Пример #1
0
void SpectrumVisualProcessor::process() {
    if (!isOutputEmpty()) {
        return;
    }
    if (!input || input->empty()) {
        return;
    }
    
    if (fftSizeChanged.load()) {
        setup(newFFTSize);
        fftSizeChanged.store(false);
    }

    DemodulatorThreadIQData *iqData;
    
    input->pop(iqData);
    
    if (!iqData) {
        return;
    }

   
    //Start by locking concurrent access to iqData
    std::lock_guard < std::recursive_mutex > lock(iqData->getMonitor());

    //then get the busy_lock
    std::lock_guard < std::mutex > busy_lock(busy_run);    


   
    bool doPeak = peakHold.load() && (peakReset.load() == 0);
    
    if (fft_result.size() != fftSizeInternal) {
        if (fft_result.capacity() < fftSizeInternal) {
            fft_result.reserve(fftSizeInternal);
            fft_result_ma.reserve(fftSizeInternal);
            fft_result_maa.reserve(fftSizeInternal);
            fft_result_peak.reserve(fftSizeInternal);
        }
        fft_result.resize(fftSizeInternal);
        fft_result_ma.resize(fftSizeInternal);
        fft_result_maa.resize(fftSizeInternal);
        fft_result_temp.resize(fftSizeInternal);
        fft_result_peak.resize(fftSizeInternal);
    }
    
    if (peakReset.load() != 0) {
        peakReset--;
        if (peakReset.load() == 0) {
            for (unsigned int i = 0, iMax = fftSizeInternal; i < iMax; i++) {
                fft_result_peak[i] = fft_floor_maa;
            }
            fft_ceil_peak = fft_floor_maa;
            fft_floor_peak = fft_ceil_maa;
        }
    }
    
    std::vector<liquid_float_complex> *data = &iqData->data;
    
    if (data && data->size()) {
        unsigned int num_written;
        long resampleBw = iqData->sampleRate;
        bool newResampler = false;
        int bwDiff;
        
        if (is_view.load()) {
            if (!iqData->sampleRate) {
                iqData->decRefCount();
               
                return;
            }
            
            while (resampleBw / SPECTRUM_VZM >= bandwidth) {
                resampleBw /= SPECTRUM_VZM;
            }
            
            resamplerRatio = (double) (resampleBw) / (double) iqData->sampleRate;
            
            size_t desired_input_size = fftSizeInternal / resamplerRatio;
            
            this->desiredInputSize.store(desired_input_size);
            
            if (iqData->data.size() < desired_input_size) {
                //                std::cout << "fft underflow, desired: " << desired_input_size << " actual:" << input->data.size() << std::endl;
                desired_input_size = iqData->data.size();
            }
            
            if (centerFreq != iqData->frequency) {
                if ((centerFreq - iqData->frequency) != shiftFrequency || lastInputBandwidth != iqData->sampleRate) {
                    if (abs(iqData->frequency - centerFreq) < (wxGetApp().getSampleRate() / 2)) {
                        long lastShiftFrequency = shiftFrequency;
                        shiftFrequency = centerFreq - iqData->frequency;
                        nco_crcf_set_frequency(freqShifter, (2.0 * M_PI) * (((double) abs(shiftFrequency)) / ((double) iqData->sampleRate)));
                        
                        if (is_view.load()) {
                            long freqDiff = shiftFrequency - lastShiftFrequency;
                            
                            if (lastBandwidth!=0) {
                                double binPerHz = double(lastBandwidth) / double(fftSizeInternal);
                                
                                unsigned int numShift = floor(double(abs(freqDiff)) / binPerHz);
                                
