Пример #1
0
bool FeasibleUpwardPlanarSubgraph::constructMergeGraph(
	GraphCopy &M,
	adjEntry adj_orig,
	const List<edge> &orig_edges)
{
	CombinatorialEmbedding Beta(M);

	//set ext. face of Beta
	adjEntry ext_adj = M.copy(adj_orig->theEdge())->adjSource();
	Beta.setExternalFace(Beta.rightFace(ext_adj));

	FaceSinkGraph fsg(Beta, M.copy(adj_orig->theNode()));
	SList<node> aug_nodes;
	SList<edge> aug_edges;
	SList<face> fList;
	fsg.possibleExternalFaces(fList); // use this method to call the methode checkForest()
	node v_ext = fsg.faceNodeOf(Beta.externalFace());

	OGDF_ASSERT(v_ext != 0);

	fsg.stAugmentation(v_ext, M, aug_nodes, aug_edges);

	//add the deleted edges
	for(edge eOrig: orig_edges) {
		node a = M.copy(eOrig->source());
		node b = M.copy(eOrig->target());
		M.newEdge(a, b);
	}
	return (isAcyclic(M));
}
Пример #2
0
void UpwardPlanarSubgraphSimple::call(const Graph &G, List<edge> &delEdges)
{
	delEdges.clear();

	// We construct an auxiliary graph H which represents the current upward
	// planar subgraph.
	Graph H;
	NodeArray<node> mapToH(G);

	for(node v : G.nodes)
		mapToH[v] = H.newNode();


	// We currently support only single-source acyclic digraphs ...
	node s;
	hasSingleSource(G,s);

	OGDF_ASSERT(s != 0);
	OGDF_ASSERT(isAcyclic(G));

	// We start with a spanning tree of G rooted at the single source.
	NodeArray<bool> visitedNode(G,false);
	SListPure<edge> treeEdges;
	dfsBuildSpanningTree(s,treeEdges,visitedNode);


	// Mark all edges in the spanning tree so they can be skipped in the
	// loop below and add (copies of) them to H.
	EdgeArray<bool> visitedEdge(G,false);
	SListConstIterator<edge> it;
	for(it = treeEdges.begin(); it.valid(); ++it) {
		edge eG = *it;
		visitedEdge[eG] = true;
		H.newEdge(mapToH[eG->source()],mapToH[eG->target()]);
	}


	// Add subsequently the remaining edges to H and test if the resulting
	// graph is still upward planar. If not, remove the edge again from H
	// and add it to delEdges.

	for(edge eG : G.edges)
	{
		if(visitedEdge[eG] == true)
			continue;

		edge eH = H.newEdge(mapToH[eG->source()],mapToH[eG->target()]);

		if (UpwardPlanarity::isUpwardPlanar_singleSource(H) == false) {
			H.delEdge(eH);
			delEdges.pushBack(eG);
		}
	}

}
Пример #3
0
int main() {
	struct node *END;
	int A,B;
	int c1,c2;
	//adjaceny graph
	struct node *adj[MAX_VERT+5];
	struct node *t;
	struct order *values;
	int i,j;
	int *visited;
	int NV,NE;
	int ncases;
	scanf("%d",&ncases);
	while(ncases) {
		scanf("%d %d",&NV,&NE);
		END=(struct node*)malloc(sizeof(*END));
		END->next=END;
		//points each node to the END node
		for(i=0;i<=NV;i++) {
			adj[i]=END;
		}
		for(i=0;i<NE;i++) {
			scanf("%d %d",&A,&B); 
			c1=A;c2=B;
			t=(struct node*)malloc(sizeof(*t));	
			t->V=c2;t->next=adj[c1];adj[c1]=t;
		}
		//	print_adj(adj,NV);
		values=pre_post(adj,NV);
//		for(i=1;i<=NV;i++) {
//			printf("%2d ",i);
//		}
//		printf("\n");
//		for(i=1;i<=NV;i++) {
//			printf("%2d ",values[i].pre);
//		}
//		printf("\n");
//		for(i=1;i<=NV;i++) {
//			printf("%2d ",values[i].post);
//		}
//		printf("\n");

