namespace JSC { static bool isVFPPresent() { #if OS(LINUX) int fd = open("/proc/self/auxv", O_RDONLY); if (fd > 0) { Elf32_auxv_t aux; while (read(fd, &aux, sizeof(Elf32_auxv_t))) { if (aux.a_type == AT_HWCAP) { close(fd); return aux.a_un.a_val & HWCAP_VFP; } } close(fd); } #endif #if (COMPILER(RVCT) && defined(__TARGET_FPU_VFP)) || (COMPILER(GCC) && defined(__VFP_FP__)) return true; #else return false; #endif } const bool MacroAssemblerARM::s_isVFPPresent = isVFPPresent(); #if CPU(ARMV5_OR_LOWER) /* On ARMv5 and below, natural alignment is required. */ void MacroAssemblerARM::load32WithUnalignedHalfWords(BaseIndex address, RegisterID dest) { ARMWord op2; ASSERT(address.scale >= 0 && address.scale <= 3); op2 = m_assembler.lsl(address.index, static_cast<int>(address.scale)); if (address.offset >= 0 && address.offset + 0x2 <= 0xff) { m_assembler.add(ARMRegisters::S0, address.base, op2); m_assembler.halfDtrUp(ARMAssembler::LoadUint16, dest, ARMRegisters::S0, ARMAssembler::getOp2Half(address.offset)); m_assembler.halfDtrUp(ARMAssembler::LoadUint16, ARMRegisters::S0, ARMRegisters::S0, ARMAssembler::getOp2Half(address.offset + 0x2)); } else if (address.offset < 0 && address.offset >= -0xff) { m_assembler.add(ARMRegisters::S0, address.base, op2); m_assembler.halfDtrDown(ARMAssembler::LoadUint16, dest, ARMRegisters::S0, ARMAssembler::getOp2Half(-address.offset)); m_assembler.halfDtrDown(ARMAssembler::LoadUint16, ARMRegisters::S0, ARMRegisters::S0, ARMAssembler::getOp2Half(-address.offset - 0x2)); } else { m_assembler.moveImm(address.offset, ARMRegisters::S0); m_assembler.add(ARMRegisters::S0, ARMRegisters::S0, op2); m_assembler.halfDtrUpRegister(ARMAssembler::LoadUint16, dest, address.base, ARMRegisters::S0); m_assembler.add(ARMRegisters::S0, ARMRegisters::S0, ARMAssembler::Op2Immediate | 0x2); m_assembler.halfDtrUpRegister(ARMAssembler::LoadUint16, ARMRegisters::S0, address.base, ARMRegisters::S0); } m_assembler.orr(dest, dest, m_assembler.lsl(ARMRegisters::S0, 16)); } #endif }
namespace JSC { static bool isVFPPresent() { #if WTF_PLATFORM_LINUX int fd = open("/proc/self/auxv", O_RDONLY); if (fd > 0) { Elf32_auxv_t aux; while (read(fd, &aux, sizeof(Elf32_auxv_t))) { if (aux.a_type == AT_HWCAP) { close(fd); return aux.a_un.a_val & HWCAP_VFP; } } close(fd); } #endif return false; } const bool MacroAssemblerARM::s_isVFPPresent = isVFPPresent(); #if WTF_CPU_ARMV5_OR_LOWER /* On ARMv5 and below, natural alignment is required. */ void MacroAssemblerARM::load32WithUnalignedHalfWords(BaseIndex address, RegisterID dest) { ARMWord op2; ASSERT(address.scale >= 0 && address.scale <= 3); op2 = m_assembler.lsl(address.index, static_cast<int>(address.scale)); if (address.offset >= 0 && address.offset + 0x2 <= 0xff) { m_assembler.add_r(ARMRegisters::S0, address.base, op2); m_assembler.ldrh_u(dest, ARMRegisters::S0, ARMAssembler::getOp2Byte(address.offset)); m_assembler.ldrh_u(ARMRegisters::S0, ARMRegisters::S0, ARMAssembler::getOp2Byte(address.offset + 0x2)); } else if (address.offset < 0 && address.offset >= -0xff) { m_assembler.add_r(ARMRegisters::S0, address.base, op2); m_assembler.ldrh_d(dest, ARMRegisters::S0, ARMAssembler::getOp2Byte(-address.offset)); m_assembler.ldrh_d(ARMRegisters::S0, ARMRegisters::S0, ARMAssembler::getOp2Byte(-address.offset - 0x2)); } else { m_assembler.ldr_un_imm(ARMRegisters::S0, address.offset); m_assembler.add_r(ARMRegisters::S0, ARMRegisters::S0, op2); m_assembler.ldrh_r(dest, address.base, ARMRegisters::S0); m_assembler.add_r(ARMRegisters::S0, ARMRegisters::S0, ARMAssembler::OP2_IMM | 0x2); m_assembler.ldrh_r(ARMRegisters::S0, address.base, ARMRegisters::S0); } m_assembler.orr_r(dest, dest, m_assembler.lsl(ARMRegisters::S0, 16)); } #endif }
