Пример #1
0
static bool
run_test(const struct image_qualifier_info *qual,
         const struct image_stage_info *stage_w,
         const struct image_stage_info *stage_r,
         unsigned l)
{
        const struct grid_info grid = {
                stage_w->bit | stage_r->bit,
                get_image_format(GL_RGBA32UI),
                { l, l, 1, 1 }
        };
        const struct image_info img = image_info_for_grid(grid);
        GLuint prog = generate_program(
                grid,
                /*
                 * Write (11, 22, 33, 44) to some location on the
                 * image from the write stage.
                 */
                stage_w->stage,
                concat(qualifier_hunk(qual),
                       image_hunk(img, ""),
                       hunk("IMAGE_Q uniform IMAGE_T img;\n"
                            "\n"
                            "GRID_T op(ivec2 idx, GRID_T x) {\n"
                            "       imageStore(img, idx, DATA_T(11, 22, 33, 44));"
                            "       return x;"
                            "}\n"), NULL),
                /*
                 * The same location will read back the expected value
                 * if image access is coherent, as the shader inputs
                 * of the read stage are dependent on the outputs of
                 * the write stage and consequently they are
                 * guaranteed to be executed sequentially.
                 */
                stage_r->stage,
                concat(qualifier_hunk(qual),
                       image_hunk(img, ""),
                       hunk("IMAGE_Q uniform IMAGE_T img;\n"
                            "\n"
                            "GRID_T op(ivec2 idx, GRID_T x) {\n"
                            "       DATA_T v = imageLoad(img, idx);"
                            "       if (v == DATA_T(11, 22, 33, 44))"
                            "             return GRID_T(33, 33, 33, 33);"
                            "       else"
                            "             return GRID_T(77, 77, 77, 77);"
                            "}\n"), NULL));
        bool ret = prog &&
                init_fb(grid) &&
                init_image(img) &&
                set_uniform_int(prog, "img", 0) &&
                draw_grid(grid, prog) &&
                (check(grid, img) || qual->control_test);

        glDeleteProgram(prog);
        return ret;
}
Пример #2
0
static bool
run_test(const struct image_target_info *target,
         const struct image_extent size)
{
        const struct grid_info grid = {
                GL_FRAGMENT_SHADER_BIT,
                get_image_format(GL_RGBA32F),
                image_optimal_extent(size)
        };
        const struct image_info img = {
                target, grid.format, size,
                image_format_epsilon(grid.format)
        };
        GLuint prog = generate_program(
                grid, GL_FRAGMENT_SHADER,
                concat(image_hunk(img, ""),
                       hunk("readonly uniform IMAGE_T src_img;\n"
                            "writeonly uniform IMAGE_T dst_img;\n"
                            "\n"
                            "GRID_T op(ivec2 idx, GRID_T x) {\n"
                            "        imageStore(dst_img, IMAGE_ADDR(idx),"
                            "                imageLoad(src_img, IMAGE_ADDR(idx)));\n"
                            "        return x;\n"
                            "}\n"), NULL));
        bool ret = prog && init_fb(grid) &&
                init_image(img, 0) &&
                init_image(img, 1) &&
                set_uniform_int(prog, "src_img", 0) &&
                set_uniform_int(prog, "dst_img", 1)  &&
                draw_grid(grid, prog) &&
                check(img);

        glDeleteProgram(prog);
        return ret;
}
Пример #3
0
static char *
generate_source(const struct grid_info grid,
                const struct image_info img, GLuint s)
{
        const struct image_stage_info *stage = get_image_stage(s);

        if (stage && num_images_for_stage(grid, stage)) {
                /*
                 * Sum up the values read from corresponding locations
                 * of all bound image uniforms.
                 */
                return concat(stage_hunk(grid, stage),
                              image_hunk(img, ""),
                              hunk("uniform IMAGE_T IMGS[NUM_IMGS];\n"
                                   "\n"
                                   "GRID_T op(ivec2 idx, GRID_T x) {\n"
                                   "        int i;\n"
                                   "\n"
                                   "        for (i = 0; i < NUM_IMGS; ++i)\n"
                                   "                x += imageLoad(IMGS[i], IMAGE_ADDR(idx));\n"
                                   "\n"
                                   "        return x;\n"
                                   "}\n"), NULL);