//		printf("Checking cyclic\n");
		if(isAcyclic(adj,values,NV)) {
			printf("1 ");
		} else {
			printf("-1 ");
		}
//		printf("\n");
		ncases--;
	}	
	printf("\n");
	return 0;
}
Пример #4
0
// test if graphAcyclicTest plus edges in tmpAugmented is acyclic
// removes added edges again
bool UpwardPlanarSubgraphSimple::checkAcyclic(
	GraphCopySimple &graphAcyclicTest,
	SList<Tuple2<node,node> > &tmpAugmented)
{
	SListPure<edge> added;

	SListConstIterator<Tuple2<node,node> > it;
	for(it = tmpAugmented.begin(); it.valid(); ++it)
		added.pushBack(graphAcyclicTest.newEdge(
			graphAcyclicTest.copy((*it).x1()),
			graphAcyclicTest.copy((*it).x2())));

	bool acyclic = isAcyclic(graphAcyclicTest);

	SListConstIterator<edge> itE;
	for(itE = added.begin(); itE.valid(); ++itE)
		graphAcyclicTest.delEdge(*itE);

	return acyclic;
}
Пример #5
0
bool splitOffAnchoredAcyclic(RoseBuild &rose, const NGHolder &h,
                             const CompileContext &cc) {
    if (!cc.grey.allowAnchoredAcyclic) {
        return false;
    }

    if (!isAnchored(h)) {
        DEBUG_PRINTF("fail, not anchored\n");
        return false;
    }

    if (!isAcyclic(h)) {
        DEBUG_PRINTF("fail, not acyclic\n");
        return false;
    }

    if (rose.addAnchoredAcyclic(h)) {
        return true;
    } else {
        DEBUG_PRINTF("failed to add anchored nfa\n");
        return false;
    }
}
Пример #6
0
void aiContext::getTimeSampling(int i, aiTimeSamplingData& dst)
{
    auto ts = m_archive.getTimeSampling(i);
    auto tst = ts->getTimeSamplingType();

    dst.numTimes = (int)ts->getNumStoredTimes();
    if (tst.isUniform() || tst.isCyclic()) {
        int numCycles = int(m_archive.getMaxNumSamplesForTimeSamplingIndex(i) / tst.getNumSamplesPerCycle());

        dst.type = tst.isUniform() ? aiTimeSamplingType_Uniform : aiTimeSamplingType_Cyclic;
        dst.interval = (float)tst.getTimePerCycle();
        dst.startTime = (float)ts->getStoredTimes()[0];
        dst.endTime = dst.startTime + dst.interval * (numCycles - 1);
        dst.numTimes = (int)ts->getNumStoredTimes();
        dst.times = const_cast<double*>(&ts->getStoredTimes()[0]);
    }
    else if (tst.isAcyclic()) {
        dst.type = aiTimeSamplingType_Acyclic;
        dst.startTime = (float)ts->getSampleTime(0);
        dst.endTime = (float)ts->getSampleTime(ts->getNumStoredTimes() - 1);
        dst.numTimes = (int)ts->getNumStoredTimes();
        dst.times = const_cast<double*>(&ts->getStoredTimes()[0]);
    }
}
Пример #7
0
void OptimalRanking::doCall(
	const Graph& G,
	NodeArray<int> &rank,
	EdgeArray<bool> &reversed,
	const EdgeArray<int> &length,
	const EdgeArray<int> &costOrig)
{
	MinCostFlowReinelt<int> mcf;

	// construct min-cost flow problem
	GraphCopy GC;
	GC.createEmpty(G);

	// compute connected component of G
	NodeArray<int> component(G);
	int numCC = connectedComponents(G,component);

