Пример #1
0
//------------------------------------------------------------------------------
// Name: dump_code(const State &state)
// Desc:
//------------------------------------------------------------------------------
void DumpState::dump_code(const State &state) {

    QSettings settings;
    const int instructions_to_print = settings.value("DumpState/instructions_after_ip", 6).toInt();

    const edb::address_t ip = state.instruction_pointer();
    edb::address_t address = ip;

    for(int i = 0; i < instructions_to_print + 1; ++i) {
        quint8 buf[edb::Instruction::MAX_SIZE];
        int size = sizeof(buf);

        if(edb::v1::get_instruction_bytes(address, buf, size)) {
            edb::Instruction insn(buf, size, address, std::nothrow);
            if(insn.valid()) {
                std::cout << ((address == ip) ? "> " : "  ") << hex_string(address) << ": " << edisassm::to_string(insn) << "\n";
            } else {
                break;
            }
            address += insn.size();
        } else {
            break;
        }
    }
}
Пример #2
0
//------------------------------------------------------------------------------
// Name: resolve_function_call(QHexView::address_t address) const
// Desc:
//------------------------------------------------------------------------------
QString CommentServer::resolve_function_call(QHexView::address_t address, bool &ok) const {
	QString ret;

	ok = false;

	// ok, we now want to locate the instruction before this one
	// so we need to look back a few bytes
	quint8 buffer[edb::Instruction::MAX_SIZE];

	// TODO: portability warning, makes assumptions on the size of a call
	if(edb::v1::debugger_core->read_bytes(address - CALL_MAX_SIZE, buffer, sizeof(buffer))) {
		for(int i = (CALL_MAX_SIZE - CALL_MIN_SIZE); i >= 0; --i) {
			edb::Instruction insn(buffer + i, sizeof(buffer) - i, 0, std::nothrow);
			if(insn.valid() && insn.type() == edb::Instruction::OP_CALL) {
				const QString symname = edb::v1::find_function_symbol(address);
				if(!symname.isEmpty()) {
					ret = tr("return to %1 <%2>").arg(edb::v1::format_pointer(address)).arg(symname);
				} else {
					ret = tr("return to %1").arg(edb::v1::format_pointer(address));
				}
				ok = true;
				break;
			}
		}
	}

	return ret;
}
Пример #3
0
int main() {

	edisassm::FormatOptions options;
	options.syntax         = edisassm::SyntaxIntel;
	options.capitalization = edisassm::LowerCase;
	options.smallNumFormat = edisassm::SmallNumAsHex;
	edisassm::Formatter formatter(options);
	
	for(size_t i = 0; i < sizeof(test64_data) / sizeof(test64_data[0]); ++i) {
		test_data_t *p = &test64_data[i];

		std::cout << "performing test #" << i << "...";
		insn64_t insn(p->bytes, p->bytes + p->size, 0x00000000, std::nothrow);

		if(!insn.valid() || formatter.to_string(insn) != p->result) {
			std::cout << "\n----------\n";
			std::cout << "GOT      : " << formatter.to_string(insn) << std::endl;
			std::cout << "EXPECTED : " << p->result << std::endl;
			std::cout << "FAIL" << std::endl;
			return -1;
		}

		if(insn.size() != p->size) {
			std::cout << "\n----------\n";
			std::cout << formatter.to_byte_string(insn) << " incorrect size" << std::endl;
			std::cout << "FAIL" << std::endl;
			return -1;
		}

		if(insn.flags() != p->flags) {
			std::cout << "\n----------\n";
			std::cout << formatter.to_byte_string(insn) << " wrong flags" << std::endl;
			std::cout << "FLAGS: " << insn.flags() << std::endl;
			std::cout << "FAIL" << std::endl;
			return -1;
		}

		std::cout << " " << formatter.to_byte_string(insn) << " '" << formatter.to_string(insn) << "' " << "OK" << std::endl;
	}
}
Пример #4
0
void insnCodeGen::generateTrap(codeGen &gen) {
    instruction insn(BREAK_POINT_INSN);
    generate(gen,insn);
}
Пример #5
0
void SFXController::_compileList( SFXPlayList* playList )
{
   mInsns.clear();
   const bool isLooping = playList->getDescription()->mIsLooping;
   
   // Create a slot list that determines the order the slots will be
   // played in.
   