                                if (numShift < fftSizeInternal/2 && numShift) {
                                    if (freqDiff > 0) {
                                        memmove(&fft_result_ma[0], &fft_result_ma[numShift], (fftSizeInternal-numShift) * sizeof(double));
                                        memmove(&fft_result_maa[0], &fft_result_maa[numShift], (fftSizeInternal-numShift) * sizeof(double));
//                                        memmove(&fft_result_peak[0], &fft_result_peak[numShift], (fftSizeInternal-numShift) * sizeof(double));
//                                        memset(&fft_result_peak[fftSizeInternal-numShift], 0, numShift * sizeof(double));
                                    } else {
                                        memmove(&fft_result_ma[numShift], &fft_result_ma[0], (fftSizeInternal-numShift) * sizeof(double));
                                        memmove(&fft_result_maa[numShift], &fft_result_maa[0], (fftSizeInternal-numShift) * sizeof(double));
//                                        memmove(&fft_result_peak[numShift], &fft_result_peak[0], (fftSizeInternal-numShift) * sizeof(double));
//                                        memset(&fft_result_peak[0], 0, numShift * sizeof(double));
                                    }
                                }
                            }
                        }
                    }
                    peakReset.store(PEAK_RESET_COUNT);
                }
                
                if (shiftBuffer.size() != desired_input_size) {
                    if (shiftBuffer.capacity() < desired_input_size) {
                        shiftBuffer.reserve(desired_input_size);
                    }
                    shiftBuffer.resize(desired_input_size);
                }
                
                if (shiftFrequency < 0) {
                    nco_crcf_mix_block_up(freqShifter, &iqData->data[0], &shiftBuffer[0], desired_input_size);
                } else {
                    nco_crcf_mix_block_down(freqShifter, &iqData->data[0], &shiftBuffer[0], desired_input_size);
                }
            } else {
                shiftBuffer.assign(iqData->data.begin(), iqData->data.begin()+desired_input_size);
            }
            
            if (!resampler || resampleBw != lastBandwidth || lastInputBandwidth != iqData->sampleRate) {
                float As = 60.0f;
                
                if (resampler) {
                    msresamp_crcf_destroy(resampler);
                }
                
                resampler = msresamp_crcf_create(resamplerRatio, As);
                
                bwDiff = resampleBw-lastBandwidth;
                lastBandwidth = resampleBw;
                lastInputBandwidth = iqData->sampleRate;
                newResampler = true;
                peakReset.store(PEAK_RESET_COUNT);
            }
            
            
            unsigned int out_size = ceil((double) (desired_input_size) * resamplerRatio) + 512;
            
            if (resampleBuffer.size() != out_size) {
                if (resampleBuffer.capacity() < out_size) {
                    resampleBuffer.reserve(out_size);
                }
                resampleBuffer.resize(out_size);
            }
            
            msresamp_crcf_execute(resampler, &shiftBuffer[0], desired_input_size, &resampleBuffer[0], &num_written);
            
            if (num_written < fftSizeInternal) {
                memcpy(fftInData, resampleBuffer.data(), num_written * sizeof(liquid_float_complex));
                memset(&(fftInData[num_written]), 0, (fftSizeInternal-num_written) * sizeof(liquid_float_complex));
            } else {
                memcpy(fftInData, resampleBuffer.data(), fftSizeInternal * sizeof(liquid_float_complex));
            }
        } else {
            this->desiredInputSize.store(fftSizeInternal);

            num_written = data->size();
            if (data->size() < fftSizeInternal) {
                memcpy(fftInData, data->data(), data->size() * sizeof(liquid_float_complex));
                memset(&fftInData[data->size()], 0, (fftSizeInternal - data->size()) * sizeof(liquid_float_complex));
            } else {
                memcpy(fftInData, data->data(), fftSizeInternal * sizeof(liquid_float_complex));
            }
        }
        
        bool execute = false;

        if (num_written >= fftSizeInternal) {
            execute = true;
            memcpy(fftInput, fftInData, fftSizeInternal * sizeof(liquid_float_complex));
            memcpy(fftLastData, fftInput, fftSizeInternal * sizeof(liquid_float_complex));
            