	// intialize the array of lists of nodes contained in a CC
	Array<List<node> > nodesInCC(numCC);

	for(node v : G.nodes)
		nodesInCC[component[v]].pushBack(v);

	EdgeArray<edge> auxCopy(G);
	rank.init(G);

	for(int i = 0; i < numCC; ++i)
	{
		GC.initByNodes(nodesInCC[i], auxCopy);
		makeLoopFree(GC);

		for(edge e : GC.edges)
			if(reversed[GC.original(e)])
				GC.reverseEdge(e);

		// special cases:
		if(GC.numberOfNodes() == 1) {
			rank[GC.original(GC.firstNode())] = 0;
			continue;
		} else if(GC.numberOfEdges() == 1) {
			edge e = GC.original(GC.firstEdge());
			rank[e->source()] = 0;
			rank[e->target()] = length[e];
			continue;
		}

		EdgeArray<int> lowerBound(GC,0);
		EdgeArray<int> upperBound(GC,mcf.infinity());
		EdgeArray<int> cost(GC);
		NodeArray<int> supply(GC);

		for(edge e : GC.edges)
			cost[e] = -length[GC.original(e)];

		for(node v : GC.nodes) {
			int s = 0;
			edge e;
			forall_adj_edges(e,v) {
				if(v == e->source())
					s += costOrig[GC.original(e)];
				else
					s -= costOrig[GC.original(e)];
			}
			supply[v] = s;
		}

		OGDF_ASSERT(isAcyclic(GC) == true);

		// find min-cost flow
		EdgeArray<int> flow(GC);
		NodeArray<int> dual(GC);
#ifdef OGDF_DEBUG
		bool feasible =
#endif
			mcf.call(GC, lowerBound, upperBound, cost, supply, flow, dual);
		OGDF_ASSERT(feasible);

		for(node v : GC.nodes)
			rank[GC.original(v)] = dual[v];
	}
}
Пример #8
0
void UpwardPlanarSubgraphSimple::call(GraphCopy &GC, List<edge> &delEdges)
{
	const Graph &G = GC.original();
	delEdges.clear();

	// We construct an auxiliary graph H which represents the current upward
	// planar subgraph.
	Graph H;
	NodeArray<node> mapToH(G,nullptr);
	NodeArray<node> mapToG(H,nullptr);

	for(node v : G.nodes)
		mapToG[ mapToH[v] = H.newNode() ] = v;


	// We currently support only single-source acyclic digraphs ...
	node s;
	hasSingleSource(G,s);

	OGDF_ASSERT(s != 0);
	OGDF_ASSERT(isAcyclic(G));

	// We start with a spanning tree of G rooted at the single source.
	NodeArray<bool> visitedNode(G,false);
	SListPure<edge> treeEdges;
	dfsBuildSpanningTree(s,treeEdges,visitedNode);


	// Mark all edges in the spanning tree so they can be skipped in the
	// loop below and add (copies of) them to H.
	EdgeArray<bool> visitedEdge(G,false);
	SListConstIterator<edge> it;
	for(it = treeEdges.begin(); it.valid(); ++it) {
		edge eG = *it;
		visitedEdge[eG] = true;
		H.newEdge(mapToH[eG->source()],mapToH[eG->target()]);
	}


	// Add subsequently the remaining edges to H and test if the resulting
	// graph is still upward planar. If not, remove the edge again from H
	// and add it to delEdges.

