int main(int argc, char **argv){ if(argc<2){err("Need a file to serve\n");} fd=open(argv[1],O_RDWR|O_SYNC); if(-1==fd){err("Couldn't open file\n");}; off64_t size=lseek64(fd,0,SEEK_END);__be64 wsz=htobe64(size); __be64 wmag=htobe64(init_magic); __be32 rmag=htobe32(reply_magic); W("NBDMAGIC",8);W(&wmag,8);W(&wsz,8); int i; for(i=0;i<128;i++){W("\0",1);} while(1){ uint32_t m,t,l;char h[8];uint64_t f; R(&m,4);R(&t,4);R(h,8);R(&f,8);R(&l,4); in4(&m);in4(&t);in8(&f);in4(&l); if(m == request_magic && f < (uint64_t)1<<63 && l+f <= size){ int64_t ll=l; lseek64(fd,f,SEEK_SET); if(t==0){ W(&rmag,4);W("\0\0\0\0",4);W(h,8); for(;ll>0;ll-=B){r(rbuf,clip(ll));W(rbuf,clip(ll));} } else if(t==1){ for(;ll>0;ll-=B){R(rbuf,clip(ll));w(rbuf,clip(ll));} W(&rmag,4);W("\0\0\0\0",4);W(h,8); } } else { W(&rmag,4);W("\1\0\0\0",4);W(h,8); } } return 0; }
int test_colt_nested_cells() { char *outer1[] = { "1962", "1977", "1989", "2010" }; char *outer2[] = { "1990", "2001", "2008", "2015" }; char *outer3[] = { "1993", "2001", "2009", "2013" }; char *inner1[] = { "Jan", "Feb", "March" }; char *inner2[] = { "Apr", "May", "June" }; char *inner3[] = { "July", "August", "September" }; char *inner4[] = { "October", "November", "December" }; char *deep1[] = { "14", "9", "2" }; char *deep2[] = { "25", "4", "0" }; char *head1[] = { "Birth", "start", "better", "bests" }; char *head2[] = { "Mon1", "mon2", "Month3" }; char *head3[] = { "father", "daughter", "son" }; colt_nested_cells deepest1(deep1, 3, head3, "days"); colt_nested_cells deepest2(deep2, 3, head3, "days"); colt_nested_cells in11(inner1, 3, head2, "Months", &deepest1); colt_nested_cells in12(inner1, 3, head2, "Months", &deepest2); colt_nested_cells in2(inner2, 3, head2, "Months"); colt_nested_cells in3(inner3, 3, head2, "Months"); colt_nested_cells in4(inner4, 3, head2, "Months"); colt_nested_cells out11(outer1, 4, head1, "Dates", &in11); colt_nested_cells out11a(outer1, 4, head1, "Dates", &in12); colt_nested_cells out12(outer1, 4, head1, "Dates", &in2); colt_nested_cells out13(outer1, 4, head1, "Dates", &in3); colt_nested_cells out21(outer2, 4, head1, "Dates", &in4); colt_nested_cells out22(outer2, 4, head1, "Dates", &in3); colt_nested_cells out23(outer2, 4, head1, "Dates", &in11); colt_nested_cells out31(outer3, 4, head1, "Dates", &in2); colt_nested_cells out32(outer3, 4, head1, "Dates", &in11); colt_nested_cells out33(outer3, 4, head1, "Dates", &in4); std::ofstream mine("mine.yml"); // out11.start(); out11.nested_output(NULL, 0, &mine); out11a.nested_output(&out11, 0, &mine); out12.nested_output(&out11a, 0, &mine); out23.nested_output(&out12, 0, &mine); out21.nested_output(&out23, 0, &mine); out22.nested_output(&out21, 0, &mine); out31.nested_output(&out22, 0, &mine); out32.nested_output(&out31, 0, &mine); out33.nested_output(&out32, 0, &mine); // out13.end(xxx+1); // out11.end(); }
int main(int argc, char **argv){ if(argc<2){err("Need a file to serve\n");} if(argc<3){err("Need a port\n");} fd=open(argv[1],O_RDWR|O_SYNC); if(-1==fd){err("Couldn't open file\n");}; int port=atoi(argv[2]); s = socket(AF_INET, SOCK_STREAM, 0); E(s); my_addr.sin_family = AF_INET; my_addr.sin_port = htons(port); my_addr.sin_addr.s_addr = inet_addr("127.0.0.1"); memset(&(my_addr.sin_zero), '\0', 8); E(bind(s, (struct sockaddr *)&my_addr, sizeof(struct sockaddr))); E(listen(s,0)); s2 = accept(s,NULL,NULL); E(s2); int