        } else {
                return NULL;
        }
}
Пример #4
0
/**
 * Copy from a source image into a destination image of the specified
 * format and check the result.
 *
 * If \a strict_layout_qualifiers is false, uniform layout qualifiers
 * will be omitted where allowed by the spec.  If \a
 * strict_access_qualifiers is false, the "readonly" and "writeonly"
 * qualifiers will be omitted.  If \a strict_binding is false, the
 * image will be bound as READ_WRITE, otherwise only the required
 * access type will be used.
 */
static bool
run_test(const struct image_format_info *format,
         bool strict_layout_qualifiers,
         bool strict_access_qualifiers,
         bool strict_binding)
{
        const struct grid_info grid =
                grid_info(GL_FRAGMENT_SHADER,
                          image_base_internal_format(format), W, H);
        const struct image_info img =
                image_info(GL_TEXTURE_2D, format->format, W, H);
        GLuint prog = generate_program(
                grid, GL_FRAGMENT_SHADER,
                concat(image_hunk(img, ""),
                       test_hunk(strict_layout_qualifiers,
                                 strict_access_qualifiers),
                       hunk("SRC_IMAGE_Q uniform IMAGE_BARE_T src_img;\n"
                            "DST_IMAGE_Q uniform IMAGE_BARE_T dst_img;\n"
                            "\n"
                            "GRID_T op(ivec2 idx, GRID_T x) {\n"
                            "        imageStore(dst_img, IMAGE_ADDR(idx),"
                            "                   imageLoad(src_img, IMAGE_ADDR(idx)));\n"
                            "        return x;\n"
                            "}\n"), NULL));
        bool ret = prog && init_fb(grid) &&
                init_image(img, 0, strict_binding) &&
                init_image(img, 1, strict_binding) &&
                set_uniform_int(prog, "src_img", 0) &&
                set_uniform_int(prog, "dst_img", 1) &&
                draw_grid(grid, prog) &&
                check(grid, img);

        glDeleteProgram(prog);
        return ret;
}
Пример #5
0
static bool
run_test(const struct image_op_info *op,
         unsigned w, unsigned h,
         bool (*check)(const struct grid_info grid,
                       const struct image_info img,
                       unsigned w, unsigned h),
         const char *body)
{
        const struct grid_info grid =
                grid_info(GL_FRAGMENT_SHADER, GL_R32UI, W, H);
        const struct image_info img = image_info_for_grid(grid);
        GLuint prog = generate_program(
                grid, GL_FRAGMENT_SHADER,
                concat(image_hunk(img, ""),
                       hunk("uniform IMAGE_T img;\n"),
                       hunk(op->hunk),
                       hunk(body), NULL));
        bool ret = prog &&
                init_fb(grid) &&
                init_image(img) &&
                set_uniform_int(prog, "img", 0) &&
                draw_grid(set_grid_size(grid, w, h), prog) &&
                check(grid, img, w, h);