        } else {
            if (lastDataSize + num_written < fftSizeInternal) { // priming
                unsigned int num_copy = fftSizeInternal - lastDataSize;
                if (num_written > num_copy) {
                    num_copy = num_written;
                }
                memcpy(fftLastData, fftInData, num_copy * sizeof(liquid_float_complex));
                lastDataSize += num_copy;
            } else {
                unsigned int num_last = (fftSizeInternal - num_written);
                memcpy(fftInput, fftLastData + (lastDataSize - num_last), num_last * sizeof(liquid_float_complex));
                memcpy(fftInput + num_last, fftInData, num_written * sizeof(liquid_float_complex));
                memcpy(fftLastData, fftInput, fftSizeInternal * sizeof(liquid_float_complex));
                execute = true;
            }
        }
        
        if (execute) {
            SpectrumVisualData *output = outputBuffers.getBuffer();
            
            if (output->spectrum_points.size() != fftSize * 2) {
                output->spectrum_points.resize(fftSize * 2);
            }
            if (doPeak) {
                if (output->spectrum_hold_points.size() != fftSize * 2) {
                    output->spectrum_hold_points.resize(fftSize * 2);
                }
            } else {
                output->spectrum_hold_points.resize(0);
            }
            
            float fft_ceil = 0, fft_floor = 1;

            fft_execute(fftPlan);
            
            for (int i = 0, iMax = fftSizeInternal / 2; i < iMax; i++) {
                float a = fftOutput[i].real;
                float b = fftOutput[i].imag;
                float c = sqrt(a * a + b * b);
                
                float x = fftOutput[fftSizeInternal / 2 + i].real;
                float y = fftOutput[fftSizeInternal / 2 + i].imag;
                float z = sqrt(x * x + y * y);
                
                fft_result[i] = (z);
                fft_result[fftSizeInternal / 2 + i] = (c);
            }
            
            if (newResampler && lastView) {
                if (bwDiff < 0) {
                    for (unsigned int i = 0, iMax = fftSizeInternal; i < iMax; i++) {
                        fft_result_temp[i] = fft_result_ma[(fftSizeInternal/4) + (i/2)];
                    }
                    for (unsigned int i = 0, iMax = fftSizeInternal; i < iMax; i++) {
                        fft_result_ma[i] = fft_result_temp[i];
                        
                        fft_result_temp[i] = fft_result_maa[(fftSizeInternal/4) + (i/2)];
                    }
                    for (unsigned int i = 0, iMax = fftSizeInternal; i < iMax; i++) {
                        fft_result_maa[i] = fft_result_temp[i];
                    }
                } else {
                    for (size_t i = 0, iMax = fftSizeInternal; i < iMax; i++) {
                        if (i < fftSizeInternal/4) {
                            fft_result_temp[i] = 0; // fft_result_ma[fftSizeInternal/4];
                        } else if (i >= fftSizeInternal - fftSizeInternal/4) {
                            fft_result_temp[i] = 0; // fft_result_ma[fftSizeInternal - fftSizeInternal/4-1];
                        } else {
                            fft_result_temp[i] = fft_result_ma[(i-fftSizeInternal/4)*2];
                        }
                    }
                    for (unsigned int i = 0, iMax = fftSizeInternal; i < iMax; i++) {
                        fft_result_ma[i] = fft_result_temp[i];
                        
                        if (i < fftSizeInternal/4) {
                            fft_result_temp[i] = 0; //fft_result_maa[fftSizeInternal/4];
                        } else if (i >= fftSizeInternal - fftSizeInternal/4) {
                            fft_result_temp[i] = 0; // fft_result_maa[fftSizeInternal - fftSizeInternal/4-1];
                        } else {
                            fft_result_temp[i] = fft_result_maa[(i-fftSizeInternal/4)*2];
                        }
                    }
                    for (unsigned int i = 0, iMax = fftSizeInternal; i < iMax; i++) {
                        fft_result_maa[i] = fft_result_temp[i];
                    }
                }
            }
            
            for (int i = 0, iMax = fftSizeInternal; i < iMax; i++) {
                if (fft_result_maa[i] != fft_result_maa[i]) fft_result_maa[i] = fft_result[i];
                fft_result_maa[i] += (fft_result_ma[i] - fft_result_maa[i]) * fft_average_rate;
                if (fft_result_ma[i] != fft_result_ma[i]) fft_result_ma[i] = fft_result[i];
                fft_result_ma[i] += (fft_result[i] - fft_result_ma[i]) * fft_average_rate;
                
