Boolean Groupsock::handleRead(unsigned char* buffer, unsigned bufferMaxSize, unsigned& bytesRead, struct sockaddr_in& fromAddress) { // Read data from the socket, and relay it across any attached tunnels //##### later make this code more general - independent of tunnels bytesRead = 0; int maxBytesToRead = bufferMaxSize - TunnelEncapsulationTrailerMaxSize; int numBytes = readSocket(env(), socketNum(), buffer, maxBytesToRead, fromAddress); if (numBytes < 0) { if (DebugLevel >= 0) { // this is a fatal error env().setResultMsg("Groupsock read failed: ", env().getResultMsg()); } return False; } // If we're a SSM group, make sure the source address matches: if (isSSM() && fromAddress.sin_addr.s_addr != sourceFilterAddress().s_addr) { return True; } // We'll handle this data. // Also write it (with the encapsulation trailer) to each member, // unless the packet was originally sent by us to begin with. bytesRead = numBytes; int numMembers = 0; if (!wasLoopedBackFromUs(env(), fromAddress)) { statsIncoming.countPacket(numBytes); statsGroupIncoming.countPacket(numBytes); numMembers = outputToAllMembersExcept(NULL, ttl(), buffer, bytesRead, fromAddress.sin_addr.s_addr); if (numMembers > 0) { statsRelayedIncoming.countPacket(numBytes); statsGroupRelayedIncoming.countPacket(numBytes); } } if (DebugLevel >= 3) { env() << *this << ": read " << bytesRead << " bytes from "; env() << our_inet_ntoa(fromAddress.sin_addr); if (numMembers > 0) { env() << "; relayed to " << numMembers << " members"; } env() << "\n"; } return True; }
Groupsock::~Groupsock() { if (isSSM()) { if (!socketLeaveGroupSSM(env(), socketNum(), groupAddress().s_addr, sourceFilterAddress().s_addr)) { socketLeaveGroup(env(), socketNum(), groupAddress().s_addr); } } else { socketLeaveGroup(env(), socketNum(), groupAddress().s_addr); } delete fDests; if (DebugLevel >= 2) env() << *this << ": deleting\n"; }
void MediaSubsession::setDestinations(netAddressBits defaultDestAddress) { // Get the destination address from the connection endpoint name // (This will be 0 if it's not known, in which case we use the default) netAddressBits destAddress = connectionEndpointAddress(); if (destAddress == 0) destAddress = defaultDestAddress; struct in_addr destAddr; destAddr.s_addr = destAddress; // The destination TTL remains unchanged: int destTTL = ~0; // means: don't change if (fRTPSocket != NULL) { Port destPort(serverPortNum); fRTPSocket->changeDestinationParameters(destAddr, destPort, destTTL); } if (fRTCPSocket != NULL && !isSSM()) { // Note: For SSM sessions, the dest address for RTCP was already set. Port destPort(serverPortNum+1); fRTCPSocket->changeDestinationParameters(destAddr, destPort, destTTL); } }
int Groupsock::outputToAllMembersExcept(DirectedNetInterface* exceptInterface, u_int8_t ttlToFwd, unsigned char* data, unsigned size, netAddressBits sourceAddr) { // Don't forward TTL-0 packets if (ttlToFwd == 0) return 0; DirectedNetInterfaceSet::Iterator iter(members()); unsigned numMembers = 0; DirectedNetInterface* interf; while ((interf = iter.next()) != NULL) { // Check whether we've asked to exclude this interface: if (interf == exceptInterface) continue; // Check that the packet's source address makes it OK to // be relayed across this interface: UsageEnvironment& saveEnv = env(); // because the following call may delete "this" if (!interf->SourceAddrOKForRelaying(saveEnv, sourceAddr)) { if (strcmp(saveEnv.getResultMsg(), "") != 0) { // Treat this as a fatal error return -1; } else { continue; } } if (numMembers == 0) { // We know that we're going to forward to at least one // member, so fill in the tunnel encapsulation