        glDeleteProgram(prog);
        return ret;
}
Пример #6
0
static bool
run_test(const struct image_qualifier_info *qual)
{
        const struct grid_info grid =
                grid_info(GL_FRAGMENT_SHADER, GL_R32UI, W, H);
        const struct image_info img =
                image_info(GL_TEXTURE_1D, GL_R32UI, W, H);
        GLuint prog = generate_program(
                grid,
                /**
                 * Write to consecutive locations of an image using a
                 * the value read from a fixed location of a different
                 * image uniform which aliases the first image.  If
                 * the implementation incorrectly coalesces repeated
                 * loads from the fixed location the results of the
                 * test will be altered.
                 */
                GL_FRAGMENT_SHADER,
                concat(qualifier_hunk(qual),
                       image_hunk(img, ""),
                       hunk("IMAGE_Q IMAGE_UNIFORM_T src_img;\n"
                            "IMAGE_Q IMAGE_UNIFORM_T dst_img;\n"
                            "\n"
                            "GRID_T op(ivec2 idx, GRID_T x) {\n"
                            "        int i;\n"
                            "\n"
                            "        for (i = 0; i < N / 2; ++i) {\n"
                            "                imageStore(dst_img, 2 * i,"
                            "                           imageLoad(src_img, W) + 1u);\n"
                            "                imageStore(dst_img, 2 * i + 1,"
                            "                           imageLoad(src_img, W) - 1u);\n"
                            "        }\n"
                            "\n"
                            "        return x;\n"
                            "}\n"), NULL));
        bool ret = prog &&
                init_fb(grid) &&
                init_image(img) &&
                set_uniform_int(prog, "src_img", 0) &&
                set_uniform_int(prog, "dst_img", 0) &&
                draw_grid(set_grid_size(grid, 1, 1), prog) &&
                (check(img) || qual->control_test);

        glDeleteProgram(prog);
        return ret;
}
Пример #7
0
/**
 * Test skeleton: Init image to \a init_value, run the provided shader
 * \a op and check that the resulting image pixels equal \a
 * check_value.
 */
static bool
run_test(uint32_t init_value, uint32_t check_value,
         const char *op)
{
        const struct grid_info grid =
                grid_info(GL_FRAGMENT_SHADER, GL_R32UI, W, H);
        const struct image_info img = image_info_for_grid(grid);
        GLuint prog = generate_program(
                grid, GL_FRAGMENT_SHADER,
                concat(image_hunk(img, ""),
                       hunk("uniform IMAGE_T img;\n"),
                       hunk(op), NULL));
        bool ret = prog &&
                init_fb(grid) &&
                init_image(img, init_value) &&
                set_uniform_int(prog, "img", 0) &&
                draw_grid(grid, prog) &&
                check(img, check_value);

        glDeleteProgram(prog);
        return ret;
}
Пример #8
0
/**
 * If \a layered is false, bind an individual layer of a texture to an
 * image unit, read its contents and write back a different value to
 * the same location.  If \a layered is true or the texture has a
 * single layer, the whole texture will be read and written back.
 *
 * For textures with a single layer, the arguments \a layered and \a
 * layer which are passed to the same arguments of
 * glBindImageTexture() should have no effect as required by the spec.
 */
static bool
run_test(const struct image_target_info *target,
         bool layered, unsigned layer)
{
        const struct image_info real_img = image_info(
                target->target, GL_RGBA32F, W, H);
        const unsigned slices = (layered ? 1 : image_num_layers(real_img));
        /*
         * "Slice" of the image that will be bound to the pipeline.
         */
        const struct image_info slice_img = image_info(
                (layered ? target->target : image_layer_target(target)),
                GL_RGBA32F, W, H / slices);
        /*
         * Grid with as many elements as the slice.
         */
        const struct grid_info grid = grid_info(
                GL_FRAGMENT_SHADER, GL_RGBA32F, W, H / slices);
        GLuint prog = generate_program(
                grid, GL_FRAGMENT_SHADER,
                concat(image_hunk(slice_img, ""),
                       hunk("IMAGE_UNIFORM_T img;\n"
                            "\n"
                            "GRID_T op(ivec2 idx, GRID_T x) {\n"
                            "        GRID_T v = imageLoad(img, IMAGE_ADDR(idx));\n"
                            "        imageStore(img, IMAGE_ADDR(idx), DATA_T(33));\n"
                            "        return v;\n"
                            "}\n"), NULL));
        bool ret = prog && init_fb(grid) &&
                init_image(real_img, layered, layer) &&
                set_uniform_int(prog, "img", 0) &&
                draw_grid(grid, prog) &&
                check(grid, real_img, (slices == 1 ? 0 : layer));

