int truncate_data_blocks_range(struct dnode_of_data *dn, int count) { int nr_free = 0, ofs = dn->ofs_in_node; struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); struct f2fs_node *raw_node; __le32 *addr; raw_node = F2FS_NODE(dn->node_page); addr = blkaddr_in_node(raw_node) + ofs; for (; count > 0; count--, addr++, dn->ofs_in_node++) { block_t blkaddr = le32_to_cpu(*addr); if (blkaddr == NULL_ADDR) continue; dn->data_blkaddr = NULL_ADDR; set_data_blkaddr(dn); f2fs_update_extent_cache(dn); invalidate_blocks(sbi, blkaddr); if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page)) clear_inode_flag(F2FS_I(dn->inode), FI_FIRST_BLOCK_WRITTEN); nr_free++; } if (nr_free) { dec_valid_block_count(sbi, dn->inode, nr_free); set_page_dirty(dn->node_page); sync_inode_page(dn); } dn->ofs_in_node = ofs; trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, dn->ofs_in_node, nr_free); return nr_free; }
int truncate_data_blocks_range(struct dnode_of_data *dn, int count) { struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); struct f2fs_node *raw_node; int nr_free = 0, ofs = dn->ofs_in_node, len = count; __le32 *addr; raw_node = F2FS_NODE(dn->node_page); addr = blkaddr_in_node(raw_node) + ofs; for (; count > 0; count--, addr++, dn->ofs_in_node++) { block_t blkaddr = le32_to_cpu(*addr); if (blkaddr == NULL_ADDR) continue; dn->data_blkaddr = NULL_ADDR; set_data_blkaddr(dn); invalidate_blocks(sbi, blkaddr); if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page)) clear_inode_flag(F2FS_I(dn->inode), FI_FIRST_BLOCK_WRITTEN); nr_free++; } if (nr_free) { pgoff_t fofs; /* * once we invalidate valid blkaddr in range [ofs, ofs + count], * we will invalidate all blkaddr in the whole range. */ fofs = start_bidx_of_node(ofs_of_node(dn->node_page), F2FS_I(dn->inode)) + ofs; f2fs_update_extent_cache_range(dn, fofs, 0, len); dec_valid_block_count(sbi, dn->inode, nr_free); set_page_dirty(dn->node_page); sync_inode_page(dn); } dn->ofs_in_node = ofs; trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, dn->ofs_in_node, nr_free); return nr_free; }
static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, int mode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct address_space *mapping = inode->i_mapping; pgoff_t index, pg_start, pg_end; loff_t new_size = i_size_read(inode); loff_t off_start, off_end; int ret = 0; if (!S_ISREG(inode->i_mode)) return -EINVAL; ret = inode_newsize_ok(inode, (len + offset)); if (ret) return ret; f2fs_balance_fs(sbi); if (f2fs_has_inline_data(inode)) { ret = f2fs_convert_inline_inode(inode); if (ret) return ret; } ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); if (ret) return ret; truncate_pagecache_range(inode, offset, offset + len - 1); pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT; pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT; off_start = offset & (PAGE_CACHE_SIZE - 1); off_end = (offset + len) & (PAGE_CACHE_SIZE - 1); if (pg_start == pg_end) { ret = fill_zero(inode, pg_start, off_start, off_end - off_start); if (ret) return ret; if (offset + len > new_size) new_size = offset + len; new_size = max_t(loff_t, new_size, offset + len); } else { if (off_start) { ret = fill_zero(inode, pg_start++, off_start, PAGE_CACHE_SIZE - off_start); if (ret) return ret; new_size = max_t(loff_t, new_size, pg_start << PAGE_CACHE_SHIFT); } for (index = pg_start; index < pg_end; index++) { struct dnode_of_data dn; struct page *ipage; f2fs_lock_op(sbi); ipage = get_node_page(sbi, inode->i_ino); if (IS_ERR(ipage)) { ret = PTR_ERR(ipage); f2fs_unlock_op(sbi); goto out; } set_new_dnode(&dn, inode, ipage, NULL, 0); ret = f2fs_reserve_block(&dn, index); if (ret) { f2fs_unlock_op(sbi); goto out; } if (dn.data_blkaddr != NEW_ADDR) { invalidate_blocks(sbi, dn.data_blkaddr); dn.data_blkaddr = NEW_ADDR; set_data_blkaddr(&dn); dn.data_blkaddr = NULL_ADDR; f2fs_update_extent_cache(&dn); } f2fs_put_dnode(&dn); f2fs_unlock_op(sbi); new_size = max_t(loff_t, new_size, (index + 1) << PAGE_CACHE_SHIFT); } if (off_end) { ret = fill_zero(inode, pg_end, 0, off_end); if (ret) goto out; new_size = max_t(loff_t, new_size, offset + len); } } out: if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) { i_size_write(inode, new_size); mark_inode_dirty(inode); update_inode_page(inode); } return ret; }
