSEC2TICK(dsecs); /* System ticks to wait */ state.png_result = -ENOMEM; /* Assume allocation failure */ state.png_id = id; /* The ID to use in the ECHO request */ state.png_seqno = seqno; /* The seqno to use in the ECHO request */ state.png_datlen = datalen; /* The length of data to send in the ECHO request */ state.png_sent = false; /* ECHO request not yet sent */ net_ipv6addr_copy(state.png_addr, addr); /* Address of the peer to be ping'ed */ save = net_lock(); state.png_time = clock_systimer(); /* Set up the callback */ state.png_cb = icmpv6_callback_alloc(); if (state.png_cb) { state.png_cb->flags = (ICMPv6_POLL | ICMPv6_ECHOREPLY); state.png_cb->priv = (void*)&state; state.png_cb->event = ping_interrupt; state.png_result = -EINTR; /* Assume sem-wait interrupted by signal */ /* Notify the device driver of the availability of TX data */ #ifdef CONFIG_NETDEV_MULTINIC netdev_ipv6_txnotify(g_ipv6_allzeroaddr, state.png_addr); #else netdev_ipv6_txnotify(state.png_addr); #endif /* Wait for either the full round trip transfer to complete or * for timeout to occur. (1) net_lockedwait will also terminate if a * signal is received, (2) interrupts may be disabled! They will * be re-enabled while the task sleeps and automatically * re-enabled when the task restarts. */ nllvdbg("Start time: 0x%08x seqno: %d\n", state.png_time, seqno); net_lockedwait(&state.png_sem); icmpv6_callback_free(state.png_cb); } net_unlock(save); /* Return the negated error number in the event of a failure, or the * sequence number of the ECHO reply on success. */ if (!state.png_result) { nllvdbg("Return seqno=%d\n", state.png_seqno); return (int)state.png_seqno; } else { nlldbg("Return error=%d\n", -state.png_result); return state.png_result; } }
ssize_t psock_udp_sendto(FAR struct socket *psock, FAR const void *buf, size_t len, int flags, FAR const struct sockaddr *to, socklen_t tolen) { FAR struct udp_conn_s *conn; FAR struct net_driver_s *dev; struct sendto_s state; net_lock_t save; int ret; #if defined(CONFIG_NET_ARP_SEND) || defined(CONFIG_NET_ICMPv6_NEIGHBOR) #ifdef CONFIG_NET_ARP_SEND #ifdef CONFIG_NET_ICMPv6_NEIGHBOR if (psock->s_domain == PF_INET) #endif { FAR const struct sockaddr_in *into; /* Make sure that the IP address mapping is in the ARP table */ into = (FAR const struct sockaddr_in *)to; ret = arp_send(into->sin_addr.s_addr); } #endif /* CONFIG_NET_ARP_SEND */ #ifdef CONFIG_NET_ICMPv6_NEIGHBOR #ifdef CONFIG_NET_ARP_SEND else #endif { FAR const struct sockaddr_in6 *into; /* Make sure that the IP address mapping is in the Neighbor Table */ into = (FAR const struct sockaddr_in6 *)to; ret = icmpv6_neighbor(into->sin6_addr.s6_addr16); } #endif /* CONFIG_NET_ICMPv6_NEIGHBOR */ /* Did we successfully get the address mapping? */ if (ret < 0) { ndbg("ERROR: Peer not reachable\n"); return -ENETUNREACH; } #endif /* CONFIG_NET_ARP_SEND || CONFIG_NET_ICMPv6_NEIGHBOR */ /* Set the socket state to sending */ psock->s_flags = _SS_SETSTATE(psock->s_flags, _SF_SEND); /* Initialize the state structure. This is done with interrupts * disabled because we don't want anything to happen until we * are ready. */ save = net_lock(); memset(&state, 0, sizeof(struct sendto_s)); sem_init(&state.st_sem, 0, 0); state.st_buflen = len; state.st_buffer = buf; #if defined(CONFIG_NET_SENDTO_TIMEOUT) || defined(NEED_IPDOMAIN_SUPPORT) /* Save the reference to the socket structure if it will be needed for * asynchronous processing. */ state.st_sock = psock; #endif #ifdef CONFIG_NET_SENDTO_TIMEOUT /* Set the initial time for calculating timeouts */ state.st_time = clock_systimer(); #endif /* Setup the UDP socket. udp_connect will set the remote address in the * connection structure. */ conn = (FAR struct udp_conn_s *)psock->s_conn; DEBUGASSERT(conn); ret = udp_connect(conn, to); if (ret < 0) { ndbg("ERROR: udp_connect failed: %d\n", ret); goto