        glDeleteProgram(prog);
        return ret;
}
Пример #9
0
/**
 * Test binding image uniforms to image units for a simple shader
 * program.
 */
static bool
run_test_uniform(void)
{
        const struct grid_info grid =
                grid_info(GL_FRAGMENT_SHADER, GL_RGBA32F, W, H);
        GLuint prog = generate_program(
                grid, GL_FRAGMENT_SHADER,
                concat(image_hunk(image_info_for_grid(grid), ""),
                       hunk("uniform IMAGE_T imgs[2];\n"
                            "\n"
                            "GRID_T op(ivec2 idx, GRID_T x) {\n"
                            "        imageStore(imgs[0], IMAGE_ADDR(idx), x);\n"
                            "        imageStore(imgs[1], IMAGE_ADDR(idx), x);\n"
                            "        return x;\n"
                            "}\n"), NULL));
        const int loc = glGetUniformLocation(prog, "imgs");
        bool ret = prog && check_uniform_int(prog, loc, 0) &&
                check_uniform_int(prog, loc + 1, 0);
        int v[2];

        glUseProgram(prog);

        /*
         * Image uniforms are bound to image units using
         * glUniform1i{v}.
         */
        glUniform1i(loc, 3);
        ret &= check_uniform_int(prog, loc, 3) &&
                check_uniform_int(prog, loc + 1, 0);

        glUniform1i(loc + 1, 3);
        ret &= check_uniform_int(prog, loc, 3) &&
                check_uniform_int(prog, loc + 1, 3);

        v[0] = 4;
        v[1] = 5;
        glUniform1iv(loc, 2, v);
        ret &= check_uniform_int(prog, loc, 4) &&
                check_uniform_int(prog, loc + 1, 5);

        /*
         * GL_INVALID_VALUE is generated if the value specified is
         * greater than or equal to the value of GL_MAX_IMAGE_UNITS.
         */
        glUniform1i(loc, max_image_units());
        ret &= piglit_check_gl_error(GL_INVALID_VALUE);

        v[0] = 3;
        v[1] = max_image_units() + 1;
        glUniform1iv(loc, 2, v);
        ret &= piglit_check_gl_error(GL_INVALID_VALUE);

        /*
         * GL_INVALID_VALUE is generated if the value specified is
         * less than zero.
         */
        glUniform1i(loc, -1);
        ret &= piglit_check_gl_error(GL_INVALID_VALUE);

        v[0] = 3;
        v[1] = -4;
        glUniform1iv(loc, 2, v);
        ret &= piglit_check_gl_error(GL_INVALID_VALUE);

        /*
         * GL_INVALID_OPERATION is generated by Uniform* functions
         * other than Uniform1i{v}.
         */
        CHECK_INVAL_2(glUniform, 1f, 1ui, (loc, 0), ret);
        CHECK_INVAL_3(glUniform, 2i, 2f, 2ui, (loc, 0, 0), ret);
        CHECK_INVAL_3(glUniform, 3i, 3f, 3ui, (loc, 0, 0, 0), ret);
        CHECK_INVAL_3(glUniform, 4i, 4f, 4ui, (loc, 0, 0, 0, 0), ret);

        CHECK_INVAL_2(glUniform, 1fv, 1uiv, (loc, 1, (void *)v), ret);
        CHECK_INVAL_3(glUniform, 2iv, 2fv, 2uiv, (loc, 1, (void *)v), ret);
        CHECK_INVAL_3(glUniform, 3iv, 3fv, 3uiv, (loc, 1, (void *)v), ret);
        CHECK_INVAL_3(glUniform, 4iv, 4fv, 4uiv, (loc, 1, (void *)v), ret);