static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct dnode_of_data dn; pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE; int ret = 0; for (; end < nrpages; start++, end++) { block_t new_addr, old_addr; f2fs_lock_op(sbi); set_new_dnode(&dn, inode, NULL, NULL, 0); ret = get_dnode_of_data(&dn, end, LOOKUP_NODE_RA); if (ret && ret != -ENOENT) { goto out; } else if (ret == -ENOENT) { new_addr = NULL_ADDR; } else { new_addr = dn.data_blkaddr; truncate_data_blocks_range(&dn, 1); f2fs_put_dnode(&dn); } if (new_addr == NULL_ADDR) { set_new_dnode(&dn, inode, NULL, NULL, 0); ret = get_dnode_of_data(&dn, start, LOOKUP_NODE_RA); if (ret && ret != -ENOENT) { goto out; } else if (ret == -ENOENT) { f2fs_unlock_op(sbi); continue; } if (dn.data_blkaddr == NULL_ADDR) { f2fs_put_dnode(&dn); f2fs_unlock_op(sbi); continue; } else { truncate_data_blocks_range(&dn, 1); } f2fs_put_dnode(&dn); } else { struct page *ipage; ipage = get_node_page(sbi, inode->i_ino); if (IS_ERR(ipage)) { ret = PTR_ERR(ipage); goto out; } set_new_dnode(&dn, inode, ipage, NULL, 0); ret = f2fs_reserve_block(&dn, start); if (ret) goto out; old_addr = dn.data_blkaddr; if (old_addr != NEW_ADDR && new_addr == NEW_ADDR) { dn.data_blkaddr = NULL_ADDR; f2fs_update_extent_cache(&dn); invalidate_blocks(sbi, old_addr); dn.data_blkaddr = new_addr; set_data_blkaddr(&dn); } else if (new_addr != NEW_ADDR) { struct node_info ni; get_node_info(sbi, dn.nid, &ni); f2fs_replace_block(sbi, &dn, old_addr, new_addr, ni.version, true); } f2fs_put_dnode(&dn); } f2fs_unlock_op(sbi); } return 0; out: f2fs_unlock_op(sbi); return ret; }
int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) { struct inode *inode = file->f_mapping->host; struct f2fs_inode_info *fi = F2FS_I(inode); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); nid_t ino = inode->i_ino; int ret = 0; bool need_cp = false; struct writeback_control wbc = { .sync_mode = WB_SYNC_ALL, .nr_to_write = LONG_MAX, .for_reclaim = 0, }; if (unlikely(f2fs_readonly(inode->i_sb))) return 0; trace_f2fs_sync_file_enter(inode); /* if fdatasync is triggered, let's do in-place-update */ if (get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) set_inode_flag(fi, FI_NEED_IPU); ret = filemap_write_and_wait_range(inode->i_mapping, start, end); clear_inode_flag(fi, FI_NEED_IPU); if (ret) { trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret); return ret; } /* if the inode is dirty, let's recover all the time */ if (!datasync && is_inode_flag_set(fi, FI_DIRTY_INODE)) { update_inode_page(inode); goto go_write; } /* * if there is no written data, don't waste time to write recovery info. */ if (!is_inode_flag_set(fi, FI_APPEND_WRITE) && !exist_written_data(sbi, ino, APPEND_INO)) { /* it may call write_inode just prior to fsync */ if (need_inode_page_update(sbi, ino)) goto go_write; if (is_inode_flag_set(fi, FI_UPDATE_WRITE) || exist_written_data(sbi, ino, UPDATE_INO)) goto flush_out; goto out; } go_write: /* guarantee free sections for fsync */ f2fs_balance_fs(sbi); /* * Both of fdatasync() and fsync() are able to be recovered from * sudden-power-off. */ down_read(&fi->i_sem); need_cp = need_do_checkpoint(inode); up_read(&fi->i_sem); if (need_cp) { /* all the dirty node pages should be flushed for POR */ ret = f2fs_sync_fs(inode->i_sb, 1); /* * We've secured consistency through sync_fs. Following pino * will be used only for fsynced inodes after checkpoint. */ try_to_fix_pino(inode); goto out; } sync_nodes: sync_node_pages(sbi, ino, &wbc); /* if cp_error was enabled, we should avoid infinite loop */ if (unlikely(f2fs_cp_error(sbi))) goto out; if (need_inode_block_update(sbi, ino)) { mark_inode_dirty_sync(inode); f2fs_write_inode(inode, NULL); goto sync_nodes; } ret = wait_on_node_pages_writeback(sbi, ino); if (ret) goto out; /* once recovery info is written, don't need to tack this */ remove_dirty_inode(sbi, ino, APPEND_INO); clear_inode_flag(fi, FI_APPEND_WRITE); flush_out: remove_dirty_inode(sbi, ino, UPDATE_INO); clear_inode_flag(fi, FI_UPDATE_WRITE); ret = f2fs_issue_flush(sbi); out: trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret); f2fs_trace_ios(NULL, NULL, 