                if (fft_result_maa[i] > fft_ceil || fft_ceil != fft_ceil) {
                    fft_ceil = fft_result_maa[i];
                }
                if (fft_result_maa[i] < fft_floor || fft_floor != fft_floor) {
                    fft_floor = fft_result_maa[i];
                }
                if (doPeak) {
                    if (fft_result_maa[i] > fft_result_peak[i]) {
                        fft_result_peak[i] = fft_result_maa[i];
                    }
                }
            }
            
            if (fft_ceil_ma != fft_ceil_ma) fft_ceil_ma = fft_ceil;
            fft_ceil_ma = fft_ceil_ma + (fft_ceil - fft_ceil_ma) * 0.05;
            if (fft_ceil_maa != fft_ceil_maa) fft_ceil_maa = fft_ceil;
            fft_ceil_maa = fft_ceil_maa + (fft_ceil_ma - fft_ceil_maa) * 0.05;
            
            if (fft_floor_ma != fft_floor_ma) fft_floor_ma = fft_floor;
            fft_floor_ma = fft_floor_ma + (fft_floor - fft_floor_ma) * 0.05;
            if (fft_floor_maa != fft_floor_maa) fft_floor_maa = fft_floor;
            fft_floor_maa = fft_floor_maa + (fft_floor_ma - fft_floor_maa) * 0.05;

            if (doPeak) {
                if (fft_ceil_maa > fft_ceil_peak) {
                    fft_ceil_peak = fft_ceil_maa;
                }
                if (fft_floor_maa < fft_floor_peak) {
                    fft_floor_peak = fft_floor_maa;
                }
            }
            
            float sf = scaleFactor.load();
 
            double visualRatio = (double(bandwidth) / double(resampleBw));
            double visualStart = (double(fftSizeInternal) / 2.0) - (double(fftSizeInternal) * (visualRatio / 2.0));
            double visualAccum = 0;
            double peak_acc = 0, acc = 0, accCount = 0, i = 0;
   
            double point_ceil = doPeak?fft_ceil_peak:fft_ceil_maa;
            double point_floor = doPeak?fft_floor_peak:fft_floor_maa;
            
            for (int x = 0, xMax = output->spectrum_points.size() / 2; x < xMax; x++) {
                visualAccum += visualRatio * double(SPECTRUM_VZM);

                while (visualAccum >= 1.0) {
                    unsigned int idx = round(visualStart+i);
                    if (idx > 0 && idx < fftSizeInternal) {
                        acc += fft_result_maa[idx];
                        if (doPeak) {
                            peak_acc += fft_result_peak[idx];
                        }
                    } else {
                        acc += fft_floor_maa;
                        if (doPeak) {
                            peak_acc += fft_floor_maa;
                        }
                    }
                    accCount += 1.0;
                    visualAccum -= 1.0;
                    i++;
                }

                output->spectrum_points[x * 2] = ((float) x / (float) xMax);
                if (doPeak) {
                    output->spectrum_hold_points[x * 2] = ((float) x / (float) xMax);
                }
                if (accCount) {
                    output->spectrum_points[x * 2 + 1] = ((log10((acc/accCount)+0.25 - (point_floor-0.75)) / log10((point_ceil+0.25) - (point_floor-0.75))))*sf;
                    acc = 0.0;
                    if (doPeak) {
                        output->spectrum_hold_points[x * 2 + 1] = ((log10((peak_acc/accCount)+0.25 - (point_floor-0.75)) / log10((point_ceil+0.25) - (point_floor-0.75))))*sf;
                        peak_acc = 0.0;
                    }
                    accCount = 0.0;
                }
            }
            
            if (hideDC.load()) { // DC-spike removal
                long long freqMin = centerFreq-(bandwidth/2);
                long long freqMax = centerFreq+(bandwidth/2);
                long long zeroPt = (iqData->frequency-freqMin);
                
                if (freqMin < iqData->frequency && freqMax > iqData->frequency) {
                    int freqRange = int(freqMax-freqMin);
                    int freqStep = freqRange/fftSize;
                    int fftStart = (zeroPt/freqStep)-(2000/freqStep);
                    int fftEnd = (zeroPt/freqStep)+(2000/freqStep);
                    