trailer. // (Note: Allow for it not being 4-byte-aligned.) TunnelEncapsulationTrailer* trailerInPacket = (TunnelEncapsulationTrailer*)&data[size]; TunnelEncapsulationTrailer* trailer; Boolean misaligned = ((unsigned long)trailerInPacket & 3) != 0; unsigned trailerOffset; u_int8_t tunnelCmd; if (isSSM()) { // add an 'auxilliary address' before the trailer trailerOffset = TunnelEncapsulationTrailerAuxSize; tunnelCmd = TunnelDataAuxCmd; } else { trailerOffset = 0; tunnelCmd = TunnelDataCmd; } unsigned trailerSize = TunnelEncapsulationTrailerSize + trailerOffset; unsigned tmpTr[TunnelEncapsulationTrailerMaxSize]; if (misaligned) { trailer = (TunnelEncapsulationTrailer*)&tmpTr; } else { trailer = trailerInPacket; } trailer += trailerOffset; if (fDests != NULL) { trailer->address() = fDests->fGroupEId.groupAddress().s_addr; trailer->port() = fDests->fPort; // structure copy, outputs in network order } trailer->ttl() = ttlToFwd; trailer->command() = tunnelCmd; if (isSSM()) { trailer->auxAddress() = sourceFilterAddress().s_addr; } if (misaligned) { memmove(trailerInPacket, trailer-trailerOffset, trailerSize); } size += trailerSize; } interf->write(data, size); ++numMembers; } return numMembers; }
Boolean MediaSubsession::initiate(int useSpecialRTPoffset) { if (fReadSource != NULL) return True; // has already been initiated do { if (fCodecName == NULL) { env().setResultMsg("Codec is unspecified"); break; } // Create RTP and RTCP 'Groupsocks' on which to receive incoming data. // (Groupsocks will work even for unicast addresses) struct in_addr tempAddr; tempAddr.s_addr = connectionEndpointAddress(); // This could get changed later, as a result of a RTSP "SETUP" if (fClientPortNum != 0) { // The sockets' port numbers were specified for us. Use these: fClientPortNum = fClientPortNum&~1; // even if (isSSM()) { fRTPSocket = new Groupsock(env(), tempAddr, fSourceFilterAddr, fClientPortNum); } else { fRTPSocket = new Groupsock(env(), tempAddr, fClientPortNum, 255); } if (fRTPSocket == NULL) { env().setResultMsg("Failed to create RTP socket"); break; } // Set our RTCP port to be the RTP port +1 portNumBits const rtcpPortNum = fClientPortNum|1; if (isSSM()) { fRTCPSocket = new Groupsock(env(), tempAddr, fSourceFilterAddr, rtcpPortNum); } else { fRTCPSocket = new Groupsock(env(), tempAddr, rtcpPortNum, 255); } if (fRTCPSocket == NULL) { char tmpBuf[100]; sprintf(tmpBuf, "Failed to create RTCP socket (port %d)", rtcpPortNum); env().setResultMsg(tmpBuf); break; } } else { // Port numbers were not specified in advance, so we use ephemeral port numbers. // Create sockets until we get a port-number pair (even: RTP; even+1: RTCP). // We need to make sure that we don't keep trying to use the same bad port numbers over and over again. // so we store bad sockets in a table, and delete them all when we're done. HashTable* socketHashTable = HashTable::create(ONE_WORD_HASH_KEYS); if (socketHashTable == NULL) break; Boolean success = False; while (1) { // Create a new socket: if (isSSM()) { fRTPSocket = new Groupsock(env(), tempAddr, fSourceFilterAddr, 0); } else { fRTPSocket = new Groupsock(env(), tempAddr, 0, 255); } if (fRTPSocket == NULL) { env().setResultMsg("MediaSession::initiate(): unable to create RTP and RTCP sockets"); break; } // Get the client port number, and check whether it's even (for RTP): Port clientPort(0); if (!getSourcePort(env(), fRTPSocket->socketNum(), clientPort)) { break; } fClientPortNum = ntohs(clientPort.num()); if ((fClientPortNum&1) != 0) { // it's odd // Record this socket in our table, and keep trying: unsigned key = (unsigned)fClientPortNum; socketHashTable->Add((char