	SList<Tuple2<node,node> > augmented;
	GraphCopySimple graphAcyclicTest(G);

	for(edge eG : G.edges)
	{
		// already treated ?
		if(visitedEdge[eG] == true)
			continue;

		// insert edge into H
		edge eH = H.newEdge(mapToH[eG->source()],mapToH[eG->target()]);

		node superSink;
		SList<edge> augmentedEdges;
		if (UpwardPlanarity::upwardPlanarAugment_singleSource(H,superSink,augmentedEdges) == false) {
			// if H is no longer upward planar, remove eG from subgraph
			H.delEdge(eH);
			delEdges.pushBack(eG);

		} else {
			// add augmented edges as node-pair to tmpAugmented and remove
			// all augmented edges from H again
			SList<Tuple2<node,node> > tmpAugmented;
			SListConstIterator<edge> it;
			for(it = augmentedEdges.begin(); it.valid(); ++it) {
				node v = mapToG[(*it)->source()];
				node w = mapToG[(*it)->target()];

				if (v && w)
					tmpAugmented.pushBack(Tuple2<node,node>(v,w));

				H.delEdge(*it);
			}

			if (mapToG[superSink] == nullptr)
				H.delNode(superSink);

			//****************************************************************
			// The following is a simple workaround to assure the following
			// property of the upward planar subgraph:
			//   The st-augmented upward planar subgraph plus the edges not
			//   in the subgraph must be acyclic. (This is a special property
			//   of the embedding, not the augmentation.)
			// The upward-planar embedding function gives us ANY upward-planar
			// embedding. We check if the property above holds with this
			// embedding. If it doesn't, we have actually no idea if another
			// embedding would do.
			// The better solution would be to incorporate the acyclicity
			// property into the upward-planarity test, but this is compicated.
			//****************************************************************

			// test if original graph plus augmented edges is still acyclic
			if(checkAcyclic(graphAcyclicTest,tmpAugmented) == true) {
				augmented = tmpAugmented;

			} else {
				// if not, remove eG from subgraph
				H.delEdge(eH);
				delEdges.pushBack(eG);
			}
		}

	}

	// remove edges not in the subgraph from GC
	ListConstIterator<edge> itE;
	for(itE = delEdges.begin(); itE.valid(); ++itE)
		GC.delEdge(GC.copy(*itE));

	// add augmented edges to GC
	SListConstIterator<Tuple2<node,node> > itP;
	for(itP = augmented.begin(); itP.valid(); ++itP) {
		node v = (*itP).x1();
		node w = (*itP).x2();

		GC.newEdge(GC.copy(v),GC.copy(w));
	}

	// add super sink to GC
	node sGC = nullptr;
	SList<node> sinks;
	for(node v : GC.nodes) {
		if(v->indeg() == 0)
			sGC = v;
		if(v->outdeg() == 0)
			sinks.pushBack(v);
	}

	node superSinkGC = GC.newNode();
	SListConstIterator<node> itV;
	for(itV = sinks.begin(); itV.valid(); ++itV)
		GC.newEdge(*itV,superSinkGC);

	// add st-edge to GC, so that we now have a planar st-digraph
	GC.newEdge(sGC,superSinkGC);

	OGDF_ASSERT(isAcyclic(GC));
	OGDF_ASSERT(isPlanar(GC));
}
Пример #9
0
bool FUPSSimple::constructMergeGraph(GraphCopy &M, adjEntry adj_orig, const List<edge> &orig_edges)
{
	CombinatorialEmbedding Beta(M);

	//set ext. face of Beta
	adjEntry ext_adj = M.copy(adj_orig->theEdge())->adjSource();
	Beta.setExternalFace(Beta.rightFace(ext_adj));

	//*************************** debug ********************************
	/*
	cout << endl << "FUPS : " << endl;
	for(face ff : Beta.faces) {
		cout << "face " << ff->index() << ": ";
		adjEntry adjNext = ff->firstAdj();
		do {
			cout << adjNext->theEdge() << "; ";
			adjNext = adjNext->faceCycleSucc();
		} while(adjNext != ff->firstAdj());
		cout << endl;
	}
	if (Beta.externalFace() != 0)
		cout << "ext. face of the graph is: " << Beta.externalFace()->index() << endl;
	else
		cout << "no ext. face set." << endl;
	*/