   U32 slotList[ SFXPlayList::NUM_SLOTS ];
   bool isOrderedRandom = false;
   switch( playList->getRandomMode() )
   {
      case SFXPlayList::RANDOM_OrderedRandom:
         isOrderedRandom = true;
         /* fallthrough */
         
      case SFXPlayList::RANDOM_NotRandom:
         // Generate sequence 1-NUM_SLOTS.
         for( U32 i = 0; i < SFXPlayList::NUM_SLOTS; ++ i )
            slotList[ i ] = i;
            
         if( isOrderedRandom )
         {
            // Randomly exchange slots in the list.
            for( U32 i = 0; i < SFXPlayList::NUM_SLOTS; ++ i )
               swap( slotList[ gRandGen.randI( 0, SFXPlayList::NUM_SLOTS - 1 ) ], slotList[ i ] );
         }
         break;
         
      case SFXPlayList::RANDOM_StrictRandom:
         // Randomly generate NUM_SLOTS slot indices.
         for( U32 i = 0; i < SFXPlayList::NUM_SLOTS; ++ i )
            slotList[ i ] = gRandGen.randI( 0, SFXPlayList::NUM_SLOTS - 1 );
         break;
   }
   
   // Generate the instruction list.
   
   U32 slotCount = 0;
   for( U32 i = 0; i < SFXPlayList::NUM_SLOTS; ++ i )
   {
      const U32 slotIndex = slotList[ i ];
      const U32 slotStartIp = mInsns.size();
      
      SFXState* state = playList->getSlots().mState[ slotIndex ];
      
      // If there's no track in this slot, ignore it.
      
      if( !playList->getSlots().mTrack[ slotIndex ] )
         continue;
         
      // If this is a looped slot and the list is not set to loop
      // indefinitly on single slots, start a loop.
      
      S32 loopStartIp = -1;
      if( playList->getSlots().mRepeatCount[ slotIndex ] > 0
          && ( !isLooping || playList->getLoopMode() != SFXPlayList::LOOP_Single ) )
      {
         Insn insn( OP_LoopBegin, slotIndex, state );
         insn.mArg.mLoopCount = playList->getSlots().mRepeatCount[ slotIndex ];
         mInsns.push_back( insn );
         
         loopStartIp = mInsns.size();
      }
         
      // Add in-delay, if any.
      
      if( playList->getSlots().mDelayTimeIn.mValue[ slotIndex ] > 0.0f )
      {
         Insn insn( OP_Delay, slotIndex, state );
         insn.mArg.mDelayTime.mValue[ 0 ] = playList->getSlots().mDelayTimeIn.mValue[ slotIndex ];
         insn.mArg.mDelayTime.mVariance[ 0 ][ 0 ] = playList->getSlots().mDelayTimeIn.mVariance[ slotIndex ][ 0 ];
         insn.mArg.mDelayTime.mVariance[ 0 ][ 1 ] = playList->getSlots().mDelayTimeIn.mVariance[ slotIndex ][ 1 ];
         
         mInsns.push_back( insn );
      }
      
      // Add the in-transition.
      
      const SFXPlayList::ETransitionMode transitionIn = playList->getSlots().mTransitionIn[ slotIndex ];
      if( transitionIn != SFXPlayList::TRANSITION_None )
      {
         Insn insn( slotIndex, state );
         _genTransition( insn, transitionIn );
         mInsns.push_back( insn );
      }
      
      // Add the play instruction.
      