const*)key, fRTPSocket); continue; } // Make sure we can use the next (i.e., odd) port number, for RTCP: portNumBits rtcpPortNum = fClientPortNum|1; if (isSSM()) { fRTCPSocket = new Groupsock(env(), tempAddr, fSourceFilterAddr, rtcpPortNum); } else { fRTCPSocket = new Groupsock(env(), tempAddr, rtcpPortNum, 255); } if (fRTCPSocket != NULL) { // Success! Use these two sockets (and delete any others that we've created): Groupsock* oldGS; while ((oldGS = (Groupsock*)socketHashTable->RemoveNext()) != NULL) { delete oldGS; } delete socketHashTable; success = True; break; } else { // We couldn't create the RTCP socket (perhaps that port number's already in use elsewhere?). // Record the first socket in our table, and keep trying: unsigned key = (unsigned)fClientPortNum; socketHashTable->Add((char const*)key, fRTPSocket); continue; } } if (!success) break; // a fatal error occurred trying to create the RTP and RTCP sockets; we can't continue } // ASSERT: fRTPSocket != NULL && fRTCPSocket != NULL if (isSSM()) { // Special case for RTCP SSM: Send RTCP packets back to the source via unicast: fRTCPSocket->changeDestinationParameters(fSourceFilterAddr,0,~0); } ////////////////////////////////////////////////////////////////////////// // 裁剪掉不需要的Source. // Check "fProtocolName" if (strcmp(fProtocolName, "UDP") == 0) { #ifndef CUT_MIN_SIZE // A UDP-packetized stream (*not* a RTP stream) fReadSource = BasicUDPSource::createNew(env(), fRTPSocket); fRTPSource = NULL; // Note! if (strcmp(fCodecName, "MP2T") == 0) { // MPEG-2 Transport Stream fReadSource = MPEG2TransportStreamFramer::createNew(env(), fReadSource); // this sets "durationInMicroseconds" correctly, based on the PCR values } #endif } else { // Check "fCodecName" against the set of codecs that we support, // and create our RTP source accordingly // (Later make this code more efficient, as this set grows #####) // (Also, add more fmts that can be implemented by SimpleRTPSource#####) Boolean createSimpleRTPSource = False; Boolean doNormalMBitRule = False; // used if "createSimpleRTPSource" if (strcmp(fCodecName, "H264") == 0) { fReadSource = fRTPSource = H264VideoRTPSource::createNew(env(), fRTPSocket, fRTPPayloadFormat, fRTPTimestampFrequency); } else if (strcmp(fCodecName, "MP4V-ES") == 0) { // MPEG-4 Elem Str vid fReadSource = fRTPSource = MPEG4ESVideoRTPSource::createNew(env(), fRTPSocket, fRTPPayloadFormat, fRTPTimestampFrequency); } #ifndef CUT_MIN_SIZE else if (strcmp(fCodecName, "QCELP") == 0) { // QCELP audio fReadSource = QCELPAudioRTPSource::createNew(env(), fRTPSocket, fRTPSource, fRTPPayloadFormat, fRTPTimestampFrequency); // Note that fReadSource will differ from fRTPSource in this case } else if (strcmp(fCodecName, "AMR") == 0) { // AMR audio (narrowband) fReadSource = AMRAudioRTPSource::createNew(env(), fRTPSocket, fRTPSource, fRTPPayloadFormat, 0 /*isWideband*/, fNumChannels, fOctetalign, fInterleaving, fRobustsorting, fCRC); // Note that fReadSource will differ from fRTPSource in this case } else if (strcmp(fCodecName, "AMR-WB") == 0) { // AMR audio (wideband) fReadSource = AMRAudioRTPSource::createNew(env(), fRTPSocket, fRTPSource, fRTPPayloadFormat, 1 /*isWideband*/, fNumChannels, fOctetalign, fInterleaving, fRobustsorting, fCRC); // Note that fReadSource will differ from fRTPSource in this case } else if (strcmp(fCodecName, "MPA") == 0) { // MPEG-1 or 2 audio fReadSource = fRTPSource = MPEG1or2AudioRTPSource::createNew(env(), fRTPSocket, fRTPPayloadFormat, fRTPTimestampFrequency); } else if (strcmp(fCodecName, "MPA-ROBUST") == 0) { // robust MP3 audio fRTPSource = MP3ADURTPSource::createNew(env(), fRTPSocket, fRTPPayloadFormat, fRTPTimestampFrequency); if (fRTPSource == NULL) break; // Add a filter that deinterleaves the ADUs after depacketizing them: MP3ADUdeinterleaver* deinterleaver = MP3ADUdeinterleaver::createNew(env(), fRTPSource); if (deinterleaver == NULL) break; // Add another filter that converts these ADUs to MP3 frames: fReadSource = MP3FromADUSource::createNew(env(), deinterleaver); } else if (strcmp(fCodecName, "X-MP3-DRAFT-00") == 0) { // a non-standard variant of "MPA-ROBUST" used by RealNetworks // (one 'ADU'ized MP3 frame per packet; no headers) fRTPSource = SimpleRTPSource::createNew(env(), fRTPSocket, fRTPPayloadFormat, fRTPTimestampFrequency, "audio/MPA-ROBUST" /*hack*/); if (fRTPSource == NULL) break; // Add a filter that converts these ADUs to MP3 frames: fReadSource = MP3FromADUSource::createNew(env(), fRTPSource, False /*no ADU header*/); } else if (strcmp(fCodecName, "MP4A-LATM") == 0) { // MPEG-4 LATM audio fReadSource = fRTPSource = MPEG4LATMAudioRTPSource::createNew(env(), fRTPSocket, fRTPPayloadFormat, fRTPTimestampFrequency); } else if (strcmp(fCodecName, "AC3") == 0) { // AC3 audio fReadSource = fRTPSource = AC3AudioRTPSource::createNew(env(), fRTPSocket, fRTPPayloadFormat, fRTPTimestampFrequency); } else if (strcmp(fCodecName, "MPEG4-GENERIC") == 0) { fReadSource = fRTPSource = MPEG4GenericRTPSource::createNew(env(), fRTPSocket, fRTPPayloadFormat, fRTPTimestampFrequency, fMediumName, fMode, fSizelength, fIndexlength, fIndexdeltalength); } else if (strcmp(fCodecName, "MPV") == 0) { // MPEG-1 or 2 video fReadSource = fRTPSource = MPEG1or2VideoRTPSource::createNew(env(), fRTPSocket, fRTPPayloadFormat, fRTPTimestampFrequency); } else if (strcmp(fCodecName, "MP2T") == 0) { // MPEG-2 Transport Stream fRTPSource = SimpleRTPSource::createNew(env(), fRTPSocket, fRTPPayloadFormat, fRTPTimestampFrequency, "video/MP2T", 0, False); fReadSource = MPEG2TransportStreamFramer::createNew(env(), fRTPSource); // this sets "durationInMicroseconds" correctly, based on the PCR values } else if (strcmp(fCodecName, "H261") == 0) { // H.261 fReadSource = fRTPSource = H261VideoRTPSource::createNew(env(), fRTPSocket, fRTPPayloadFormat, fRTPTimestampFrequency); } else if (strcmp(fCodecName, "H263-1998") == 0 || strcmp(fCodecName, "H263-2000") == 0) { // H.263+ fReadSource = fRTPSource = H263plusVideoRTPSource::createNew(env(), fRTPSocket, fRTPPayloadFormat, fRTPTimestampFrequency); } else if (strcmp(fCodecName, "JPEG") == 0) { // motion JPEG fReadSource = fRTPSource = JPEGVideoRTPSource::createNew(env(), fRTPSocket, fRTPPayloadFormat, fRTPTimestampFrequency, videoWidth(), videoHeight()); } else if (strcmp(fCodecName, "X-QT") == 0 || strcmp(fCodecName, "X-QUICKTIME") == 0) { // Generic QuickTime streams, as defined in // <http://developer.apple.com/quicktime/icefloe/dispatch026.html> char* mimeType = new char[strlen(mediumName()) + strlen(codecName()) + 2] ; sprintf(mimeType, "%s/%s", mediumName(), codecName()); fReadSource = fRTPSource = QuickTimeGenericRTPSource::createNew(env(), fRTPSocket, fRTPPayloadFormat, fRTPTimestampFrequency, mimeType); delete[] mimeType; #ifdef SUPPORT_REAL_RTSP } else if (strcmp(fCodecName, "X-PN-REALAUDIO") == 0 || strcmp(fCodecName, "X-PN-MULTIRATE-REALAUDIO-LIVE") == 0 || strcmp(fCodecName, "X-PN-REALVIDEO") == 0 || strcmp(fCodecName, "X-PN-MULTIRATE-REALVIDEO-LIVE") == 0) { // A RealNetworks 'RDT' stream (*not* a RTP stream) fReadSource = RealRDTSource::createNew(env()); fRTPSource = NULL; // Note! parentSession().isRealNetworksRDT = True; #endif } #endif // CUT_MIN_SIZE else if ( strcmp(fCodecName, "PCMU") == 0 // PCM u-law audio || strcmp(fCodecName, "GSM") == 0 // GSM audio || strcmp(fCodecName, "PCMA") == 0 // PCM a-law audio || strcmp(fCodecName, "L16") == 0 // 16-bit linear audio || strcmp(fCodecName, "MP1S") == 0 // MPEG-1 System Stream || strcmp(fCodecName, "MP2P") == 0 // MPEG-2 Program Stream || strcmp(fCodecName, "L8") == 0 // 8-bit linear audio || strcmp(fCodecName, "G726-16") == 0 // G.726, 16 kbps || strcmp(fCodecName, "G726-24") == 0 // G.726, 24 kbps || strcmp(fCodecName, "G726-32") == 0 // G.726, 32 kbps || strcmp(fCodecName, "G726-40") == 0 // G.726, 40 kbps || strcmp(fCodecName, "SPEEX") == 0 // SPEEX audio ) { createSimpleRTPSource = True; useSpecialRTPoffset = 0; } else if (useSpecialRTPoffset >= 0) { // We don't know this RTP payload format, but try to receive // it using a 'SimpleRTPSource' with the specified header offset: createSimpleRTPSource = True; } else { env().setResultMsg("RTP payload format unknown or not supported"); break; } if (createSimpleRTPSource) { char* mimeType = new char[strlen(mediumName()) + strlen(codecName()) + 2] ; sprintf(mimeType, "%s/%s", mediumName(), codecName()); fReadSource = fRTPSource = SimpleRTPSource::createNew(env(), fRTPSocket, fRTPPayloadFormat, fRTPTimestampFrequency, mimeType, (unsigned)useSpecialRTPoffset, doNormalMBitRule); delete[] mimeType; } } if (fReadSource == NULL) { env().setResultMsg("Failed to create read source"); break; } // Finally, create our RTCP instance. (It starts running automatically) if (fRTPSource != NULL) { unsigned totSessionBandwidth = 500; // HACK - later get from SDP##### fRTCPInstance = RTCPInstance::createNew(env(), fRTCPSocket, totSessionBandwidth, (unsigned char const*) fParent.CNAME(), NULL /* we're a client */, fRTPSource); if (fRTCPInstance == NULL) { env().setResultMsg("Failed to create RTCP instance"); break; } } return True; } while (0); delete fRTPSocket; fRTPSocket = NULL; delete fRTCPSocket; fRTCPSocket = NULL; Medium::close(fRTCPInstance); fRTCPInstance = NULL; Medium::close(fReadSource); fReadSource = fRTPSource = NULL; fClientPortNum = 0; return False; }
Boolean MediaSubsession::initiate(int useSpecialRTPoffset) { if (fReadSource != NULL) return True; // has already been initiated do { if (fCodecName == NULL) { env().setResultMsg("Codec is unspecified"); break; } // Create RTP and RTCP 'Groupsocks' on which to receive incoming data. // (Groupsocks will work even for unicast addresses) struct in_addr tempAddr; tempAddr.s_addr = connectionEndpointAddress(); // This could get changed later, as a result of a RTSP "SETUP" if (fClientPortNum != 0) { // The sockets' port numbers were specified for us. Use these: Boolean const protocolIsRTP = strcmp(fProtocolName, "RTP") == 0; if (protocolIsRTP) { fClientPortNum = fClientPortNum&~1; // use an even-numbered port for RTP, and the next (odd-numbered) port for RTCP } if (isSSM()) { fRTPSocket = new Groupsock(env(), tempAddr, fSourceFilterAddr, fClientPortNum); } else { fRTPSocket = new Groupsock(env(), tempAddr, fClientPortNum, 255); } if (fRTPSocket == NULL) { env().setResultMsg("Failed to create RTP socket"); break; } if (protocolIsRTP) { // Set our RTCP port to be the RTP port +1 portNumBits const rtcpPortNum = fClientPortNum|1; if (isSSM()) { fRTCPSocket = new Groupsock(env(), tempAddr, fSourceFilterAddr, rtcpPortNum); } else { fRTCPSocket = new Groupsock(env(), tempAddr, rtcpPortNum, 255); } } } else { // Port numbers were not specified in advance, so we use ephemeral port numbers. // Create sockets until we get a port-number pair (even: RTP; even+1: RTCP). // We need to make sure that we don't keep trying to use the same bad port numbers over and over again. // so