	FaceSinkGraph fsg(Beta, M.copy(adj_orig->theNode()));
	SList<node> aug_nodes;
	SList<edge> aug_edges;
	SList<face> fList;
	fsg.possibleExternalFaces(fList); // use this method to call the methode checkForest()
	node v_ext = fsg.faceNodeOf(Beta.externalFace());

	OGDF_ASSERT(v_ext != 0);

	fsg.stAugmentation(v_ext, M, aug_nodes, aug_edges);

	/*
	//------------------------------------debug
	GraphAttributes AG(M, GraphAttributes::nodeGraphics|
						GraphAttributes::edgeGraphics|
						GraphAttributes::nodeColor|
						GraphAttributes::edgeColor|
						GraphAttributes::nodeLabel|
						GraphAttributes::edgeLabel
						);
	// label the nodes with their index
	for(node v : AG.constGraph().nodes) {
		AG.label(v) = to_string(v->index());
	}
	AG.writeGML("c:/temp/MergeFUPS.gml");
	*/


	OGDF_ASSERT(isStGraph(M));

	//add the deleted edges
	for(edge eOrig : orig_edges) {
		node a = M.copy(eOrig->source());
		node b = M.copy(eOrig->target());
		M.newEdge(a, b);
	}
	return (isAcyclic(M));
}
Пример #10
0
		newEdge(m_topNode[c], vH);
		newEdge(vH, m_bottomNode[c]);
	}

	forall_clusters(c,CG) {
		if(c != CG.rootCluster()) {
			cluster u = c->parent();

			newEdge(m_topNode[u], m_topNode[c]);
			newEdge(m_bottomNode[c], m_bottomNode[u]);

			newEdge(m_topNode[c], m_bottomNode[c]);
		}
	}

	OGDF_ASSERT(isAcyclic(*this));


	// preparation for improved test for cycles
	m_aeLevel.init(*this, -1);
	int count = 0;
	assignAeLevel(CG.rootCluster(), count);
	m_aeVisited.init(*this, false);


	// Add adjacency edges
	edge e;
	forall_edges(e, G) {
		edge eH = addEdge(m_copy[e->source()], m_copy[e->target()], true);
		m_copyEdge[e].pushBack(eH);
		m_origEdge[eH] = e;
Пример #11
0
Module::ReturnType SubgraphUpwardPlanarizer::doCall(UpwardPlanRep &UPR,
		const EdgeArray<int>  &cost,
		const EdgeArray<bool> &forbid)
{
	const Graph &G = UPR.original();
	GraphCopy GC(G);

	//reverse some edges in order to obtain a DAG
	List<edge> feedBackArcSet;
	m_acyclicMod.get().call(GC, feedBackArcSet);
	for(edge e : feedBackArcSet) {
		GC.reverseEdge(e);
	}

	OGDF_ASSERT(isSimple(G));

	//mapping cost
	EdgeArray<int> cost_GC(GC);
	for(edge e : GC.edges) {
		if (forbid[GC.original(e)])
			cost_GC[e] = numeric_limits<int>::max();
		else
			cost_GC[e] = cost[GC.original(e)];
	}

	// tranform to single source graph by adding a super source s_hat and connect it with the other sources
	EdgeArray<bool> sourceArcs(GC, false);
	node s_hat = GC.newNode();
	for(node v : GC.nodes) {
		if (v->indeg() == 0 && v != s_hat) {
			edge e_tmp = GC.newEdge(s_hat, v);
			cost_GC[e_tmp] = 0; // crossings source arcs cause not cost
			sourceArcs[e_tmp] = true;
		}
	}