errout_with_lock; } /* Get the device that will handle the remote packet transfers. This * should never be NULL. */ dev = udp_find_raddr_device(conn); if (dev == NULL) { ndbg("ERROR: udp_find_raddr_device failed\n"); ret = -ENETUNREACH; goto errout_with_lock; } /* Set up the callback in the connection */ state.st_cb = udp_callback_alloc(dev, conn); if (state.st_cb) { state.st_cb->flags = (UDP_POLL | NETDEV_DOWN); state.st_cb->priv = (void*)&state; state.st_cb->event = sendto_interrupt; /* Notify the device driver of the availability of TX data */ netdev_txnotify_dev(dev); /* Wait for either the receive to complete or for an error/timeout to occur. * NOTES: (1) net_lockedwait will also terminate if a signal is received, (2) * interrupts may be disabled! They will be re-enabled while the task sleeps * and automatically re-enabled when the task restarts. */ net_lockedwait(&state.st_sem); /* Make sure that no further interrupts are processed */ udp_callback_free(dev, conn, state.st_cb); } /* The result of the sendto operation is the number of bytes transferred */ ret = state.st_sndlen; errout_with_lock: /* Release the semaphore */ sem_destroy(&state.st_sem); /* Set the socket state back to idle */ psock->s_flags = _SS_SETSTATE(psock->s_flags, _SF_IDLE); /* Unlock the network and return the result of the sendto() operation */ net_unlock(save); return ret; }
int icmpv6_autoconfig(FAR struct net_driver_s *dev) { #ifndef CONFIG_NET_ETHERNET /* Only Ethernet supported for now */ nerr("ERROR: Only Ethernet is supported\n"); return -ENOSYS; #else /* CONFIG_NET_ETHERNET */ struct icmpv6_rnotify_s notify; net_ipv6addr_t lladdr; int retries; int ret; /* Sanity checks */ DEBUGASSERT(dev); ninfo("Auto-configuring %s\n", dev->d_ifname); #ifdef CONFIG_NET_MULTILINK /* Only Ethernet devices are supported for now */ if (dev->d_lltype != NET_LL_ETHERNET) { nerr("ERROR: Only Ethernet is supported\n"); return -ENOSYS; } #endif /* The interface should be in the down state */ net_lock(); netdev_ifdown(dev); net_unlock(); /* IPv6 Stateless Autoconfiguration * Reference: http://www.tcpipguide.com/free/t_IPv6AutoconfigurationandRenumbering.htm * * The following is a summary of the steps a device takes when using * stateless auto-configuration: * * 1. Link-Local Address Generation: The device generates a link-local * address. Recall that this is one of the two types of local-use IPv6 * addresses. Link-local addresses have "1111 1110 10" for the first * ten bits. The generated address uses those ten bits followed by 54 * zeroes and then the 64 bit interface identifier. Typically this * will be derived from the data link layer (MAC) address. * * IEEE 802 MAC addresses, used by Ethernet and other IEEE 802 Project * networking technologies, have 48 bits. The IEEE has also defined a * format called the 64-bit extended unique identifier, abbreviated * EUI-64. To get the modified EUI-64 interface ID for a device, you * simply take the EUI-64 address and change the 7th bit from the left * (the"universal/local" or "U/L" bit) from a zero to a one. * * 128 112 96 80 64 48 32 16 * ---- ---- ---- ---- ---- ---- ---- ---- * fe80 0000 0000 0000 0000 xxxx xxxx xxxx */ lladdr[0] = HTONS(0xfe80); /* 10-bit address + 6 zeroes */ memset(&lladdr[1], 0, 4 * sizeof(uint16_t)); /* 64 more zeroes */ memcpy(&lladdr[5], dev->d_mac.ether_addr_octet, sizeof(struct ether_addr)); /* 48-bit Ethernet address */ ninfo("lladdr=%04x:%04x:%04x:%04x:%04x:%04x:%04x:%04x\n", lladdr[0], lladdr[1], lladdr[2], lladdr[3], lladdr[4], lladdr[6], lladdr[6], lladdr[7]); #ifdef CONFIG_NET_ICMPv6_NEIGHBOR /* Bring the interface up with no IP address */ net_lock(); netdev_ifup(dev); net_unlock(); /* 2. Link-Local Address Uniqueness Test: The node tests to ensure that * the address it generated isn't for some reason already in use on the * local network. (This is very unlikely to be an