//                    std::cout << "range:" << freqRange << ", step: " << freqStep << ", start: " << fftStart << ", end: " << fftEnd << std::endl;
                    
                    if (fftEnd-fftStart < 2) {
                        fftEnd++;
                        fftStart--;
                    }
                    
                    int numSteps = (fftEnd-fftStart);
                    int halfWay = fftStart+(numSteps/2);

                    if ((fftEnd+numSteps/2+1 < (long long) fftSize) && (fftStart-numSteps/2-1 >= 0) && (fftEnd > fftStart)) {
                        int n = 1;
                        for (int i = fftStart; i < halfWay; i++) {
                            output->spectrum_points[i * 2 + 1] = output->spectrum_points[(fftStart - n) * 2 + 1];
                            n++;
                        }
                        n = 1;
                        for (int i = halfWay; i < fftEnd; i++) {
                            output->spectrum_points[i * 2 + 1] = output->spectrum_points[(fftEnd + n) * 2 + 1];
                            n++;
                        }
                        if (doPeak) {
                            int n = 1;
                            for (int i = fftStart; i < halfWay; i++) {
                                output->spectrum_hold_points[i * 2 + 1] = output->spectrum_hold_points[(fftStart - n) * 2 + 1];
                                n++;
                            }
                            n = 1;
                            for (int i = halfWay; i < fftEnd; i++) {
                                output->spectrum_hold_points[i * 2 + 1] = output->spectrum_hold_points[(fftEnd + n) * 2 + 1];
                                n++;
                            }
                        }
                    }
                }
            }
            
            output->fft_ceiling = point_ceil/sf;
            output->fft_floor = point_floor;

            output->centerFreq = centerFreq;
            output->bandwidth = bandwidth;

            distribute(output);
        }
    }
 
    iqData->decRefCount();
   
    
    lastView = is_view.load();
}
void SpectrumVisualProcessor::process() {
    if (!isOutputEmpty()) {
        return;
    }
    if (!input || input->empty()) {
        return;
    }
    
    DemodulatorThreadIQData *iqData;
    
    input->pop(iqData);
    
    if (!iqData) {
        return;
    }
    
    iqData->busy_rw.lock();
    busy_run.lock();
    
    std::vector<liquid_float_complex> *data = &iqData->data;
    
    if (data && data->size()) {
        SpectrumVisualData *output = outputBuffers.getBuffer();
        
        if (output->spectrum_points.size() < fftSize * 2) {
            output->spectrum_points.resize(fftSize * 2);
        }
        
        unsigned int num_written;
        
        if (is_view.load()) {
            if (!iqData->frequency || !iqData->sampleRate) {
                iqData->decRefCount();
                iqData->busy_rw.unlock();
                busy_run.unlock();
                return;
            }
            
            resamplerRatio = (double) (bandwidth) / (double) iqData->sampleRate;
            
            int desired_input_size = fftSize / resamplerRatio;
            
            this->desiredInputSize.store(desired_input_size);
            
            if (iqData->data.size() < desired_input_size) {
                //                std::cout << "fft underflow, desired: " << desired_input_size << " actual:" << input->data.size() << std::endl;
                desired_input_size = iqData->data.size();
            }
            
            if (centerFreq != iqData->frequency) {
                if ((centerFreq - iqData->frequency) != shiftFrequency || lastInputBandwidth != iqData->sampleRate) {
                    if (abs(iqData->frequency - centerFreq) < (wxGetApp().getSampleRate() / 2)) {
                        shiftFrequency = centerFreq - iqData->frequency;
                        nco_crcf_reset(freqShifter);
                        nco_crcf_set_frequency(freqShifter, (2.0 * M_PI) * (((double) abs(shiftFrequency)) / ((double) iqData->sampleRate)));
                    }
                }
                
