Пример #1
0
int64_t ceil_p2(int64_t x)
{
    assert(x > 0);

    if (is_p2(x))
        return x;

    return next_p2(x);
}
Пример #2
0
void Device_port_groups_init(Device_port_groups groups, int first_group_size, ...)
{
    rassert(groups != NULL);
    rassert(first_group_size >= 0);
    rassert(implies(first_group_size > 0, is_p2(first_group_size)));
    rassert(first_group_size <= WORK_BUFFER_SUB_COUNT_MAX);

    for (int i = 0; i < PORT_GROUPS_MAX; ++i)
        groups[i] = 0;

    va_list args;
    va_start(args, first_group_size);

    groups[0] = (int8_t)first_group_size;

    int size_count = 0;

    if (first_group_size > 0)
    {
        for (size_count = 1; size_count < PORT_GROUPS_MAX; ++size_count)
        {
            const int size = va_arg(args, int);
            rassert(size >= 0);
            rassert(size <= WORK_BUFFER_SUB_COUNT_MAX);
            rassert(implies(size > 0, is_p2(size)));
            groups[size_count] = (int8_t)size;

            if (groups[size_count] == 0)
                break;
        }
    }

    if (size_count == PORT_GROUPS_MAX)
    {
        const int zero = va_arg(args, int);
        rassert(zero == 0);
    }

    va_end(args);

    return;
}
Пример #3
0
static int32_t Add_vstate_render_voice(
        Voice_state* vstate,
        Proc_state* proc_state,
        const Device_thread_state* proc_ts,
        const Au_state* au_state,
        const Work_buffers* wbs,
        int32_t buf_start,
        int32_t buf_stop,
        double tempo)
{
    rassert(vstate != NULL);
    rassert(proc_state != NULL);
    rassert(proc_ts != NULL);
    rassert(au_state != NULL);
    rassert(wbs != NULL);
    rassert(tempo > 0);

    const Device_state* dstate = &proc_state->parent;
    const Proc_add* add = (Proc_add*)proc_state->parent.device->dimpl;
    Add_vstate* add_state = (Add_vstate*)vstate;
    rassert(is_p2(ADD_BASE_FUNC_SIZE));

    // Get frequencies
    Work_buffer* freqs_wb = Device_thread_state_get_voice_buffer(
            proc_ts, DEVICE_PORT_TYPE_RECV, PORT_IN_PITCH);
    Work_buffer* pitches_wb = freqs_wb;
    if (freqs_wb == NULL)
        freqs_wb = Work_buffers_get_buffer_mut(wbs, ADD_WORK_BUFFER_FIXED_PITCH);
    Proc_fill_freq_buffer(freqs_wb, pitches_wb, buf_start, buf_stop);
    const float* freqs = Work_buffer_get_contents(freqs_wb);

    // Get volume scales
    Work_buffer* scales_wb = Device_thread_state_get_voice_buffer(
            proc_ts, DEVICE_PORT_TYPE_RECV, PORT_IN_FORCE);
    Work_buffer* dBs_wb = scales_wb;
    if (scales_wb == NULL)
        scales_wb = Work_buffers_get_buffer_mut(wbs, ADD_WORK_BUFFER_FIXED_FORCE);
    Proc_fill_scale_buffer(scales_wb, dBs_wb, buf_start, buf_stop);
    const float* scales = Work_buffer_get_contents(scales_wb);

    // Get output buffer for writing
    float* out_bufs[2] = { NULL };
    Proc_state_get_voice_audio_out_buffers(
            proc_ts, PORT_OUT_AUDIO_L, PORT_OUT_COUNT, out_bufs);

    // Get phase modulation signal
    const Work_buffer* mod_wbs[] =
    {
        Device_thread_state_get_voice_buffer(
                proc_ts, DEVICE_PORT_TYPE_RECV, PORT_IN_PHASE_MOD_L),
        Device_thread_state_get_voice_buffer(
                proc_ts, DEVICE_PORT_TYPE_RECV, PORT_IN_PHASE_MOD_R),
    };

    for (int ch = 0; ch < 2; ++ch)
    {
        if (mod_wbs[ch] == NULL)
        {
            Work_buffer* zero_buf = Work_buffers_get_buffer_mut(
                    wbs, (Work_buffer_type)(ADD_WORK_BUFFER_MOD_L + ch));
            Work_buffer_clear(zero_buf, buf_start, buf_stop);
            mod_wbs[ch] = zero_buf;
        }
    }