	/*
	//------------------------------------------------debug
	GraphAttributes AG_GC(GC, GraphAttributes::nodeGraphics|
						GraphAttributes::edgeGraphics|
						GraphAttributes::nodeColor|
						GraphAttributes::edgeColor|
						GraphAttributes::nodeLabel|
						GraphAttributes::edgeLabel
						);
	AG_GC.setAllHeight(30.0);
	AG_GC.setAllWidth(30.0);
	for(node z : AG_GC.constGraph().nodes) {
		AG_GC.label(z) = to_string(z->index());
	}
	AG_GC.writeGML("c:/temp/GC.gml");
	// --------------------------------------------end debug
	*/

	BCTree BC(GC);
	const Graph &bcTree = BC.bcTree();

	GraphCopy G_dummy;
	G_dummy.createEmpty(G);
	NodeArray<GraphCopy> biComps(bcTree, G_dummy); // bicomps of G; init with an empty graph
	UpwardPlanRep UPR_dummy;
	UPR_dummy.createEmpty(G);
	NodeArray<UpwardPlanRep> uprs(bcTree, UPR_dummy); // the upward planarized representation of the bicomps; init with an empty UpwarPlanRep

	constructComponentGraphs(BC, biComps);

	for(node v : bcTree.nodes) {

		if (BC.typeOfBNode(v) == BCTree::CComp)
			continue;

		GraphCopy &block = biComps[v];

		OGDF_ASSERT(m_subgraph.valid());

		// construct a super source for this block
		node s, s_block;
		hasSingleSource(block, s);
		s_block = block.newNode();
		block.newEdge(s_block, s); //connect s

		UpwardPlanRep bestUPR;

		//upward planarize if not upward planar
		if (!UpwardPlanarity::upwardPlanarEmbed_singleSource(block)) {

			for (int i = 0; i < m_runs; i++) {// i multistarts
				UpwardPlanRep UPR_tmp;
				UPR_tmp.createEmpty(block);
				List<edge> delEdges;

				m_subgraph.get().call(UPR_tmp, delEdges);

				OGDF_ASSERT( isSimple(UPR_tmp) );
				UPR_tmp.augment();

				//mark the source arcs of block
				UPR_tmp.m_isSourceArc[UPR_tmp.copy(s_block->firstAdj()->theEdge())] = true;
				for (adjEntry adj_tmp : UPR_tmp.copy(s_block->firstAdj()->theEdge()->target())->adjEntries) {
					edge e_tmp = UPR_tmp.original(adj_tmp->theEdge());
					if (e_tmp != nullptr && block.original(e_tmp) != nullptr && sourceArcs[block.original(e_tmp)])
						UPR_tmp.m_isSourceArc[adj_tmp->theEdge()] = true;
				}

				//assign "crossing cost"
				EdgeArray<int> cost_Block(block);
				for (edge e : block.edges) {
					if (block.original(e) == nullptr || GC.original(block.original(e)) == nullptr)
						cost_Block[e] = 0;
					else
						cost_Block[e] = cost_GC[block.original(e)];
				}

				/*
				if (false) {
					//---------------------------------------------------debug
					LayerBasedUPRLayout uprLayout;
					UpwardPlanRep upr_bug(UPR_tmp.getEmbedding());
					adjEntry adj_bug = upr_bug.getAdjEntry(upr_bug.getEmbedding(), upr_bug.getSuperSource(), upr_bug.getEmbedding().externalFace());
					node s_upr_bug = upr_bug.newNode();
					upr_bug.getEmbedding().splitFace(s_upr_bug, adj_bug);
					upr_bug.m_isSourceArc.init(upr_bug, false);
					upr_bug.m_isSourceArc[s_upr_bug->firstAdj()->theEdge()] = true;
					upr_bug.s_hat = s_upr_bug;
					upr_bug.augment();

					GraphAttributes GA_UPR_tmp(UPR_tmp, GraphAttributes::nodeGraphics|
							GraphAttributes::edgeGraphics|
							GraphAttributes::nodeColor|
							GraphAttributes::edgeColor|
							GraphAttributes::nodeLabel|
							GraphAttributes::edgeLabel
							);
					GA_UPR_tmp.setAllHeight(30.0);
					GA_UPR_tmp.setAllWidth(30.0);

					uprLayout.call(upr_bug, GA_UPR_tmp);