1); return ret; } static pgoff_t __get_first_dirty_index(struct address_space *mapping, pgoff_t pgofs, int whence) { struct pagevec pvec; int nr_pages; if (whence != SEEK_DATA) return 0; /* find first dirty page index */ pagevec_init(&pvec, 0); nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs, PAGECACHE_TAG_DIRTY, 1); pgofs = nr_pages ? pvec.pages[0]->index : LONG_MAX; pagevec_release(&pvec); return pgofs; } static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs, int whence) { switch (whence) { case SEEK_DATA: if ((blkaddr == NEW_ADDR && dirty == pgofs) || (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR)) return true; break; case SEEK_HOLE: if (blkaddr == NULL_ADDR) return true; break; } return false; } static inline int unsigned_offsets(struct file *file) { return file->f_mode & FMODE_UNSIGNED_OFFSET; } static loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize) { if (offset < 0 && !unsigned_offsets(file)) return -EINVAL; if (offset > maxsize) return -EINVAL; if (offset != file->f_pos) { file->f_pos = offset; file->f_version = 0; } return offset; } static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) { struct inode *inode = file->f_mapping->host; loff_t maxbytes = inode->i_sb->s_maxbytes; struct dnode_of_data dn; pgoff_t pgofs, end_offset, dirty; loff_t data_ofs = offset; loff_t isize; int err = 0; mutex_lock(&inode->i_mutex); isize = i_size_read(inode); if (offset >= isize) goto fail; /* handle inline data case */ if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { if (whence == SEEK_HOLE) data_ofs = isize; goto found; } pgofs = (pgoff_t)(offset >> PAGE_CACHE_SHIFT); dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence); for (; data_ofs < isize; data_ofs = pgofs << PAGE_CACHE_SHIFT) { set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA); if (err && err != -ENOENT) { goto fail; } else if (err == -ENOENT) { /* direct node does not exists */ if (whence == SEEK_DATA) { pgofs = PGOFS_OF_NEXT_DNODE(pgofs, F2FS_I(inode)); continue; } else { goto found; } } end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode)); /* find data/hole in dnode block */ for (; dn.ofs_in_node < end_offset; dn.ofs_in_node++, pgofs++, data_ofs = (loff_t)pgofs << PAGE_CACHE_SHIFT) { block_t blkaddr; blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); if (__found_offset(blkaddr, dirty, pgofs, whence)) { f2fs_put_dnode(&dn); goto found; } } f2fs_put_dnode(&dn); } if (whence == SEEK_DATA) goto fail; found: if (whence == SEEK_HOLE && data_ofs > isize) data_ofs = isize; mutex_unlock(&inode->i_mutex); return vfs_setpos(file, data_ofs, maxbytes); fail: mutex_unlock(&inode->i_mutex); return -ENXIO; } static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) { struct inode *inode = file->f_mapping->host; loff_t maxbytes = inode->i_sb->s_maxbytes; switch (whence) { case SEEK_SET: case SEEK_CUR: case SEEK_END: return generic_file_llseek_size(file, offset, whence, maxbytes, i_size_read(inode)); case SEEK_DATA: case SEEK_HOLE: if (offset < 0) return -ENXIO; return f2fs_seek_block(file, offset, whence); } return -EINVAL; } static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) { struct inode *inode = file_inode(file); /* we don't need to use inline_data strictly */ if (f2fs_has_inline_data(inode)) { int err = f2fs_convert_inline_inode(inode); if (err) return err; } file_accessed(file); vma->vm_ops = &f2fs_file_vm_ops; return 0; } int truncate_data_blocks_range(struct dnode_of_data *dn, int count) { int nr_free = 0, ofs = dn->ofs_in_node; struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); struct f2fs_node *raw_node; __le32 *addr; raw_node = F2FS_NODE(dn->node_page); addr = blkaddr_in_node(raw_node) + ofs; for (; count > 0; count--, addr++, dn->ofs_in_node++) { block_t blkaddr = le32_to_cpu(*addr); if (blkaddr == NULL_ADDR) continue; dn->data_blkaddr = NULL_ADDR; update_extent_cache(dn); invalidate_blocks(sbi, blkaddr); nr_free++; } if (nr_free) { dec_valid_block_count(sbi, dn->inode, nr_free); set_page_dirty(dn->node_page); sync_inode_page(dn); } dn->ofs_in_node = ofs; trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, dn->ofs_in_node, nr_free); return nr_free; }