      {
         Insn insn( OP_Play, slotIndex, state );
         mInsns.push_back( insn );
      }
      
      // Add out-delay, if any.
      
      if( playList->getSlots().mDelayTimeOut.mValue[ slotIndex ] > 0.0f )
      {
         Insn insn( OP_Delay, slotIndex, state );
         insn.mArg.mDelayTime.mValue[ 0 ] = playList->getSlots().mDelayTimeOut.mValue[ slotIndex ];
         insn.mArg.mDelayTime.mVariance[ 0 ][ 0 ] = playList->getSlots().mDelayTimeOut.mVariance[ slotIndex ][ 0 ];
         insn.mArg.mDelayTime.mVariance[ 0 ][ 1 ] = playList->getSlots().mDelayTimeOut.mVariance[ slotIndex ][ 1 ];
         
         mInsns.push_back( insn );
      }
      
      // Add the out-transition.
      
      const SFXPlayList::ETransitionMode transitionOut = playList->getSlots().mTransitionOut[ slotIndex ];
      if( transitionOut != SFXPlayList::TRANSITION_None )
      {
         Insn insn( slotIndex, state );
         _genTransition( insn, transitionOut );
         mInsns.push_back( insn );
      }
      
      // Loop, if necessary.
      
      if( loopStartIp != -1 )
      {
         Insn insn( OP_LoopEnd, slotIndex, state );
         insn.mArg.mJumpIp = loopStartIp;
         mInsns.push_back( insn );
      }
      
      // If the list is on repeat-single, unconditionally
      // loop over the instruction sequence of each slot.
      
      if( isLooping && playList->getLoopMode() == SFXPlayList::LOOP_Single )
      {
         Insn insn( OP_Jump, slotIndex, state );
         insn.mArg.mJumpIp = slotStartIp;
         mInsns.push_back( insn );
      }
      
      // If we have reached the limit of slots to play,
      // stop generating.
      
      slotCount ++;
      if( playList->getNumSlotsToPlay() == slotCount )
         break;
   }
      
   // Set up for execution.

   mIp = 0;
   if( !mInsns.empty() )
      _initInsn();
}
Пример #6
0
//------------------------------------------------------------------------------
// Name: do_find()
// Desc:
//------------------------------------------------------------------------------
void DialogReferences::do_find() {
	bool ok;
	const edb::address_t address   = edb::v1::string_to_address(ui->txtAddress->text(), ok);
	const edb::address_t page_size = edb::v1::debugger_core->page_size();

	if(ok) {
		edb::v1::memory_regions().sync();
		const QList<MemRegion> regions = edb::v1::memory_regions().regions();

		int i = 0;
		Q_FOREACH(const MemRegion &region, regions) {
			// a short circut for speading things up
			if(region.accessible() || !ui->chkSkipNoAccess->isChecked()) {

				const edb::address_t size_in_pages = region.size() / page_size;

				try {

					QVector<quint8> pages(size_in_pages * page_size);
					const quint8 *const pages_end = &pages[0] + size_in_pages * page_size;

					if(edb::v1::debugger_core->read_pages(region.start, &pages[0], size_in_pages)) {
						const quint8 *p = &pages[0];
						while(p != pages_end) {

							if(static_cast<std::size_t>(pages_end - p) < sizeof(edb::address_t)) {
								break;
							}

							const edb::address_t addr = p - &pages[0] + region.start;

							edb::address_t test_address;
							memcpy(&test_address, p, sizeof(edb::address_t));

							if(test_address == address) {

								QListWidgetItem *const item = new QListWidgetItem(edb::v1::format_pointer(addr));
								item->setData(Qt::UserRole, 'D');
								ui->listWidget->addItem(item);
							}

							edb::Instruction insn(p, pages_end - p, addr, std::nothrow);
							if(insn.valid()) {
								switch(insn.type()) {
								case edb::Instruction::OP_JMP:
								case edb::Instruction::OP_CALL:
								case edb::Instruction::OP_JCC:
									if(insn.operand(0).general_type() == edb::Operand::TYPE_REL) {
										if(insn.operand(0).relative_target() == address) {
											QListWidgetItem *const item = new QListWidgetItem(edb::v1::format_pointer(addr));
											item->setData(Qt::UserRole, 'C');
											ui->listWidget->addItem(item);
										}
									}
									break;
								default:
									break;
								}
							}

							emit updateProgress(util::percentage(i, regions.size(), p - &pages[0], region.size()));
							++p;
						}
					}
				} catch(const std::bad_alloc &) {
					QMessageBox::information(
						0,
						tr("Memroy Allocation Error"),
						tr("Unable to satisfy memory allocation request for requested region."));
				}
			} else {
				emit updateProgress(util::percentage(i, regions.size()));
			}
			++i;
		}
	}
}
Пример #7
0
main ()
/*****/