        CHECK_INVAL_3(glUniformMatrix, 2fv, 3fv, 4fv,
                (loc, 1, GL_FALSE, (float *)v), ret);
        CHECK_INVAL_3(glUniformMatrix, 2x3fv, 3x2fv, 2x4fv,
                (loc, 1, GL_FALSE, (float *)v), ret);
        CHECK_INVAL_3(glUniformMatrix, 4x2fv, 3x4fv, 4x3fv,
                (loc, 1, GL_FALSE, (float *)v), ret);

        if (piglit_is_extension_supported("GL_ARB_gpu_shader_fp64")) {
                CHECK_INVAL_1(glUniform, 1d, (loc, 0), ret);
                CHECK_INVAL_1(glUniform, 2d, (loc, 0, 0), ret);
                CHECK_INVAL_1(glUniform, 3d, (loc, 0, 0, 0), ret);
                CHECK_INVAL_1(glUniform, 4d, (loc, 0, 0, 0, 0), ret);

                CHECK_INVAL_2(glUniform, 1dv, 2dv, (loc, 1, (double *)v), ret);
                CHECK_INVAL_2(glUniform, 3dv, 4dv, (loc, 1, (double *)v), ret);

                CHECK_INVAL_3(glUniformMatrix, 2dv, 3dv, 4dv,
                        (loc, 1, GL_FALSE, (double *)v), ret);
                CHECK_INVAL_3(glUniformMatrix, 2x3dv, 3x2dv, 2x4dv,
                        (loc, 1, GL_FALSE, (double *)v), ret);
                CHECK_INVAL_3(glUniformMatrix, 4x2dv, 3x4dv, 4x3dv,
                        (loc, 1, GL_FALSE, (double *)v), ret);
        }

        glDeleteProgram(prog);
        return ret;
}
Пример #10
0
bool
download_image_levels(const struct image_info img, unsigned num_levels,
                      unsigned unit, uint32_t *r_pixels)
{
        const unsigned m = image_num_components(img.format);
        int i, l;

        glMemoryBarrier(GL_TEXTURE_UPDATE_BARRIER_BIT |
                        GL_BUFFER_UPDATE_BARRIER_BIT |
                        GL_PIXEL_BUFFER_BARRIER_BIT |
                        GL_SHADER_IMAGE_ACCESS_BARRIER_BIT);

        glBindTexture(img.target->target, textures[unit]);

        switch (img.target->target) {
        case GL_TEXTURE_1D:
        case GL_TEXTURE_2D:
        case GL_TEXTURE_3D:
        case GL_TEXTURE_RECTANGLE:
        case GL_TEXTURE_1D_ARRAY:
        case GL_TEXTURE_2D_ARRAY:
        case GL_TEXTURE_CUBE_MAP_ARRAY:
                assert(img.target->target != GL_TEXTURE_RECTANGLE ||
                       num_levels == 1);

                for (l = 0; l < num_levels; ++l)
                        glGetTexImage(img.target->target, l,
                                      img.format->pixel_format,
                                      image_base_type(img.format),
                                      &r_pixels[m * image_level_offset(img, l)]);
                break;

        case GL_TEXTURE_CUBE_MAP:
                for (l = 0; l < num_levels; ++l) {
                        const unsigned offset = m * image_level_offset(img, l);
                        const unsigned face_sz =
                                m * product(image_level_size(img, l)) / 6;

                        for (i = 0; i < 6; ++i)
                                glGetTexImage(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i,
                                              l, img.format->pixel_format,
                                              image_base_type(img.format),
                                              &r_pixels[offset + face_sz * i]);

                }
                break;

        case GL_TEXTURE_BUFFER: {
                /*
                 * glGetTexImage() isn't supposed to work with buffer
                 * textures.  We copy the packed pixels to a texture
                 * with the same internal format as the image to let
                 * the GL unpack it for us.
                 */
                const struct image_extent grid = image_optimal_extent(img.size);
                GLuint packed_tex;

                assert(num_levels == 1);

                glGenTextures(1, &packed_tex);
                glBindTexture(GL_TEXTURE_2D, packed_tex);
                glBindBuffer(GL_PIXEL_UNPACK_BUFFER, buffers[unit]);