y=1,n=0; E(setsockopt(s2, SOL_SOCKET, SO_REUSEADDR, &y, sizeof(y) )); E(setsockopt(s2, IPPROTO_TCP, TCP_NODELAY, &y, sizeof(y) )); off64_t size=lseek64(fd,0,SEEK_END);__be64 wsz=htobe64(size); __be64 wmag=htobe64(init_magic); __be32 rmag=htobe32(reply_magic); W("NBDMAGIC",8);W(&wmag,8);W(&wsz,8); int i; for(i=0;i<128;i++){W("\0",1);} while(1){ uint32_t m,t,l;char h[8];uint64_t f; R(&m,4);R(&t,4);R(h,8);R(&f,8);R(&l,4); in4(&m);in4(&t);in8(&f);in4(&l); if(m == request_magic && f < (uint64_t)1<<63 && l+f <= size){ int64_t ll=l; lseek64(fd,f,SEEK_SET); if(t==0){ W(&rmag,4);W("\0\0\0\0",4);W(h,8); for(;ll>0;ll-=B){r(rbuf,clip(ll));W(rbuf,clip(ll));} } else if(t==1){ for(;ll>0;ll-=B){R(rbuf,clip(ll));w(rbuf,clip(ll));} W(&rmag,4);W("\0\0\0\0",4);W(h,8); } } else { W(&rmag,4);W("\1\0\0\0",4);W(h,8); } } return 0; }
// test to run processing/example.py TEST_F(SignalProcessingInterfaceTest, exampleTest) { android::String8 functionName("example"); int nInputs = 8; int nOutputs = 4; bool inputTypes[8] = { true, true, true, true, false, false, false, false }; bool outputTypes[4] = { true, true, false, false }; android::sp<Buffer> in0(new Buffer(16, 16, true)); char* data0 = in0->getData(); for (size_t i = 0; i < in0->getSize(); i++) { data0[i] = i; } android::sp<Buffer> in1(new Buffer(16, 16, true)); char* data1 = in1->getData(); for (size_t i = 0; i < in1->getSize(); i++) { data1[i] = i; } android::sp<Buffer> in2(new Buffer(8, 8, false)); char* data2 = in2->getData(); for (size_t i = 0; i < in2->getSize(); i++) { data2[i] = i; } android::sp<Buffer> in3(new Buffer(8, 8, false)); char* data3 = in3->getData(); for (size_t i = 0; i < in3->getSize(); i++) { data3[i] = i; } TaskCase::Value in4((int64_t)100); TaskCase::Value in5((int64_t)100); TaskCase::Value in6(1.0f); TaskCase::Value in7(1.0f); void* inputs[8] = { &in0, &in1, &in2, &in3, &in4, &in5, &in6, &in7 }; android::sp<Buffer> out0(new Buffer(16, 16, true)); char* outdata0 = out0->getData(); for (size_t i = 0; i < out0->getSize(); i++) { outdata0[i] = 0xaa; } android::sp<Buffer> out1(new Buffer(8, 8, false)); char* outdata1 = out1->getData(); for (size_t i = 0; i < out1->getSize(); i++) { outdata1[i] = 0xbb; } TaskCase::Value out2((int64_t)1000); TaskCase::Value out3(-1.0f); void *outputs[4] = { &out0, &out1, &out2, &out3 }; ASSERT_TRUE(mSp->run( functionName, nInputs, inputTypes, inputs, nOutputs, outputTypes, outputs) == TaskGeneric::EResultOK); ASSERT_TRUE(*(in0.get()) == *(out0.get())); ASSERT_TRUE(*(in2.get()) == *(out1.get())); ASSERT_TRUE(in4 == out2); ASSERT_TRUE(in6 == out3); }
TEST(RealWordTest, OR) { typedef NeuralNetwork<double, StepActivationFunction<double >> network; network nn; nn.setEntries(2); nn.setExits(1); nn.setLayersCount(1); nn.init(); std::vector<double> in1(2); std::vector<double> in2(2); std::vector<double> in3(2); std::vector<double> in4(2); in1[0] = 0; in1[1] = 0; in2[0] = 1; in2[1] = 0; in3[0] = 0; in3[1] = 1; in4[0] = 1; in4[1] = 1; std::vector<double> out0(1); std::vector<double> out1(1); out0[0] = 0; out1[0] = 1; //uczenie for (int i = 0; i < 100; ++i) { nn.setInput(in1.begin(), in1.end()); nn.calcOutput(); nn.learn(out0.begin(), out0.end()); nn.setInput(in2.begin(), in2.end()); nn.calcOutput(); nn.learn(out1.begin(), out1.end()); nn.setInput(in3.begin(), in3.end()); nn.calcOutput(); nn.learn(out1.begin(), out1.end()); nn.setInput(in4.begin(), in4.end()); nn.calcOutput(); nn.learn(out1.begin(), out1.end()); } //test std::vector<double> out; nn.setInput(in1.begin(), in1.end()); out = nn.calcOutput(); ASSERT_EQ(out[0], 0); nn.setInput(in2.begin(), in2.end()); out = nn.calcOutput(); ASSERT_EQ(out[0], 1); nn.setInput(in3.begin(), in3.end()); out = nn.calcOutput(); ASSERT_EQ(out[0], 1); nn.setInput(in4.begin(), in4.end()); out = nn.calcOutput(); ASSERT_EQ(out[0], 1); }