close(fd); return aux.a_un.a_val & HWCAP_VFP; } } close(fd); } #endif // OS(LINUX) #if (COMPILER(GCC) && defined(__VFP_FP__)) return true; #else return false; #endif } const bool MacroAssemblerARM::s_isVFPPresent = isVFPPresent(); #if CPU(ARMV5_OR_LOWER) /* On ARMv5 and below, natural alignment is required. */ void MacroAssemblerARM::load32WithUnalignedHalfWords(BaseIndex address, RegisterID dest) { ARMWord op2; ASSERT(address.scale >= 0 && address.scale <= 3); op2 = m_assembler.lsl(address.index, static_cast<int>(address.scale)); if (address.offset >= 0 && address.offset + 0x2 <= 0xff) { m_assembler.add(ARMRegisters::S0, address.base, op2); m_assembler.halfDtrUp(ARMAssembler::LoadUint16, dest, ARMRegisters::S0, ARMAssembler::getOp2Half(address.offset)); m_assembler.halfDtrUp(ARMAssembler::LoadUint16, ARMRegisters::S0, ARMRegisters::S0, ARMAssembler::getOp2Half(address.offset + 0x2)); } else if (address.offset < 0 && address.offset >= -0xff) {
namespace JSC { static bool isVFPPresent() { #if OS(LINUX) int fd = open("/proc/self/auxv", O_RDONLY); if (fd != -1) { Elf32_auxv_t aux; while (read(fd, &aux, sizeof(Elf32_auxv_t))) { if (aux.a_type == AT_HWCAP) { close(fd); return aux.a_un.a_val & HWCAP_VFP; } } close(fd); } #endif // OS(LINUX) #if (COMPILER(GCC_OR_CLANG) && defined(__VFP_FP__)) return true; #else return false; #endif } const bool MacroAssemblerARM::s_isVFPPresent = isVFPPresent(); #if CPU(ARMV5_OR_LOWER) /* On ARMv5 and below, natural alignment is required. */ void MacroAssemblerARM::load32WithUnalignedHalfWords(BaseIndex address, RegisterID dest) { ARMWord op2; ASSERT(address.scale >= 0 && address.scale <= 3); op2 = m_assembler.lsl(address.index, static_cast<int>(address.scale)); if (address.offset >= 0 && address.offset + 0x2 <= 0xff) { m_assembler.add(ARMRegisters::S0, address.base, op2); m_assembler.halfDtrUp(ARMAssembler::LoadUint16, dest, ARMRegisters::S0, ARMAssembler::getOp2Half(address.offset)); m_assembler.halfDtrUp(ARMAssembler::LoadUint16, ARMRegisters::S0, ARMRegisters::S0, ARMAssembler::getOp2Half(address.offset + 0x2)); } else if (address.offset < 0 && address.offset >= -0xff) { m_assembler.add(ARMRegisters::S0, address.base, op2); m_assembler.halfDtrDown(ARMAssembler::LoadUint16, dest, ARMRegisters::S0, ARMAssembler::getOp2Half(-address.offset)); m_assembler.halfDtrDown(ARMAssembler::LoadUint16, ARMRegisters::S0, ARMRegisters::S0, ARMAssembler::getOp2Half(-address.offset - 0x2)); } else { m_assembler.moveImm(address.offset, ARMRegisters::S0); m_assembler.add(ARMRegisters::S0, ARMRegisters::S0, op2); m_assembler.halfDtrUpRegister(ARMAssembler::LoadUint16, dest, address.base, ARMRegisters::S0); m_assembler.add(ARMRegisters::S0, ARMRegisters::S0, ARMAssembler::Op2Immediate | 0x2); m_assembler.halfDtrUpRegister(ARMAssembler::LoadUint16, ARMRegisters::S0, address.base, ARMRegisters::S0); } m_assembler.orr(dest, dest, m_assembler.lsl(ARMRegisters::S0, 16)); } #endif // CPU(ARMV5_OR_LOWER) #if ENABLE(MASM_PROBE) extern "C" void ctiMasmProbeTrampoline(); // For details on "What code is emitted for the probe?" and "What values are in // the saved registers?", see comment for MacroAssemblerX86Common::probe() in // MacroAssemblerX86Common.cpp. void MacroAssemblerARM::probe(MacroAssemblerARM::ProbeFunction function, void* arg1, void* arg2) { push(RegisterID::sp); push(RegisterID::lr); push(RegisterID::ip); push(RegisterID::S0); // The following uses RegisterID::S0. So, they must come after we push S0 above. push(trustedImm32FromPtr(arg2)); push(trustedImm32FromPtr(arg1)); push(trustedImm32FromPtr(function)); move(trustedImm32FromPtr(ctiMasmProbeTrampoline), RegisterID::S0); m_assembler.blx(RegisterID::S0); } #endif // ENABLE(MASM_PROBE) } // namespace JSC