  /* main program, corresponds to procedures        */
  /* Main and Proc_0 in the Ada version             */
{
        One_Fifty       Int_1_Loc;
  REG   One_Fifty       Int_2_Loc;
        One_Fifty       Int_3_Loc;
  REG   char            Ch_Index;
        Enumeration     Enum_Loc;
        Str_30          Str_1_Loc;
        Str_30          Str_2_Loc;
  REG   int             Run_Index;
  REG   int             Number_Of_Runs;

  /* Initializations */

  Next_Ptr_Glob = (Rec_Pointer) malloc (sizeof (Rec_Type));
  Ptr_Glob = (Rec_Pointer) malloc (sizeof (Rec_Type));

  Ptr_Glob->Ptr_Comp                    = Next_Ptr_Glob;
  Ptr_Glob->Discr                       = Ident_1;
  Ptr_Glob->variant.var_1.Enum_Comp     = Ident_3;
  Ptr_Glob->variant.var_1.Int_Comp      = 40;
  strcpy (Ptr_Glob->variant.var_1.Str_Comp,
          "DHRYSTONE PROGRAM, SOME STRING");
  strcpy (Str_1_Loc, "DHRYSTONE PROGRAM, 1'ST STRING");

  Arr_2_Glob [8][7] = 10;
        /* Was missing in published program. Without this statement,    */
        /* Arr_2_Glob [8][7] would have an undefined value.             */
        /* Warning: With 16-Bit processors and Number_Of_Runs > 32000,  */
        /* overflow may occur for this array element.                   */

  printf ("\n");
  printf ("Dhrystone Benchmark, Version 2.1 (Language: C)\n");
  printf ("\n");
  if (Reg)
  {
    printf ("Program compiled with 'register' attribute\n");
    printf ("\n");
  }
  else
  {
    printf ("Program compiled without 'register' attribute\n");
    printf ("\n");
  }
  printf ("Please give the number of runs through the benchmark: ");
  {
    int n;
    scanf ("%d", &n);
    Number_Of_Runs = n;
  }
  printf ("\n");

  printf ("Execution starts, %d runs through Dhrystone\n", Number_Of_Runs);

  /***************/
  /* Start timer */
  /***************/

#ifdef TIMES
  times (&time_info);
  Begin_Time = (long) time_info.tms_utime;
#endif
#ifdef TIME
  Begin_Time = time ( (long *) 0);
#ifdef RISCV
  Begin_Insn = insn ( (long *) 0);
#endif
#endif

