Пример #1
0
void set_of_sets::init(INT underlying_set_size, INT nb_sets, INT **Pts, INT *Sz, INT verbose_level)
{
    INT f_v = (verbose_level >= 1);
    INT i;

    if (f_v) {
        cout << "set_of_sets::init nb_sets=" << nb_sets << " underlying_set_size=" << underlying_set_size << endl;
    }

    init_basic(underlying_set_size, nb_sets, Sz, verbose_level);

    for (i = 0; i < nb_sets; i++) {
        INT_vec_copy(Pts[i], Sets[i], Sz[i]);
    }
}
Пример #2
0
int main()
{
    float tab1[N1] = {3.2, 2.1, -8.4, 0.0, 5.5};   // a eviter generalement
    float tab2[N2];
    float tab3[N3];

    init_zero(tab2, N2);
    init_basic(tab3, N3);

    affiche(tab1, N1);
    affiche(tab2, N2);
    affiche(tab3, N3);
    
    return EXIT_SUCCESS;
}
Пример #3
0
/*
 * Compute EMD between weighted samples, given a pairwise cost matrix
 * @param int n_x : number of samples in X
 * @param double *weight_x : list of weights of samples in X (sums to 1)
 * @param int n_y : number of samples in Y
 * @param double *weight_y : list of weights of samples in Y (sums to 1)
 * @param double **cost : pairwise cost matrix; cost[i][j] holds cost to
 *     "move dirt" from X_i to Y_j
 * @return double : returns EMD between samples
 */
double emd(int n_x, double *weight_x,
           int n_y, double *weight_y, double **cost) {
    struct basic_variable **basis;
    struct basic_variable *var, *root, *to_remove;
    struct adj_node *adj;
    double *dual_x, *dual_y;
    int *solved_x, *solved_y;
    int i, j, B, min_row, min_col;
    double min_slack, slack, min_flow, sign, distance;
    B = n_x + n_y - 1;

    basis = initialize_flow(n_x, weight_x, n_y, weight_y, cost);

    // Iterate until optimality conditions satisfied
    dual_x = vector_malloc(n_x);
    dual_y = vector_malloc(n_y);
    solved_x = (int *) malloc(n_x*sizeof(int));
    solved_y = (int *) malloc(n_y*sizeof(int));
    while (1) {
        for (i = 0; i < n_x; i++) { solved_x[i] = 0; }
        for (i = 0; i < n_y; i++) { solved_y[i] = 0; }
        reset_current_adj(basis, B);
        var = basis[0];
        dual_x[var->row] = 0.0;
        solved_x[var->row] = 1;
        while (1) {
            var->color = GRAY;
            if (solved_x[var->row]){
                dual_y[var->col] = (cost[var->row][var->col]
                                    - dual_x[var->row]);
                solved_y[var->col] = 1;
            } else if (solved_y[var->col]) {
                dual_x[var->row] = (cost[var->row][var->col]
                                    - dual_y[var->col]);
                solved_x[var->row] = 1;
            } else {
                assert(FALSE);
            }
            for (adj = var->current_adj; adj != NULL; adj = adj->next) {
                if (adj->variable->color == WHITE) { break; }
            }
            if (adj == NULL) {
                var->color = BLACK;
                var = var->back_ptr;
                if (var == NULL) {
                    break;
                }
            } else {
                var->current_adj = adj->next;
                adj->variable->back_ptr = var;
                var = adj->variable;
            }
        }

        // Check for optimality
        min_row = -1;
        min_col = -1;
        min_slack = 0.0;
        for (i = 0; i < n_x; i++) {
            for (j = 0; j < n_y; j++) {
                slack = cost[i][j] - dual_x[i] - dual_y[j];
                if (min_row < 0 || slack < min_slack) {
                    min_row = i;
                    min_col = j;
                    min_slack = slack;
                }
            }
        }
        for (i = 0; i < B; i++) {
            // If the pivot variable is any of the
            // basis variables, then the optimal
            // solution has been found; set
            // min_slack = 0.0 explicitly to avoid
            // floating point issues in comparison.
            if (basis[i]->row == min_row &&
                basis[i]->col == min_col) {
                min_slack = 0.0;
                break;
            }
        }
        if (min_slack >= -EPSILON) { break; }

        // Introduce a new variable
        var = init_basic(min_row, min_col, 0.0);
        insert_basic(basis, B, var);
        root = var;
        reset_current_adj(basis, B + 1);
        while (1) {
            var->color = GRAY;
            for (adj = var->current_adj; adj != NULL; adj = adj->next) {
                if (var->back_ptr != NULL
                    && (var->back_ptr->row == adj->variable->row
                     || var->back_ptr->col == adj->variable->col)) {
                    continue;
                }
                if (adj->variable == root) {
                    // Found a cycle
                    break;
                }
                if (adj->variable->color == WHITE) { break; }
            }
            if (adj == NULL) {
                var->color = BLACK;
                var = var->back_ptr;
                if (var == NULL) {
                    // Couldn't find a cycle
                    assert(FALSE);
                }
            } else {
                if (adj->variable->color == GRAY) {
                    // We found a cycle
                    root->back_ptr = var;
                    break;
                } else {
                    var->current_adj = adj->next;
                    adj->variable->back_ptr = var;
                    var = adj->variable;
                }
            }
        }

        // Find the largest flow that can be subtracted
        sign = -1.0;
        min_flow = 0;
        to_remove = NULL;
        for (var = root->back_ptr; var != root; var = var->back_ptr) {
            if (sign < 0 && (to_remove == NULL || var->flow < min_flow)) {
                min_flow = var->flow;
                to_remove = var;
            }
            sign *= -1.0;
        }

        // Adjust flows
        sign = -1.0;
        root->flow = min_flow;
        for (var = root->back_ptr; var != root; var = var->back_ptr) {
            var->flow += (sign * min_flow);
            sign *= -1.0;
        }

        // Remove the basic variable that went to zero
        remove_basic(basis, B, to_remove);
    }

    distance = 0;
    for (i = 0; i < B; i++) {
        distance += (basis[i]->flow * cost[basis[i]->row][basis[i]->col]);
    }

    free(dual_x);
    free(dual_y);
    free(solved_x);
    free(solved_y);
    destruct_basis(basis, B);
    return distance;
}