issue if the link-local * address came from a MAC address but more likely if it was based on a * generated token.) It sends a Neighbor Solicitation message using the * Neighbor Discovery (ND) protocol. It then listens for a Neighbor * Advertisement in response that indicates that another device is * already using its link-local address; if so, either a new address * must be generated, or auto-configuration fails and another method * must be employed. */ ret = icmpv6_neighbor(lladdr); /* Take the interface back down */ net_lock(); netdev_ifdown(dev); net_unlock(); if (ret == OK) { /* Hmmm... someone else responded to our Neighbor Solicitation. We * have not back-up plan in place. Just bail. */ nerr("ERROR: IP conflict\n"); return -EEXIST; } #endif /* 3. Link-Local Address Assignment: Assuming the uniqueness test passes, * the device assigns the link-local address to its IP interface. This * address can be used for communication on the local network, but not * on the wider Internet (since link-local addresses are not routed). */ net_lock(); net_ipv6addr_copy(dev->d_ipv6addr, lladdr); /* Bring the interface up with the new, temporary IP address */ netdev_ifup(dev); /* 4. Router Contact: The node next attempts to contact a local router for * more information on continuing the configuration. This is done either * by listening for Router Advertisement messages sent periodically by * routers, or by sending a specific Router Solicitation to ask a router * for information on what to do next. */ for (retries = 0; retries < CONFIG_ICMPv6_AUTOCONF_MAXTRIES; retries++) { /* Set up the Router Advertisement BEFORE we send the Router * Solicitation. */ icmpv6_rwait_setup(dev, ¬ify); /* Send the ICMPv6 Router solicitation message */ ret = icmpv6_send_message(dev, false); if (ret < 0) { nerr("ERROR: Failed send router solicitation: %d\n", ret); break; } /* Wait to receive the Router Advertisement message */ ret = icmpv6_wait_radvertise(dev, ¬ify); if (ret != -ETIMEDOUT) { /* ETIMEDOUT is the only expected failure. We will retry on that * case only. */ break; } ninfo("Timed out... retrying %d\n", retries + 1); } /* Check for failures. Note: On successful return, the network will be * in the down state, but not in the event of failures. */ if (ret < 0) { nerr("ERROR: Failed to get the router advertisement: %d (retries=%d)\n", ret, retries); /* Claim the link local address as ours by sending the ICMPv6 Neighbor * Advertisement message. */ ret = icmpv6_send_message(dev, true); if (ret < 0) { nerr("ERROR: Failed send neighbor advertisement: %d\n", ret); netdev_ifdown(dev); } /* No off-link communications; No router address. */ net_ipv6addr_copy(dev->d_ipv6draddr, g_ipv6_allzeroaddr); /* Set a netmask for the local link address */ net_ipv6addr_copy(dev->d_ipv6netmask, g_ipv6_llnetmask); /* Leave the network up and return success (even though things did not * work out quite the way we wanted). */ net_unlock(); return ret; } /* 5. Router Direction: The router provides direction to the node on how to * proceed with the auto-configuration. It may tell the node that on this * network "stateful" auto-configuration is in use, and tell it the * address of a DHCP server to use. Alternately, it will tell the host * how to determine its global Internet address. * * 6. Global Address Configuration: Assuming that stateless auto- * configuration is in use on the network, the host will configure * itself with its globally-unique Internet address. This address is * generally formed from a network prefix provided to the host by the * router, combined with the device's identifier as generated in the * first step. */ /* On success, the new address was already set (in icmpv_rnotify()). We * need only to bring the network back to the up state and return success. */ netdev_ifup(dev); net_unlock(); return OK; #endif /* CONFIG_NET_ETHERNET */ }