//void yacobi_process(double* xk0, const int mnum, const int proc_num, const double eps) int main(int argc, char* argv[]) { if(argc != 2 || !isdigit(argv[1][0])) { printf("No argument number of process\nUsage: yacobi_starter 4\n"); return 0; } init(argv, 0, 0, 0, true, false); std::vector<double> x0 = {0, 0 , 0, 0, 0}; int proc_num = atoi(argv[1]), matr_num = 3; double eps = 0.00001; const char grname[] = "group1"; input<double*> in1(1, 1, x0.data(), x0.size()); input<int> in2(2, 1, matr_num, 1); input<int> in3(3, 1, proc_num, 1); input<double> in4(4, 1, eps, 1); INSTANTINATE(":prog_yacobi", "group1", 1, in1, in2, in3, in4); return 0; }
TEST(RealWordTest, ORLinear) { typedef NeuralNetwork<double, LinearActivationFunction<double >> network; network nn; nn.setEntries(2); nn.setExits(1); nn.setLayersCount(1); nn.init(); std::vector<double> in1(2); std::vector<double> in2(2); std::vector<double> in3(2); std::vector<double> in4(2); in1[0] = 0; in1[1] = 0; in2[0] = 1; in2[1] = 0; in3[0] = 0; in3[1] = 1; in4[0] = 1; in4[1] = 1; std::vector<double> out0(1); std::vector<double> out1(1); out0[0] = 0; out1[0] = 1; //uczenie for (int i = 0; i < 1000; ++i) { std::vector<double> o; // nn.printWages(); nn.setInput(in1.begin(), in1.end()); o = nn.calcOutput(); // for (auto d : o) // { // std::cout << d << " :answer 0 0 \n"; // } nn.learn(out0.begin(), out0.end()); nn.setInput(in2.begin(), in2.end()); o = nn.calcOutput(); // for (auto d : o) // { // std::cout << d << " :answer 1 0 \n"; // } nn.learn(out1.begin(), out1.end()); nn.setInput(in3.begin(), in3.end()); o = nn.calcOutput(); // for (auto d : o) // { // std::cout << d << " :answer 0 1 \n"; // } nn.learn(out1.begin(), out1.end()); nn.setInput(in4.begin(), in4.end()); o = nn.calcOutput(); // for (auto d : o) // { // std::cout << d << " :answer 1 1 \n"; // } nn.learn(out1.begin(), out1.end()); } // nn.printWages(); //test std::vector<double> out; nn.setInput(in1.begin(), in1.end()); out = nn.calcOutput(); ASSERT_LT(out[0], 0.1); nn.setInput(in2.begin(), in2.end()); out = nn.calcOutput(); ASSERT_GT(out[0], 0.9); nn.setInput(in3.begin(), in3.end()); out = nn.calcOutput(); ASSERT_GT(out[0], 0.9); nn.setInput(in4.begin(), in4.end()); out = nn.calcOutput(); ASSERT_GT(out[0], 0.9); }
TEST(RealWordTest, XORLinear) { typedef NeuralNetwork<double, LinearActivationFunction<double >> network; network nn; //nn.setActivationfunction(LinearActivationFunction<double>(10)); nn.setEntries(2); nn.setExits(1); nn.setLayersCount(2); nn.setNeurons(1, 2); nn.init(); std::vector<double> in1(2); std::vector<double> in2(2); std::vector<double> in3(2); std::vector<double> in4(2); in1[0] = 0; in1[1] = 0; in2[0] = 1; in2[1] = 0; in3[0] = 0; in3[1] = 1; in4[0] = 1; in4[1] = 1; std::vector<double> out0(1); std::vector<double> out1(1); out0[0] = 0; out1[0] = 1; //uczenie for (int i = 0; i < 1000; ++i) { std::vector<double> o(1); nn.setInput(in1.begin(), in1.end()); o = nn.calcOutput(); nn.learn(out0.begin(), out0.end()); // // std::cout << "Wynik0: " << o[0] << "\n"; // nn.printWages(); nn.setInput(in2.begin(), in2.end()); o = nn.calcOutput(); nn.learn(out1.begin(), out1.end()); // // std::cout << "Wynik1: " << o[0] << "\n"; // nn.printWages(); nn.setInput(in3.begin(), in3.end()); o = nn.calcOutput(); nn.learn(out1.begin(), out1.end()); // // std::cout << "Wynik1: " << o[0] << "\n"; // nn.printWages(); nn.setInput(in4.begin(), in4.end()); o = nn.calcOutput(); nn.learn(out0.begin(), out0.end()); // // std::cout << "Wynik0: " << o[0] << "\n"; // nn.printWages(); } //test std::vector<double> out; std::vector<double> o(4); nn.setInput(in1.begin(), in1.end()); out = nn.calcOutput(); o[0] = out[0]; EXPECT_LT(out[0], 0.1); nn.setInput(in2.begin(), in2.end()); out = nn.calcOutput(); o[1] = out[0]; EXPECT_GT(out[0], 0.9); nn.setInput(in3.begin(), in3.end()); out = nn.calcOutput(); o[2] = out[0]; EXPECT_GT(out[0], 0.9); nn.setInput(in4.begin(), in4.end()); out = nn.calcOutput(); o[3] = out[0]; EXPECT_LT(out[0], 0.1); //std::cout << o[0] << " " << o[1] << " " << o[2] << " " << o[3] << "\n"; }
void astar::wczytaj_graf(){ int id, wg, nr; ifstream in1("graf1.txt"); ifstream in2("graf2.txt"); ifstream in3("graf3.txt"); ifstream in4("graf4.txt"); ifstream in5("graf5.txt"); ifstream in6("graf6.txt"); for(int i = 0; i<10; i++) G1.dodaj_wierzcholek(i); for(int i = 0; i<100; i++) G2.dodaj_wierzcholek(i); for(int i = 0; i<1000; i++) G3.dodaj_wierzcholek(i); for(int i = 0; i<10000; i++) G4.dodaj_wierzcholek(i); for(int i = 0; i<50000; i++) G5.dodaj_wierzcholek(i); for(int i = 0; i<100000; i++) G6.dodaj_wierzcholek(i); for(int i = 0; i<10; i++){ in1>>nr; for(int k = 0; k<5; k++){ in1>>id>>wg; G1.dodaj_krawedz(i,id); } } for(int i = 0; i<100; i++){ in2>>nr; for(int k = 0; k<5; k++){ in2>>id>>wg; G2.dodaj_krawedz(i,id); } } for(int i = 0; i<1000; i++){ in3>>nr; for(int k = 0; k<5; k++){ in3>>id>>wg; G3.dodaj_krawedz(i,id); } } for(int i = 0; i<10000; i++){ in4>>nr; for(int k = 0; k<5; k++){ in4>>id>>wg; G4.dodaj_krawedz(i,id); } } for(int i = 0; i<50000; i++){ in5>>nr; for(int k = 0; k<5; k++){ in5>>id>>wg; G5.dodaj_krawedz(i,id); } } for(int i = 0; i<100000; i++){ in6>>nr; for(int k = 0; k<5; k++){ in6>>id>>wg; G6.dodaj_krawedz(i,id); } } }
void graf_test::wczytaj_graf(){ int id, wg, nr; ifstream in1("graf1.txt"); ifstream in2("graf2.txt"); ifstream in3("graf3.txt"); ifstream in4("graf4.txt"); ifstream in5("graf5.txt"); ifstream in6("graf6.txt"); for(int i = 0; i<10; i++) G1.dodaj_wierzcholek(); for(int i = 0; i<100; i++) G2.dodaj_wierzcholek(); for(int i = 0; i<1000; i++) G3.dodaj_wierzcholek(); for(int i = 0; i<10000; i++) G4.dodaj_wierzcholek(); for(int i = 0; i<50000; i++) G5.dodaj_wierzcholek(); for(int i = 0; i<100000; i++) G6.dodaj_wierzcholek(); /*dodano wierzcholki, teraz tworzymy liste incydencji*/ for(int i = 0; i<10; i++){ in1>>nr; for(int k = 0; k<5; k++){ in1>>id>>wg; G1.dodaj_krawedz(i,id,wg); } } for(int i = 0; i<100; i++){ in2>>nr; for(int k = 0; k<5; k++){ in2>>id>>wg; G2.dodaj_krawedz(i,id,wg); } } for(int i = 0; i<1000; i++){ in3>>nr; for(int k = 0; k<5; k++){ in3>>id>>wg; G3.dodaj_krawedz(i,id,wg); } } for(int i = 0; i<10000; i++){ in4>>nr; for(int k = 0; k<5; k++){ in4>>id>>wg; G4.dodaj_krawedz(i,id,wg); } } for(int i = 0; i<50000; i++){ in5>>nr; for(int k = 0; k<5; k++){ in5>>id>>wg; G5.dodaj_krawedz(i,id,wg); } } for(int i = 0; i<100000; i++){ in6>>nr; for(int k = 0; k<5; k++){ in6>>id>>wg; G6.dodaj_krawedz(i,id,wg); } } G1.rysuj(); }