                if (shiftBuffer.size() != desired_input_size) {
                    if (shiftBuffer.capacity() < desired_input_size) {
                        shiftBuffer.reserve(desired_input_size);
                    }
                    shiftBuffer.resize(desired_input_size);
                }
                
                if (shiftFrequency < 0) {
                    nco_crcf_mix_block_up(freqShifter, &iqData->data[0], &shiftBuffer[0], desired_input_size);
                } else {
                    nco_crcf_mix_block_down(freqShifter, &iqData->data[0], &shiftBuffer[0], desired_input_size);
                }
            } else {
                shiftBuffer.assign(iqData->data.begin(), iqData->data.end());
            }
            
            if (!resampler || bandwidth != lastBandwidth || lastInputBandwidth != iqData->sampleRate) {
                float As = 60.0f;
                
                if (resampler) {
                    msresamp_crcf_destroy(resampler);
                }
                resampler = msresamp_crcf_create(resamplerRatio, As);
                
                lastBandwidth = bandwidth;
                lastInputBandwidth = iqData->sampleRate;
            }
            
            
            int out_size = ceil((double) (desired_input_size) * resamplerRatio) + 512;
            
            if (resampleBuffer.size() != out_size) {
                if (resampleBuffer.capacity() < out_size) {
                    resampleBuffer.reserve(out_size);
                }
                resampleBuffer.resize(out_size);
            }
            
            
            msresamp_crcf_execute(resampler, &shiftBuffer[0], desired_input_size, &resampleBuffer[0], &num_written);
            
            resampleBuffer.resize(fftSize);
            
            if (num_written < fftSize) {
                for (int i = 0; i < num_written; i++) {
                    fftInData[i][0] = resampleBuffer[i].real;
                    fftInData[i][1] = resampleBuffer[i].imag;
                }
                for (int i = num_written; i < fftSize; i++) {
                    fftInData[i][0] = 0;
                    fftInData[i][1] = 0;
                }
            } else {
                for (int i = 0; i < fftSize; i++) {
                    fftInData[i][0] = resampleBuffer[i].real;
                    fftInData[i][1] = resampleBuffer[i].imag;
                }
            }
        } else {
            num_written = data->size();
            if (data->size() < fftSize) {
                for (int i = 0, iMax = data->size(); i < iMax; i++) {
                    fftInData[i][0] = (*data)[i].real;
                    fftInData[i][1] = (*data)[i].imag;
                }
                for (int i = data->size(); i < fftSize; i++) {
                    fftInData[i][0] = 0;
                    fftInData[i][1] = 0;
                }
            } else {
                for (int i = 0; i < fftSize; i++) {
                    fftInData[i][0] = (*data)[i].real;
                    fftInData[i][1] = (*data)[i].imag;
                }
            }
        }
        
        bool execute = false;
        
        if (num_written >= fftSize) {
            execute = true;
            memcpy(fftwInput, fftInData, fftSize * sizeof(fftwf_complex));
            memcpy(fftLastData, fftwInput, fftSize * sizeof(fftwf_complex));
            
        } else {
            if (lastDataSize + num_written < fftSize) { // priming
                unsigned int num_copy = fftSize - lastDataSize;
                if (num_written > num_copy) {
                    num_copy = num_written;
                }
                memcpy(fftLastData, fftInData, num_copy * sizeof(fftwf_complex));
                lastDataSize += num_copy;
            } else {
                unsigned int num_last = (fftSize - num_written);
                memcpy(fftwInput, fftLastData + (lastDataSize - num_last), num_last * sizeof(fftwf_complex));
                memcpy(fftwInput + num_last, fftInData, num_written * sizeof(fftwf_complex));
                memcpy(fftLastData, fftwInput, fftSize * sizeof(fftwf_complex));
                execute = true;
            }
        }
        
        if (execute) {
            fftwf_execute(fftw_plan);
            
            float fft_ceil = 0, fft_floor = 1;
            
            if (fft_result.size() < fftSize) {
                fft_result.resize(fftSize);
                fft_result_ma.resize(fftSize);
                fft_result_maa.resize(fftSize);
            }
            