                glTexImage2D(GL_TEXTURE_2D, 0, img.format->format,
                             grid.x, grid.y, 0, img.format->pixel_format,
                             img.format->pixel_type, NULL);
                glGetTexImage(GL_TEXTURE_2D, 0, img.format->pixel_format,
                              image_base_type(img.format), r_pixels);

                glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
                glDeleteTextures(1, &packed_tex);
                break;
        }
        case GL_TEXTURE_2D_MULTISAMPLE:
        case GL_TEXTURE_2D_MULTISAMPLE_ARRAY: {
                /*
                 * GL doesn't seem to provide any direct way to read
                 * back a multisample texture, so we use imageLoad()
                 * to copy its contents to a larger single-sample 2D
                 * texture from the fragment shader.
                 */
                const struct grid_info grid = {
                        get_image_stage(GL_FRAGMENT_SHADER)->bit,
                        img.format,
                        image_optimal_extent(img.size)
                };
                GLuint prog = generate_program(
                        grid, GL_FRAGMENT_SHADER,
                        concat(image_hunk(img, "SRC_"),
                               image_hunk(image_info_for_grid(grid), "DST_"),
                               hunk("readonly SRC_IMAGE_UNIFORM_T src_img;\n"
                                    "writeonly DST_IMAGE_UNIFORM_T dst_img;\n"
                                    "\n"
                                    "GRID_T op(ivec2 idx, GRID_T x) {\n"
                                    "       imageStore(dst_img, DST_IMAGE_ADDR(idx),\n"
                                    "          imageLoad(src_img, SRC_IMAGE_ADDR(idx)));\n"
                                    "       return x;\n"
                                    "}\n"), NULL));
                bool ret = prog && generate_fb(grid, 1);
                GLuint tmp_tex;

                assert(num_levels == 1);

                glGenTextures(1, &tmp_tex);
                glBindTexture(GL_TEXTURE_2D, tmp_tex);

                glTexImage2D(GL_TEXTURE_2D, 0, img.format->format,
                             grid.size.x, grid.size.y, 0,
                             img.format->pixel_format, image_base_type(img.format),
                             NULL);

                glBindImageTexture(unit, textures[unit], 0, GL_TRUE, 0,
                                   GL_READ_ONLY, img.format->format);
                glBindImageTexture(6, tmp_tex, 0, GL_TRUE, 0,
                                   GL_WRITE_ONLY, img.format->format);

                ret &= set_uniform_int(prog, "src_img", unit) &&
                        set_uniform_int(prog, "dst_img", 6) &&
                        draw_grid(grid, prog);

                glMemoryBarrier(GL_TEXTURE_UPDATE_BARRIER_BIT);

                glGetTexImage(GL_TEXTURE_2D, 0, img.format->pixel_format,
                              image_base_type(img.format), r_pixels);

                glDeleteProgram(prog);
                glDeleteTextures(1, &tmp_tex);

                glBindFramebuffer(GL_FRAMEBUFFER, fb[0]);
                glViewportIndexedfv(0, vp[0]);

                if (!ret)
                        return false;
                break;
        }
        default:
                abort();
        }

        return piglit_check_gl_error(GL_NO_ERROR);
}
Пример #11
0
bool
upload_image_levels(const struct image_info img, unsigned num_levels,
                    unsigned level, unsigned unit, const uint32_t *pixels)
{
        const unsigned m = image_num_components(img.format);
        int i, l;

        if (get_texture(unit)) {
                glDeleteTextures(1, &textures[unit]);
                textures[unit] = 0;
        }

        if (get_buffer(unit)) {
                glDeleteBuffers(1, &buffers[unit]);
                buffers[unit] = 0;
        }

        glGenTextures(1, &textures[unit]);
        glBindTexture(img.target->target, textures[unit]);

        switch (img.target->target) {
        case GL_TEXTURE_1D:
                for (l = 0; l < num_levels; ++l) {
                        const struct image_extent size = image_level_size(img, l);