					// label the nodes with their index
					for(node z : GA_UPR_tmp.constGraph().nodes) {
						GA_UPR_tmp.label(z) = to_string(z->index());
						GA_UPR_tmp.y(z)=-GA_UPR_tmp.y(z);
						GA_UPR_tmp.x(z)=-GA_UPR_tmp.x(z);
					}
					for(edge eee : GA_UPR_tmp.constGraph().edges) {
						DPolyline &line = GA_UPR_tmp.bends(eee);
						ListIterator<DPoint> it;
						for(it = line.begin(); it.valid(); it++) {
							(*it).m_y = -(*it).m_y;
							(*it).m_x = -(*it).m_x;
						}
					}
					GA_UPR_tmp.writeGML("c:/temp/UPR_tmp_fups.gml");
					cout << "UPR_tmp/fups faces:";
					UPR_tmp.outputFaces(UPR_tmp.getEmbedding());
					//end -----------------------------------------------debug
				}
				*/

				delEdges.permute();
				m_inserter.get().call(UPR_tmp, cost_Block, delEdges);

				if (i != 0) {
					if (UPR_tmp.numberOfCrossings() < bestUPR.numberOfCrossings()) {
						//cout << endl << "new cr_nr:" << UPR_tmp.numberOfCrossings() << " old  cr_nr : " << bestUPR.numberOfCrossings() << endl;
						bestUPR = UPR_tmp;
					}
				}
				else
					bestUPR = UPR_tmp;
			}//for
		}
		else { //block is upward planar
			CombinatorialEmbedding Gamma(block);
			FaceSinkGraph fsg((const CombinatorialEmbedding &) Gamma, s_block);
			SList<face> faceList;
			fsg.possibleExternalFaces(faceList);
			Gamma.setExternalFace(faceList.front());

			UpwardPlanRep UPR_tmp(Gamma);
			UPR_tmp.augment();

			//mark the source arcs of  block
			UPR_tmp.m_isSourceArc[UPR_tmp.copy(s->firstAdj()->theEdge())] = true;
			for (adjEntry adj_tmp : UPR_tmp.copy(s->firstAdj()->theEdge()->target())->adjEntries) {
				edge e_tmp = UPR_tmp.original(adj_tmp->theEdge());
				if (e_tmp != nullptr && block.original(e_tmp) != nullptr && sourceArcs[block.original(e_tmp)])
					UPR_tmp.m_isSourceArc[adj_tmp->theEdge()] = true;
			}

			bestUPR = UPR_tmp;

			/*
			//debug
			//---------------------------------------------------debug
			GraphAttributes GA_UPR_tmp(UPR_tmp, GraphAttributes::nodeGraphics|
					GraphAttributes::edgeGraphics|
					GraphAttributes::nodeColor|
					GraphAttributes::edgeColor|
					GraphAttributes::nodeLabel|
					GraphAttributes::edgeLabel
					);
			GA_UPR_tmp.setAllHeight(30.0);
			GA_UPR_tmp.setAllWidth(30.0);

			// label the nodes with their index
			for(node z : GA_UPR_tmp.constGraph().nodes) {
				GA_UPR_tmp.label(z) = to_string(z->index());
				GA_UPR_tmp.y(z)=-GA_UPR_tmp.y(z);
				GA_UPR_tmp.x(z)=-GA_UPR_tmp.x(z);
			}
			for(edge eee : GA_UPR_tmp.constGraph().edges) {
				DPolyline &line = GA_UPR_tmp.bends(eee);
				ListIterator<DPoint> it;
				for(it = line.begin(); it.valid(); it++) {
					(*it).m_y = -(*it).m_y;
					(*it).m_x = -(*it).m_x;
				}
			}
			GA_UPR_tmp.writeGML("c:/temp/UPR_tmp_fups.gml");
			cout << "UPR_tmp/fups faces:";
			UPR_tmp.outputFaces(UPR_tmp.getEmbedding());
			//end -----------------------------------------------debug
			*/