  for (Run_Index = 1; Run_Index <= Number_Of_Runs; ++Run_Index)
  {

    Proc_5();
    Proc_4();
      /* Ch_1_Glob == 'A', Ch_2_Glob == 'B', Bool_Glob == true */
    Int_1_Loc = 2;
    Int_2_Loc = 3;
    strcpy (Str_2_Loc, "DHRYSTONE PROGRAM, 2'ND STRING");
    Enum_Loc = Ident_2;
    Bool_Glob = ! Func_2 (Str_1_Loc, Str_2_Loc);
      /* Bool_Glob == 1 */
    while (Int_1_Loc < Int_2_Loc)  /* loop body executed once */
    {
      Int_3_Loc = 5 * Int_1_Loc - Int_2_Loc;
        /* Int_3_Loc == 7 */
      Proc_7 (Int_1_Loc, Int_2_Loc, &Int_3_Loc);
        /* Int_3_Loc == 7 */
      Int_1_Loc += 1;
    } /* while */
      /* Int_1_Loc == 3, Int_2_Loc == 3, Int_3_Loc == 7 */
    Proc_8 (Arr_1_Glob, Arr_2_Glob, Int_1_Loc, Int_3_Loc);
      /* Int_Glob == 5 */
    Proc_1 (Ptr_Glob);
    for (Ch_Index = 'A'; Ch_Index <= Ch_2_Glob; ++Ch_Index)
                             /* loop body executed twice */
    {
      if (Enum_Loc == Func_1 (Ch_Index, 'C'))
          /* then, not executed */
        {
        Proc_6 (Ident_1, &Enum_Loc);
        strcpy (Str_2_Loc, "DHRYSTONE PROGRAM, 3'RD STRING");
        Int_2_Loc = Run_Index;
        Int_Glob = Run_Index;
        }
    }
      /* Int_1_Loc == 3, Int_2_Loc == 3, Int_3_Loc == 7 */
    Int_2_Loc = Int_2_Loc * Int_1_Loc;
    Int_1_Loc = Int_2_Loc / Int_3_Loc;
    Int_2_Loc = 7 * (Int_2_Loc - Int_3_Loc) - Int_1_Loc;
      /* Int_1_Loc == 1, Int_2_Loc == 13, Int_3_Loc == 7 */
    Proc_2 (&Int_1_Loc);
      /* Int_1_Loc == 5 */

  } /* loop "for Run_Index" */

  /**************/
  /* Stop timer */
  /**************/

#ifdef TIMES
  times (&time_info);
  End_Time = (long) time_info.tms_utime;
#endif
#ifdef TIME
  End_Time = time ( (long *) 0);
#ifdef RISCV
  End_Insn = insn ( (long *) 0);
#endif
#endif

  printf ("Execution ends\n");
  printf ("\n");
  printf ("Final values of the variables used in the benchmark:\n");
  printf ("\n");
  printf ("Int_Glob:            %d\n", Int_Glob);
  printf ("        should be:   %d\n", 5);
  printf ("Bool_Glob:           %d\n", Bool_Glob);
  printf ("        should be:   %d\n", 1);
  printf ("Ch_1_Glob:           %c\n", Ch_1_Glob);
  printf ("        should be:   %c\n", 'A');
  printf ("Ch_2_Glob:           %c\n", Ch_2_Glob);
  printf ("        should be:   %c\n", 'B');
  printf ("Arr_1_Glob[8]:       %d\n", Arr_1_Glob[8]);
  printf ("        should be:   %d\n", 7);
  printf ("Arr_2_Glob[8][7]:    %d\n", Arr_2_Glob[8][7]);
  printf ("        should be:   Number_Of_Runs + 10\n");
  printf ("Ptr_Glob->\n");
  printf ("  Ptr_Comp:          %d\n", (int) Ptr_Glob->Ptr_Comp);
  printf ("        should be:   (implementation-dependent)\n");
  printf ("  Discr:             %d\n", Ptr_Glob->Discr);
  printf ("        should be:   %d\n", 0);
  printf ("  Enum_Comp:         %d\n", Ptr_Glob->variant.var_1.Enum_Comp);
  printf ("        should be:   %d\n", 2);
  printf ("  Int_Comp:          %d\n", Ptr_Glob->variant.var_1.Int_Comp);
  printf ("        should be:   %d\n", 17);
  printf ("  Str_Comp:          %s\n", Ptr_Glob->variant.var_1.Str_Comp);
  printf ("        should be:   DHRYSTONE PROGRAM, SOME STRING\n");
  printf ("Next_Ptr_Glob->\n");
  printf ("  Ptr_Comp:          %d\n", (int) Next_Ptr_Glob->Ptr_Comp);
  printf ("        should be:   (implementation-dependent), same as above\n");
  printf ("  Discr:             %d\n", Next_Ptr_Glob->Discr);
  printf ("        should be:   %d\n", 0);
  printf ("  Enum_Comp:         %d\n", Next_Ptr_Glob->variant.var_1.Enum_Comp);
  printf ("        should be:   %d\n", 1);
  printf ("  Int_Comp:          %d\n", Next_Ptr_Glob->variant.var_1.Int_Comp);
  printf ("        should be:   %d\n", 18);
  printf ("  Str_Comp:          %s\n",
                                Next_Ptr_Glob->variant.var_1.Str_Comp);
  printf ("        should be:   DHRYSTONE PROGRAM, SOME STRING\n");
  printf ("Int_1_Loc:           %d\n", Int_1_Loc);
  printf ("        should be:   %d\n", 5);
  printf ("Int_2_Loc:           %d\n", Int_2_Loc);
  printf ("        should be:   %d\n", 13);
  printf ("Int_3_Loc:           %d\n", Int_3_Loc);
  printf ("        should be:   %d\n", 7);
  printf ("Enum_Loc:            %d\n", Enum_Loc);
  printf ("        should be:   %d\n", 1);
  printf ("Str_1_Loc:           %s\n", Str_1_Loc);
  printf ("        should be:   DHRYSTONE PROGRAM, 1'ST STRING\n");
  printf ("Str_2_Loc:           %s\n", Str_2_Loc);
  printf ("        should be:   DHRYSTONE PROGRAM, 2'ND STRING\n");
  printf ("\n");