    // Add base waveform tones
    const double inv_audio_rate = 1.0 / dstate->audio_rate;

    const float* base = Sample_get_buffer(add->base, 0);

    for (int h = 0; h < add_state->tone_limit; ++h)
    {
        const Add_tone* tone = &add->tones[h];
        const double pitch_factor = tone->pitch_factor;
        const double volume_factor = tone->volume_factor;

        if ((pitch_factor <= 0) || (volume_factor <= 0))
            continue;

        const double pannings[] =
        {
            -tone->panning,
            tone->panning,
        };

        const double pitch_factor_inv_audio_rate = pitch_factor * inv_audio_rate;

        Add_tone_state* tone_state = &add_state->tones[h];

        for (int32_t ch = 0; ch < 2; ++ch)
        {
            float* out_buf_ch = out_bufs[ch];
            if (out_buf_ch == NULL)
                continue;

            const double panning_factor = 1 + pannings[ch];
            const float* mod_values_ch = Work_buffer_get_contents(mod_wbs[ch]);

            double phase = tone_state->phase[ch];

            int32_t res_slice_start = buf_start;
            while (res_slice_start < buf_stop)
            {
                int32_t res_slice_stop = buf_stop;

                // Get current pitch range
                const float first_mod_shift =
                    mod_values_ch[res_slice_start] - add_state->prev_mod[ch];
                const float first_phase_shift_abs = (float)fabs(
                        first_mod_shift +
                        (freqs[res_slice_start] * pitch_factor_inv_audio_rate));
                int shift_exp = 0;
                const float shift_norm = frexpf(first_phase_shift_abs, &shift_exp);
                const float min_phase_shift_abs = ldexpf(0.5f, shift_exp);
                const float max_phase_shift_abs = min_phase_shift_abs * 2.0f;

                // Choose appropriate waveform resolution for current pitch range
                int32_t cur_size = ADD_BASE_FUNC_SIZE;
                if (isfinite(shift_norm) && (shift_norm > 0.0f))
                {
                    cur_size = (int32_t)ipowi(2, max(-shift_exp + 1, 3));
                    cur_size = min(cur_size, ADD_BASE_FUNC_SIZE * 2);
                    rassert(is_p2(cur_size));
                }
                const uint32_t cur_size_mask = (uint32_t)cur_size - 1;
                const int base_offset = (ADD_BASE_FUNC_SIZE * 4 - cur_size * 2);
                rassert(base_offset >= 0);
                rassert(base_offset < (ADD_BASE_FUNC_SIZE * 4) - 1);
                const float* cur_base = base + base_offset;

                // Get length of input compatible with current waveform resolution
                const int32_t res_check_stop = min(res_slice_stop,
                        max(Work_buffer_get_const_start(freqs_wb),
                            Work_buffer_get_const_start(mod_wbs[ch])) + 1);
                for (int32_t i = res_slice_start + 1; i < res_check_stop; ++i)
                {
                    const float cur_mod_shift = mod_values_ch[i] - mod_values_ch[i - 1];
                    const float cur_phase_shift_abs = (float)fabs(
                            cur_mod_shift +
                            (freqs[i] * pitch_factor_inv_audio_rate));
                    if (cur_phase_shift_abs < min_phase_shift_abs ||
                            cur_phase_shift_abs > max_phase_shift_abs)
                    {
                        res_slice_stop = i;
                        break;
                    }
                }

                for (int32_t i = res_slice_start; i < res_slice_stop; ++i)
                {
                    const float freq = freqs[i];
                    const float vol_scale = scales[i];
                    const float mod_val = mod_values_ch[i];

                    // Note: + mod_val is specific to phase modulation
                    const double actual_phase = phase + mod_val;
                    const double pos = actual_phase * cur_size;

                    // Note: direct cast of negative doubles to uint32_t is undefined
                    const uint32_t pos1 = (uint32_t)(int32_t)floor(pos) & cur_size_mask;
                    const uint32_t pos2 = (pos1 + 1) & cur_size_mask;

                    const float item1 = cur_base[pos1];
                    const float item_diff = cur_base[pos2] - item1;
                    const double lerp_val = pos - floor(pos);
                    const double value =
                        (item1 + (lerp_val * item_diff)) * volume_factor * panning_factor;

                    out_buf_ch[i] += (float)value * vol_scale;

                    phase += freq * pitch_factor_inv_audio_rate;

                    // Normalise to range [0, 1)
                    if (phase >= 1)
                    {
                        phase -= 1;

                        // Don't bother updating the phase if our frequency is too high
                        if (phase >= 1)
                            phase = tone_state->phase[ch];
                    }
                }

                rassert(res_slice_start < res_slice_stop);
                add_state->prev_mod[ch] = mod_values_ch[res_slice_stop - 1];

                res_slice_start = res_slice_stop;
            }

            tone_state->phase[ch] = phase;
        }
    }

    if (add->is_ramp_attack_enabled)
        Proc_ramp_attack(vstate, 2, out_bufs, buf_start, buf_stop, dstate->audio_rate);

    return buf_stop;
}