we store bad sockets in a table, and delete them all when we're done. HashTable* socketHashTable = HashTable::create(ONE_WORD_HASH_KEYS); if (socketHashTable == NULL) break; Boolean success = False; NoReuse dummy(env()); // ensures that our new ephemeral port number won't be one that's already in use while (1) { // Create a new socket: if (isSSM()) { fRTPSocket = new Groupsock(env(), tempAddr, fSourceFilterAddr, 0); } else { fRTPSocket = new Groupsock(env(), tempAddr, 0, 255); } if (fRTPSocket == NULL) { env().setResultMsg("MediaSession::initiate(): unable to create RTP and RTCP sockets"); break; } // Get the client port number, and check whether it's even (for RTP): Port clientPort(0); if (!getSourcePort(env(), fRTPSocket->socketNum(), clientPort)) { break; } fClientPortNum = ntohs(clientPort.num()); if ((fClientPortNum&1) != 0) { // it's odd // Record this socket in our table, and keep trying: unsigned key = (unsigned)fClientPortNum; Groupsock* existing = (Groupsock*)socketHashTable->Add((char const*)key, fRTPSocket); delete existing; // in case it wasn't NULL continue; } // Make sure we can use the next (i.e., odd) port number, for RTCP: portNumBits rtcpPortNum = fClientPortNum|1; if (isSSM()) { fRTCPSocket = new Groupsock(env(), tempAddr, fSourceFilterAddr, rtcpPortNum); } else { fRTCPSocket = new Groupsock(env(), tempAddr, rtcpPortNum, 255); } if (fRTCPSocket != NULL && fRTCPSocket->socketNum() >= 0) { // Success! Use these two sockets. success = True; break; } else { // We couldn't create the RTCP socket (perhaps that port number's already in use elsewhere?). delete fRTCPSocket; // Record the first socket in our table, and keep trying: unsigned key = (unsigned)fClientPortNum; Groupsock* existing = (Groupsock*)socketHashTable->Add((char const*)key, fRTPSocket); delete existing; // in case it wasn't NULL continue; } } // Clean up the socket hash table (and contents): Groupsock* oldGS; while ((oldGS = (Groupsock*)socketHashTable->RemoveNext()) != NULL) { delete oldGS; } delete socketHashTable; if (!success) break; // a fatal error occurred trying to create the RTP and RTCP sockets; we can't continue } // Try to use a big receive buffer for RTP - at least 0.1 second of // specified bandwidth and at least 50 KB unsigned rtpBufSize = fBandwidth * 25 / 2; // 1 kbps * 0.1 s = 12.5 bytes if (rtpBufSize < 50 * 1024) rtpBufSize = 50 * 1024; increaseReceiveBufferTo(env(), fRTPSocket->socketNum(), rtpBufSize); if (isSSM() && fRTCPSocket != NULL) { // Special case for RTCP SSM: Send RTCP packets back to the source via unicast: fRTCPSocket->changeDestinationParameters(fSourceFilterAddr,0,~0); } // Create "fRTPSource" and "fReadSource": if (!createSourceObjects(useSpecialRTPoffset)) break; if (fReadSource == NULL) { env().setResultMsg("Failed to create read source"); break; } // Finally, create our RTCP instance. (It starts running automatically) if (fRTPSource != NULL && fRTCPSocket != NULL) { // If bandwidth is specified, use it and add 5% for RTCP overhead. // Otherwise make a guess at 500 kbps. unsigned totSessionBandwidth = fBandwidth ? fBandwidth + fBandwidth / 20 : 500; fRTCPInstance = RTCPInstance::createNew(env(), fRTCPSocket, totSessionBandwidth, (unsigned char const*) fParent.CNAME(), NULL /* we're a client */, fRTPSource); if (fRTCPInstance == NULL) { env().setResultMsg("Failed to create RTCP instance"); break; } } return True; } while (0); delete fRTPSocket; fRTPSocket = NULL; delete fRTCPSocket; fRTCPSocket = NULL; Medium::close(fRTCPInstance); fRTCPInstance = NULL; Medium::close(fReadSource); fReadSource = fRTPSource = NULL; fClientPortNum = 0; return False; }