  User_Time = End_Time - Begin_Time;

#ifdef RISCV
  User_Insn = End_Insn - Begin_Insn;

  printf("Number_Of_Runs: %d\n", Number_Of_Runs);
  printf("User_Time: %d cycles, %d insn\n", User_Time, User_Insn);

  long runs=Number_Of_Runs*100;
//  printf("time %d %d\n",csr_timeh(),csr_time());
  printf("DMIPS: %d\n",runs/(User_Time/1000/1000)/1757);

/*
  int Cycles_Per_Instruction_x1000 = (1000 * User_Time) / User_Insn;
  printf("Cycles_Per_Instruction: %d.%d%d%d\n", Cycles_Per_Instruction_x1000 / 1000,
		(Cycles_Per_Instruction_x1000 / 100) % 10,
		(Cycles_Per_Instruction_x1000 / 10) % 10,
		(Cycles_Per_Instruction_x1000 / 1) % 10);

  int Dhrystones_Per_Second_Per_MHz = (Number_Of_Runs * 1000000) / User_Time;
  printf("Dhrystones_Per_Second_Per_MHz: %d\n", Dhrystones_Per_Second_Per_MHz);

  int DMIPS_Per_MHz_x1000 = (1000 * Dhrystones_Per_Second_Per_MHz) / 1757;
  printf("DMIPS_Per_MHz: %d.%d%d%d\n", DMIPS_Per_MHz_x1000 / 1000,
		(DMIPS_Per_MHz_x1000 / 100) % 10,
		(DMIPS_Per_MHz_x1000 / 10) % 10,
		(DMIPS_Per_MHz_x1000 / 1) % 10);
    */
#else
  if (User_Time < Too_Small_Time)
  {
    printf ("Measured time too small to obtain meaningful results\n");
    printf ("Please increase number of runs\n");
    printf ("\n");
  }
  else
  {
#ifdef TIME
    Microseconds = (float) User_Time * Mic_secs_Per_Second
                        / (float) Number_Of_Runs;
    Dhrystones_Per_Second = (float) Number_Of_Runs / (float) User_Time;
#else
    Microseconds = (float) User_Time * Mic_secs_Per_Second
                        / ((float) HZ * ((float) Number_Of_Runs));
    Dhrystones_Per_Second = ((float) HZ * (float) Number_Of_Runs)
                        / (float) User_Time;
#endif
    printf ("Microseconds for one run through Dhrystone: ");
    printf ("%6.1f \n", Microseconds);
    printf ("Dhrystones per Second:                      ");
    printf ("%6.1f \n", Dhrystones_Per_Second);
    printf ("\n");
  }
#endif

}