                        glTexImage1D(GL_TEXTURE_1D, l, img.format->format,
                                     size.x, 0, img.format->pixel_format,
                                     image_base_type(img.format),
                                     &pixels[m * image_level_offset(img, l)]);
                }
                break;

        case GL_TEXTURE_2D:
                for (l = 0; l < num_levels; ++l) {
                        const struct image_extent size = image_level_size(img, l);

                        glTexImage2D(GL_TEXTURE_2D, l, img.format->format,
                                     size.x, size.y, 0,
                                     img.format->pixel_format,
                                     image_base_type(img.format),
                                     &pixels[m * image_level_offset(img, l)]);
                }
                break;

        case GL_TEXTURE_3D:
                for (l = 0; l < num_levels; ++l) {
                        const struct image_extent size = image_level_size(img, l);

                        glTexImage3D(GL_TEXTURE_3D, l, img.format->format,
                                     size.x, size.y, size.z, 0,
                                     img.format->pixel_format,
                                     image_base_type(img.format),
                                     &pixels[m * image_level_offset(img, l)]);
                }
                break;

        case GL_TEXTURE_RECTANGLE:
                assert(num_levels == 1);

                glTexImage2D(GL_TEXTURE_RECTANGLE, 0, img.format->format,
                             img.size.x, img.size.y, 0, img.format->pixel_format,
                             image_base_type(img.format), pixels);
                break;

        case GL_TEXTURE_CUBE_MAP:
                for (l = 0; l < num_levels; ++l) {
                        const unsigned offset = m * image_level_offset(img, l);
                        const struct image_extent size = image_level_size(img, l);
                        const unsigned face_sz = m * product(size) / 6;

                        for (i = 0; i < 6; ++i)
                                glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, l,
                                             img.format->format, size.x, size.y, 0,
                                             img.format->pixel_format,
                                             image_base_type(img.format),
                                             &pixels[offset + face_sz * i]);
                }
                break;

        case GL_TEXTURE_BUFFER: {
                /*
                 * glTexImage*() isn't supposed to work with buffer
                 * textures.  We copy the unpacked pixels to a texture
                 * with the desired internal format to let the GL pack
                 * them for us.
                 */
                const struct image_extent grid = image_optimal_extent(img.size);
                GLuint packed_tex;

                assert(num_levels == 1);

                glGenBuffers(1, &buffers[unit]);
                glBindBuffer(GL_PIXEL_PACK_BUFFER, buffers[unit]);
                glBufferData(GL_PIXEL_PACK_BUFFER,
                             img.size.x * image_pixel_size(img.format) / 8,
                             NULL, GL_STATIC_DRAW);

                glGenTextures(1, &packed_tex);
                glBindTexture(GL_TEXTURE_2D, packed_tex);

                glTexImage2D(GL_TEXTURE_2D, 0, img.format->format,
                             grid.x, grid.y, 0, img.format->pixel_format,
                             image_base_type(img.format), pixels);
                glGetTexImage(GL_TEXTURE_2D, 0, img.format->pixel_format,
                              img.format->pixel_type, NULL);
                glDeleteTextures(1, &packed_tex);
                glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);

                glTexBuffer(GL_TEXTURE_BUFFER, image_compat_format(img.format),
                            buffers[unit]);
                break;
        }
        case GL_TEXTURE_1D_ARRAY:
                for (l = 0; l < num_levels; ++l) {
                        const struct image_extent size = image_level_size(img, l);

                        glTexImage2D(GL_TEXTURE_1D_ARRAY, l, img.format->format,
                                     size.x, size.y, 0, img.format->pixel_format,
                                     image_base_type(img.format),
                                     &pixels[m * image_level_offset(img, l)]);
                }
                break;

        case GL_TEXTURE_2D_ARRAY:
                for (l = 0; l < num_levels; ++l) {
                        const struct image_extent size = image_level_size(img, l);