		}
		uprs[v] = bestUPR;
	}

	// compute the number of crossings
	int nr_cr = 0;
	for(node v : bcTree.nodes) {
		if (BC.typeOfBNode(v) != BCTree::CComp)
			nr_cr = nr_cr + uprs[v].numberOfCrossings();
	}

	//merge all component to a graph
	node parent_BC = BC.bcproper(s_hat);
	NodeArray<bool> nodesDone(bcTree, false);
	dfsMerge(GC, BC, biComps, uprs, UPR, nullptr, parent_BC, nodesDone); // start with the component which contains the super source s_hat

	//augment to single sink graph
	UPR.augment();

	//set crossings
	UPR.crossings = nr_cr;


	//------------------------------------------------debug
	/*
	LayerBasedUPRLayout uprLayout;
	UpwardPlanRep upr_bug(UPR.getEmbedding());
	adjEntry adj_bug = upr_bug.getAdjEntry(upr_bug.getEmbedding(), upr_bug.getSuperSource(), upr_bug.getEmbedding().externalFace());
	node s_upr_bug = upr_bug.newNode();
	upr_bug.getEmbedding().splitFace(s_upr_bug, adj_bug);
	upr_bug.m_isSourceArc.init(upr_bug, false);
	upr_bug.m_isSourceArc[s_upr_bug->firstAdj()->theEdge()] = true;
	upr_bug.s_hat = s_upr_bug;
	upr_bug.augment();
	GraphAttributes AG(UPR, GraphAttributes::nodeGraphics|
						GraphAttributes::edgeGraphics|
						GraphAttributes::nodeColor|
						GraphAttributes::edgeColor|
						GraphAttributes::nodeLabel|
						GraphAttributes::edgeLabel
						);
	AG.setAllHeight(30.0);
	AG.setAllWidth(30.0);

	uprLayout.call(upr_bug, AG);

	for(node v : AG.constGraph().nodes) {
		int idx;
		idx = v->index();


		if (UPR.original(v) != 0)
			idx = UPR.original(v)->index();


		AG.label(v) = to_string(idx);
		if (UPR.isDummy(v))
			AG.fillColor(v) = "#ff0000";
		AG.y(v)=-AG.y(v);
	}
	// label the edges with their index
	for(edge e : AG.constGraph().edges) {
		AG.label(e) = to_string(e->index());
		if (UPR.isSourceArc(e))
			AG.strokeColor(e) = "#00ff00";
		if (UPR.isSinkArc(e))
			AG.strokeColor(e) = "#ff0000";

		DPolyline &line = AG.bends(e);
		ListIterator<DPoint> it;
		for(it = line.begin(); it.valid(); it++) {
			(*it).m_y = -(*it).m_y;
		}
	}
	AG.writeGML("c:/temp/upr_res.gml");
	//cout << "UPR_RES";
	//UPR.outputFaces(UPR.getEmbedding());
	//cout << "Mapping :" << endl;
	//for(node v : UPR.nodes) {
	//	if (UPR.original(v) != 0) {
	//		cout << "node UPR  " << v << "   node G  " << UPR.original(v) << endl;
	//	}
	//}
	// --------------------------------------------end debug
	*/

	OGDF_ASSERT(hasSingleSource(UPR));
	OGDF_ASSERT(isSimple(UPR));
	OGDF_ASSERT(isAcyclic(UPR));
	OGDF_ASSERT(UpwardPlanarity::isUpwardPlanar_singleSource(UPR));

/*
	for(edge eee : UPR.original().edges) {
		if (UPR.isReversed(eee))
			cout << endl << eee << endl;
	}
*/
	return Module::retFeasible;
}