            for (int i = 0, iMax = fftSize / 2; i < iMax; i++) {
                float a = fftwOutput[i][0];
                float b = fftwOutput[i][1];
                float c = sqrt(a * a + b * b);
                
                float x = fftwOutput[fftSize / 2 + i][0];
                float y = fftwOutput[fftSize / 2 + i][1];
                float z = sqrt(x * x + y * y);
                
                fft_result[i] = (z);
                fft_result[fftSize / 2 + i] = (c);
            }
            
            for (int i = 0, iMax = fftSize; i < iMax; i++) {
                if (is_view.load()) {
                    fft_result_maa[i] += (fft_result_ma[i] - fft_result_maa[i]) * fft_average_rate;
                    fft_result_ma[i] += (fft_result[i] - fft_result_ma[i]) * fft_average_rate;
                } else {
                    fft_result_maa[i] += (fft_result_ma[i] - fft_result_maa[i]) * fft_average_rate;
                    fft_result_ma[i] += (fft_result[i] - fft_result_ma[i]) * fft_average_rate;
                }
                
                if (fft_result_maa[i] > fft_ceil) {
                    fft_ceil = fft_result_maa[i];
                }
                if (fft_result_maa[i] < fft_floor) {
                    fft_floor = fft_result_maa[i];
                }
            }
            
            fft_ceil_ma = fft_ceil_ma + (fft_ceil - fft_ceil_ma) * 0.05;
            fft_ceil_maa = fft_ceil_maa + (fft_ceil_ma - fft_ceil_maa) * 0.05;
            
            fft_floor_ma = fft_floor_ma + (fft_floor - fft_floor_ma) * 0.05;
            fft_floor_maa = fft_floor_maa + (fft_floor_ma - fft_floor_maa) * 0.05;
            
            float sf = scaleFactor.load();
            
            for (int i = 0, iMax = fftSize; i < iMax; i++) {
                float v = (log10(fft_result_maa[i]+0.25 - (fft_floor_maa-0.75)) / log10((fft_ceil_maa+0.25) - (fft_floor_maa-0.75)));
                output->spectrum_points[i * 2] = ((float) i / (float) iMax);
                output->spectrum_points[i * 2 + 1] = v*sf;
            }
                
            if (hideDC.load()) { // DC-spike removal
                long long freqMin = centerFreq-(bandwidth/2);
                long long freqMax = centerFreq+(bandwidth/2);
                long long zeroPt = (iqData->frequency-freqMin);
                
                if (freqMin < iqData->frequency && freqMax > iqData->frequency) {
                    int freqRange = int(freqMax-freqMin);
                    int freqStep = freqRange/fftSize;
                    int fftStart = (zeroPt/freqStep)-(2000/freqStep);
                    int fftEnd = (zeroPt/freqStep)+(2000/freqStep);
                    
//                    std::cout << "range:" << freqRange << ", step: " << freqStep << ", start: " << fftStart << ", end: " << fftEnd << std::endl;
                    
                    if (fftEnd-fftStart < 2) {
                        fftEnd++;
                        fftStart--;
                    }
                    
                    int numSteps = (fftEnd-fftStart);
                    int halfWay = fftStart+(numSteps/2);

                    if ((fftEnd+numSteps/2+1 < fftSize) && (fftStart-numSteps/2-1 >= 0) && (fftEnd > fftStart)) {
                        int n = 1;
                        for (int i = fftStart; i < halfWay; i++) {
                            output->spectrum_points[i * 2 + 1] = output->spectrum_points[(fftStart - n) * 2 + 1];
                            n++;
                        }
                        n = 1;
                        for (int i = halfWay; i < fftEnd; i++) {
                            output->spectrum_points[i * 2 + 1] = output->spectrum_points[(fftEnd + n) * 2 + 1];
                            n++;
                        }
                    }
                }
            }
            
            output->fft_ceiling = fft_ceil_maa/sf;
            output->fft_floor = fft_floor_maa;
        }
        
        distribute(output);
    }
 
    iqData->decRefCount();
    iqData->busy_rw.unlock();
    busy_run.unlock();
}