                        glTexImage3D(GL_TEXTURE_2D_ARRAY, l, img.format->format,
                                     size.x, size.y, size.z, 0,
                                     img.format->pixel_format,
                                     image_base_type(img.format),
                                     &pixels[m * image_level_offset(img, l)]);
                }
                break;

        case GL_TEXTURE_CUBE_MAP_ARRAY:
                for (l = 0; l < num_levels; ++l) {
                        const struct image_extent size = image_level_size(img, l);

                        glTexImage3D(GL_TEXTURE_CUBE_MAP_ARRAY, l, img.format->format,
                                     size.x, size.y, size.z, 0,
                                     img.format->pixel_format,
                                     image_base_type(img.format),
                                     &pixels[m * image_level_offset(img, l)]);
                }
                break;

        case GL_TEXTURE_2D_MULTISAMPLE:
        case GL_TEXTURE_2D_MULTISAMPLE_ARRAY: {
                /*
                 * GL doesn't seem to provide any direct way to
                 * initialize a multisample texture, so we use
                 * imageStore() to render to it from the fragment
                 * shader copying the contents of a larger
                 * single-sample 2D texture.
                 */
                const struct grid_info grid = {
                        get_image_stage(GL_FRAGMENT_SHADER)->bit,
                        img.format,
                        image_optimal_extent(img.size)
                };
                GLuint prog = generate_program(
                        grid, GL_FRAGMENT_SHADER,
                        concat(image_hunk(image_info_for_grid(grid), "SRC_"),
                               image_hunk(img, "DST_"),
                               hunk("readonly SRC_IMAGE_UNIFORM_T src_img;\n"
                                    "writeonly DST_IMAGE_UNIFORM_T dst_img;\n"
                                    "\n"
                                    "GRID_T op(ivec2 idx, GRID_T x) {\n"
                                    "       imageStore(dst_img, DST_IMAGE_ADDR(idx),\n"
                                    "          imageLoad(src_img, SRC_IMAGE_ADDR(idx)));\n"
                                    "       return x;\n"
                                    "}\n"), NULL));
                bool ret = prog && generate_fb(grid, 1);
                GLuint tmp_tex;

                assert(num_levels == 1);

                glGenTextures(1, &tmp_tex);
                glBindTexture(GL_TEXTURE_2D, tmp_tex);

                if (img.target->target == GL_TEXTURE_2D_MULTISAMPLE_ARRAY) {
                        glTexImage3DMultisample(GL_TEXTURE_2D_MULTISAMPLE_ARRAY,
                                                img.size.x, img.format->format,
                                                img.size.y, img.size.z, img.size.w,
                                                GL_FALSE);
                } else {
                        glTexImage2DMultisample(GL_TEXTURE_2D_MULTISAMPLE,
                                                img.size.x, img.format->format,
                                                img.size.y, img.size.z,
                                                GL_FALSE);
                }

                glTexImage2D(GL_TEXTURE_2D, 0, img.format->format,
                             grid.size.x, grid.size.y, 0,
                             img.format->pixel_format, image_base_type(img.format),
                             pixels);

                glBindImageTexture(unit, textures[unit], 0, GL_TRUE, 0,
                                   GL_WRITE_ONLY, img.format->format);
                glBindImageTexture(6, tmp_tex, 0, GL_TRUE, 0,
                                   GL_READ_ONLY, img.format->format);

                ret &= set_uniform_int(prog, "src_img", 6) &&
                        set_uniform_int(prog, "dst_img", unit) &&
                        draw_grid(grid, prog);

                glDeleteProgram(prog);
                glDeleteTextures(1, &tmp_tex);

                glBindFramebuffer(GL_FRAMEBUFFER, fb[0]);
                glViewportIndexedfv(0, vp[0]);

                glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT);

                if (!ret)
                        return false;
                break;
        }
        default:
                abort();
        }

        glBindImageTexture(unit, textures[unit], level, GL_TRUE, 0,
                           GL_READ_WRITE, img.format->format);

        return piglit_check_gl_error(GL_NO_ERROR);
}